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SUMMARY

A general theory of steady three-dimensional flow of a nonviscous
fluid in subsonic and supersonic turbomachines having arbitrary hub and
casing shapes and a finite number of blades is presented. The solution
of the three-dimensional direct and inverse problem is obtained by
investigating an appropriate combination of flows on relative stream
surfaces whose intersections with a z-plane either upstream of or some-
where inside the blade row form a circular arc or a radial line. The
equations obtained to describe the fluid flow on these stream surfaces
show clearly the several approximations involved in ordinary two-
dimensional treatments. They also lead to a solution of the three-
dimensional problem in a mathematically two-dimensional manner through
iteration. The equation of continuity is combined with the equation of
motion in either the tangential or the radial direction through the use
of a stream function defined on the surface, and the resulting equation
is chosen as the principal equation for such flows. The character of
this equation depends on the relative magnitude of the local velocity of
sound and a certain combination of velocity components of the fluid. A
general method to solve this equation by both hand and high-speed
digital machine computations when the equation is elliptic or hyperbolic
is described. The theory is applicable to both irrotational and rota-
tional absolute flow at the inlet of the blade row and at both design
and off-design operations.

INTRODUCTION

The problem of three-dimensional flow in turbomachines of axial-,
radial-, and mixed-flow types is treated in references 1 to 19. Because
of the enormous mathematical difficulties involved in the problem, Lorenz
(reference 1) first introduced the idea of an infinite number of blades
of infinitesimal thickness in order to follow the flow on a given surface,




2 NACA TN 2604

Bauersfeld (reference 2) added to the theory the condition of integra-
bility for the blade surface that must be satisfied in the inverse, or
design, problem. The theory is further clarified and strengthened by
the works of Stodola (reference 3), von Mises (reference 4), and Dreyfus
(reference 5), and is the basis of many recent investigations on axial-,
radial-, and mixed-flow compressors and turbines.

For incompressible flow, Ruden (reference 6) proves that the
through-flow solution obtained under the assumption of an infinite num-
ber of blades gives a circumferentially average value of the fluid prop-
erties, provided the deviations of the fluid properties from their cir-
cumferential averages are small. In reference 7, Traupel points out the
oscillatory nature of radial flow in a multistage turbomachine and gives
solutions of the three-dimensional potential flow through inclined
stationary blades and also of the rotational flow through a homogeneous
stage of identical nontwisted blades for an incompressible fluid and an
infinite number of blades bounded by cylindircal walls. Meyer gives a
detailed treatment of three-dimensional potential flow in a stationary
blade row, for an incompressible fluid and cylindrical bounding wall,
in reference 8, where the solution for an infinite number of blades is
extended to a finite number of blades by the vortex-and-source method of

Ackeret, which is originally given for two-dimensional flow (reference 9).

In reference 10, a linearized solution for an incompressible fluid and an
infinite number of blades for a prescribed loading and cylindrical
bounding walls is obtained by Marble, and is used later to investigate
the problem of mutual interference of adjacent blade rows and off-
design operations (reference 11). Siestrunck and Fabri (reference 12)
also obtained a linearized solution for incompressible flow, and the
method is extended to compressible flow. For general wall shapes,
Spannhake (reference 13) examines the flow through diffuser and impeller
by the use of bound vortices for blades. The incompressible through
flow in a mixed-flow impeller is treated by Gravolos (reference 14).

In reference 15, Wislicenus examines the influence on the meridional
flow of the blade force and nonuniform circulation along the blade span.

For compressible flow, Reissner (reference 16) gives a blade-design
method in which the extension from an infinite number of blades to a
finite number of blades is accomplished by the use of a power series in
the circumferential direction, and the terms in the series are deter-
mined by a comparison of the equations for an infinite number of blades
and a finite number of blades. (In reference 5, Dreyfus gives a method
of designing water turbines of thin blades, in which the solution for
an infinite number of blades is extended to a finite number of blades by
the use of a power series, the second term of which is determined from
" the equations of continuity and irrotational absolute flow and is
explicitly given.) In reference 17 the compressible flow problems in
axlal turbomachines having an infinite number of blades are treated, and
both the direct and inverse problems are considered. Methods for

G50z
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limiting solutions for zeroc and infinite blade-row aspect ratios and a
step-by- step method of solution, as well as a simpler method based on an
approximate knowledge of the shape of the streamline, for a finite blade-
row aspect ratio are given. Unaware of the work of Traupel at the time,
the authors of reference 17 also emphas1zed the oscillatory nature of
radial flow in multistage machines and suggested the use of a simple
sinusoidal form of the streamline as a first approximate solution.,  Their
methods are derived for compressible flow, however, and are also extended
to the case where both the hub and casing walls or either is tapered.
Reference 18 gives a general through-flow theory for both direct and

~inverse problems and for subsonic or supersonic flow in turbomachines

having arbitrary hub and casing shapes. The supersonic through flow in
rotating impellers having a prescribed flow along the casing and pre-
scribed blade shapes is treated in reference 19. :

A general theory of three-dimensional flow in subsonic and super-
sonic turbomachines of axial-, radial-, and mixed-flow types for a
finite number of thick blades of finite thickness has been developed at
the NACA Lewis laboratory and is presented herein. Both the direct and

+ inverse problems are considered. The theory is applicable to either

irrotational or rotational absolute flow at the inlet of a blade row
and to both design and off-design operations. .

In the section BASIC AEROTHERMODYNAMIC REILATIONS, the motion and ‘
energy equations for the unsteady flow of a nonviscous compressible fluid
in a rotating blade row are expressed in terms of the velocity components
and of two basic thermodynamic properties of the fluid, namely, entropy
and a modified total enthalpy for flow in rotating blade rows with change
in radial distance from the machine axis. Estimated entropy changes due
to shock waves (in the case of supersonic flow), heat transfer (in the
case of a cooled turbine), or viscous effect can be easily accomodated
in the calculation. The equations obtained show clearly the condition
under which the flow through blade rows can be treated on the basis. of
irrotational absolute flow.

In the following section, a general potential equation is obtained
for steady three-dimensional compressible flow through rotating or
stationary blade rows when the absolute flow can be taken as irrota-

- tional. The methods of solution for both subsonic and supersonic flows

are brlefly dlscussed

A simpler method of solving the three-dimensional irrotational
(absolute) Tlow, which is also applicable to rotational-(absolute) flow,
is obtained by considering fluid flows on a number of relative stream
surfaces whose intersection with a z-plane either upstream of or some-
where in the blade row form a circular arc or a radial line. Equations
governing the flow. on these surfaces are obtained in the next four sec-
tions. Through the use of a stream function defined on the stream
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surface, the equations of continuity and motion for fluld flow on these
surfaces are combined into one principal equation. The character of the
principal equation is dependent on the relative magnitude of the local
velocity of sound and a certain combination of velocity components.

The process involved in solving the direct and inverse problems by
this approach is described in the section STEPS FOR COMPLETE SOLUTIONS
OF THREE-DIMENSIONAL DIRECT AND INVERSE PROBLEMS. In the inverse prob-
lem, besides the blade-thickness distribution determined by blade
strength and other considerations, either the tangential velocity, a
relation between the tangential and axial velocity, or one other rela-
tion is prescribed on a mean stream surface about midway between two
" blades. The last section gives a general method of solution of the
principal equation when it is elliptic or hyperbolic.

SYMBOLS

The following symbols are used in this report:

a velocity of sound

B,b integrating factor for continuity equation for Sz and 87
surfaces, respectively

ﬁBg differentiation coefficient used to multiply function value

at point j to give the mbh derivative at point i Dbased
on nth degree polynomial

C,c nonzero term on right-hand side of continuity equation for
S, and S surfaces, respectively

CpsCy specific heat of gas at constant pressure and volume,
respectively

%% differentiation with respect to time following rélative
motion of fluid particle

qu n® derivative of q

F,f - vectors having the unit of force per unit mass of fluid

G,g given function of Wu/wz on Sy

. . lV2
H total enthalpy per unit mass of fluid, h + 5

h static enthalpy per unit mass of fluid, u + p/p

2055
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modified total enthalpy for flow in rotating blade row with
‘change in radial distance from machine axis,

2 1
b+ %W -3 @?r2 or H - w(Vyr)

coefficients of first- and second-order derivatives in the
. principal equation

thermal conductivity
distance along stréamliﬁe
orthogonal coordinates on surface of revolution

mass flow between mean stream surface and one surface of
blade

number of blades

‘3unit vector normal to relative stream surface S

static pressure

heat added to fluid particle along its path per unit mass
per unit time

any quantity on relative stream surface 8
gas constant L

remainder term of mPR derivative at point i obtained by
using nth degree polynomial

radius vector

relative stream surface passing through fluid particles
lying on a circular arc upstream of or midway in blade
row

relative stream surface passing through fluid particles
lying on a radial or curved line upstream of or midway in
blade row

entropy per unit mass

s/R

static temperature
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time
velocity vector of blade element at radius r
interval energy per unit mass
absolute velocity of fluid
velocity of fluid relative to blade, Vv - U
independent variables
distance along turbomachine axis
Wu

1
arc tan ;-W;

ratio of specific heats

average value of ¥ for the temperature range involved

grid spacing

equal to 1 and 1r for 5, and 8, surfaces, respectively

independent variable 2z or r for 87 surface and z for
So surface

independent variable @ and r for 5,1 and 8y, surfaces,
respectively

angular distance of fluid particle measured with respect to
stationary radial line

slope of characteristic curves, V %g
tan o
. &
arc sin =
w
equal to r and 1 for S; and S; surfaces, respectively

absolute vorticity, VXV

fluid density

G802
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z generalized variable used for general density table
o -angle between tangent of streamline or boundary wall in the

meridional plane and axial direction

T radial, axial, or angular thickness of stream sheet
‘ ¢ velocity potential
% ¢ generalized variable used for general density table
6 angular distance of fluid particle measured with respect to
radial line on rotating blade -
X angle between w and axial direction

v, stream functions defined on relative stream surfaces 82 and 8y,

respectively
® angular velocity of blade
Subscripts:
¢ casing
" e - exit
- h hub
i inlet
1 meridional component
m mean stream surface
0 lower limit of integration

r,u,z radial, circumferential, and axial components

s - isentropic

T total state

M,  components in n- and é;direction, respectively
’ 1 on 59, or in front of rotor

2 2 on 85, or behind rotor
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Superscripts:

a,b, . . « k refer to points a,b, . . . k, respectively

BASIC AEROTHERMODYNAMIC RELATIONST

The three-dimensional flow of a nonviscous, compressible fluid
through a turbomachine is governed by the following set of basic laws
of aerothermodynamics. From the principle of conservation of matter,
the equation of continuity is

5502

%'W-(pw) =0 (1)
or
v.w+DI])‘fGl°=o (1a)

For a blade rotating at a constant angular velocity w about the
z-axis, Newton's second law of motion gives

oW 2 1
-0t + 20 = - ZVD (2)

Because the boundary walls are surfaces of revolution and the relative

flow can be approximated as being steady in many cases, it is convenient -
to use a relative cylindrical coordinate system r, ¢, and 2z with

¢ measured with respect to the rotating blade (see fig. 1). By use of

Dw %V—v+(w.v)w 21'+lvw - WX (7XW)

the scalar forms of the equation of motion (2) in the axial, circum-
ferential, and radial directions can be expressed as

., My Wy, aw W,. W2
3—" + Wy 6‘2 + = + Wy szr ) ; - ofr - Wy = - l Bp (2a)
awu M, W, oWy, M, Wy 1 dp
W'l'wrar +?aq)+wzy+ +2(Dwr=-‘b?§p (Zb)
oW, MW, W, oW, W, 1 dp
a—+W 5——+ 3—-+ r=-56—z' (2c) -

lsome of the relations given in this section have been given in refer-
ence 18, They are repeated here for completeness and easy reference

for the following developments.
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The first law bf thefmodynamics may be written

’ -1 - :
ZapMedoe (3)

where u 1is related to the temperature 7 by
du = cy 4T . . : (4)

and Q is given by the following equation if only conduction is
considered:

Q = p-l v. (kVT) _ (5)

For the ranges of temperature and pressure encountered in ordinary
turbomachines, p, p, and T of the gas are accurately related by the

- following equation of state:

p =R pT (6)

Although the flow of the gas through the turbomachine is completely
defined by the preceding equations together with the known variations of
¢, and k with temperature and the given boundary and initial condi-
tions, it is found more convenient in references 17 and 18 to express
the state of the gas in terms of the entropy and the total enthalpy or
a quantity I of the gas, besides its velocity components. These
quantities are defined as follows: . ’

T ds = du + p d(p™T) | o (7)
H=h+ 5 V2 | (8)
I=h+zW -20%=H - o(vy) (9)
and
h=u+ppt (10)

 From equations (10), (4), and‘(6) is obtained

S 2
; dh = (cy+R) dT = cp AT = L ar (11)

-1

where y 1s equal to cp/cV and is a function of temperature. Another
expression for dh 1is obtained by using equations (10) and (7), so that

dh =‘%§ + T ds (11a)
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By the use of equations (7), (4), and (6),
sy _ 1 Y
d(ﬁ)_r_ldlnp- - d o (12)
and
s 1
d(§> ZrdlnT-dlnp (12a)

vawe 222 D20 (13)

Equation (13) can be expressed in a slightly different form. From the
definition of the local velocity of sound (reference 20),

‘@)

By the use of equations (12) and (86),

8,2'-'-‘

T §= YRT | (14a)

Substituting this relation into equations (12a) and (13), with the use of
equation (11), results in

dlnp:z-d% (12b)

and

VWt === o -2 =0 , (13a)

" From equations (9) and (1la),

%vp + %VW2 - wPr =VI - Tvs

The equation of motion (2) can then be written

g%i - WX(VXW) + 2wXW = -VI + Tys (15)

An alternative form of equation (15), which involves the vorticity of
the absolute motion, is obtained as follows: With the z-axis parallel
to w,

Gcn2
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V=W+wXr S | (16)
hence
VXV=VXW +VX (wxr) ' (17)
But

Ux(wXr) = (rw) o -(wv) r +w(Ver) - f(Vow) = 20
therefore |
VXV = VXW + 20 (17a)
This relation can also be seen from the following expressions of rela-

tive and absolute vorticity expressed in terms of the rotating and
stationary cylindrical coordinates r, o, z and r, 0, z, respectively:

.(vxw)r=%-?r?p§—?i—u- )

(oxw), = o M (18)
R L

Oxv, - bt - 5

(vxv)u=§§-’i-§;;E (19)

. 3(Vyr) 1 oV,
' (VXV)Z=r or T 06

= .

and the relati on

o(vyr)  O(wWyr)

or = T or + 2w

Using> equation (17a) results in the alternative form of equation (15) -

oW - , 1
R 3% WX(VX V) = VI + s (15a)
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By use of equations (2), (9), and (11a), "
%% =T %% + % %% + %i(w“vﬁ DH+W- g%'- U. %g
=T%%+%g%+w.(w2r-2wxw) -u. %:T%—%+%§% (20)

G502

It may be emphasized that the preceding equation is a consequence
of the equation of motion (2) and the thermodynamic relations (4), (8),
(7), and (10). For steady relative flow, the rate of change of I
along the streamline is seen to be proportional to the rate of change
of entropy along the streamline.

The energy equaéion (3) can be used to express the rate of change
of entropy along the streamline by the use of equation (7) as follows:

Ds

o (21)

Q=T

The preceding equations lead to several important general consider-
ations: If the blade rows are not placed too close together and no
trailing vortices are shed from preceding blade rows (or where these
effects can be neglected), the fluid properties at a fixed point rela-
tive to the blade can be taken as constant with respect to time. (Con-
sequently, according to equations (20) and (21), the quantities s and
I of the gas remain constant along the streamline for adiabatic flow.
The invariancy of I means that the rate of change in total enthalpy
along the streamline is equal to the angular speed of the blade multi-

" plied by the rate of change in angular momentum (about the machine axis)
of the fluid particle along its streamline, which is the well-known
Euler turbine equation usually derived under less general conditions.

In a cooled turbine where the heat transfer may be large, the rate of
change of s and I along the streamline can be corrected by equa-
tion (21) for an estimated value of Q. Again, for steady relative flow,
equation (15a) shows that either when gradient I and gradient s both
vanish or when the difference between YI and TV s vanishes, the
absolute vorticity either vanishes or is parallel to the relative
velocity.

For the flow through a stationary blade row w = 0, W becomes V,
- I becomes H, and equation (15a) becomes

aV-vx(va)z-VH+TVs (15Db) .
6%' .

which agrees with similar relations previously obtained by Vazsonyi
. (reference 21) and Hicks, Guenther, and Wasserman (reference 22). It
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is interesting to see that, for relative flow in a rotatlng blade row,
VX(7 X V) becomes wx(vxv and H becomes I.

CIf it is assumed that the fluid enters the inlet guide vanes of a
turbomachine with uniform H and s and zero vorticity and that the
flow is adiabatic, s does not vary in the inlet guide vanes and p
is then a function of only p, according to equation (12). Conse-
quently, by virtue of Kelvin's circulation theorem, the absolute vor-
ticity will remain zero in passing through the inlet guide vanes and the
flow in the inlet guide vanes can be treated on the basis of irrota-
tional absolute flow.

If the guide vanes impart a radial variation of tangential velocity
of the fluid in a z-plane downstream of the vanes simildr to that in a
potential vortex, that is, inversely proportional to the radius, the
circulation is constant along the blade span and the fluid maintains a
uniform s and H ‘and a zero vorticity of absolute flow entering the
following rotor-blade row. If the rotor-blade row is situated far away
from the inlet guide vanes, the fluid enters the rotor with a uniform
I ‘in the circumferential direction, as well as in the radial direction,
and the flow through the rotor blades can again be treated on the basis
of zero absolute vorticity and steady relative flow. If the rotor is
close to the guide vanes, however, vortices are shed from the inlet

' guide vanes because of periodic variation in circulation caused by

unsteady flow, and the flow downstream of the stator and through the
rotor blades should theoretically be treated on the basis of- rotatlonal
flow.

If the guide vanes impart a radial variation of tangential velocity
of the fluid at a z-plane downstream of the vanes not inversely propor-
tional to the radius, the circulation varies along the span of the guide
vanes; vortices are shed from the trailing edge to the fluids downstream
in the direction of the exit velocity, and the fluid enters the follow-
ing rotor blades with a uniform s and H but a nonuniform ‘I and a
nonzero value of absolute vorticity. Consequently, the flow through the
rotor-blade row can no longer be treated on the basis of zero absolute
vorticity, even if it is far apart from the preceding guide vanes.

From the preceding discussion, the choice of s and H or I
as the two basic thermodynamic variables of the gas besides its veloc-
ity components is apparent. Compressor and turbine rotors are usually
designed to impart or subtract the same amount of energy to or from the
gas radially; hence H is usually radially constant throughout the
machine if the inlet flow is uniform (except in the boundary layer along
hub and casing walls). If the circumferential velocity of the gas
upstream of the blade row is zero or varies inversely with radius, I
is then constant throughout the machine. These facts will be utilized

in the following developments.
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POTENTTAL EQUATION FOR THREE-DIMENSIONAL FILOW THROUGH
ROTATING BLADE ROW

Consider first the special case of steady relative flow where the
fluid upstream of the blade row is free of vorticity and is uniform in

I and s. The adiabatic flow through the blade row is then relatively ‘S
steady and absolutely irrotational and is most conveniently treated by a
the use of a velocity potential @ based on the zero absolute vorticity
and related to the relative velocity components through equation (16) as
follows:
od R
100 P
;&-p_vu_wu+wr (22)
od
3z = V, =W, S
For steady isentropic flow, the continuity equation (13a) becomes
dwr) oW, oW W
I 1 9y z 1 oh . "u oh dh ‘
i CRT: +;§<wr5?+_r—5?p+wzé—z"o (23) ‘
From equations (9) and (22), ' .
2 2 2
0d 1| (o0 1 0d o
h=I+tezmz-zllsx) * e Y& (24)
o _ (2% Wudfe W o 3% (250)
or ~ T \* 32 Tt drop T r Z 9zor
1on_ _(Wxd%  Wud’e .o (250)
T op T Oro® & 2 -2 & T z
P
2 2
an_ (. P M . %) (250)
Sz rdzdr T T Xpoz 2 N2

By the use of equations (22) and (25a) to (25c), the continuity equa-
tion (23) may be written

\
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| ' 2

. l____a% (_} L 0 l_@_)g’ﬂ’_@_
o a 3z2

, N
, VW 1 326 WlWz 1 320 Wl 320 1 Vi) a0
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(26)

Eqpatlon (26) is then the three-dimensional potentlal equation for
isentropic flow in a rotating blade row, It is seen from this equation
and equation (16) that the three-dimensional flow through a rotating
blade row cannot be treated by a three-dimensional flow through & sim-
ilar stationary blade row with the same inlet condition relative to the
blade row, as. in the case of two-dimensional flow on a cylindrical sur-
face, because the difference between the absolute and relative vorticity
2w does not enter into the two-dimensional flow on a cylindrical surface
but does enter intc the three-dimensional case,

Equation (26) is very similar to the ordinary three-dimensional
potential equation for flow past stationary objects, except that both
relative and absolute velocity components are involved in the coeffi-
cients of ® derivatives and that ¢ is directly defined by the abso-
lute velocity. The real difficulty in solving this equation lies in
the fact that all the velocity components change greatly in passing
through a turbomachine and, consequently, the equation cannot be lin-

. earized and yet give a good approximate answer. For supersonic relative
velocity, the method of characteristic surfaces (references 23 and 24)
may be used to solve equation (26), with the initial conditions not

" given on a characteristic surface. For subsonic relative flow, the
equation is more conveniently written in the form

'—% T‘Q*—‘T‘e S5f=o0

(26a)

2 2

Q/
o
o/
o

+ L
2

§
+
e
%’f
%;l

iy

o/

- and can be solved by Southwell's relaxation method (reference 25) or

‘ other numerical methods using the differentiation formulas obtained in

reference 26 to take care of the unequal grid spacings near the blade

surfaces and the curved hub and casing walls. The last three terms in

equation (26) are computed from the ¢ values or velocities obtained

in the previous cycle and kept as constants during each improvement of

¢ values, and the whole process is repeated until the desired accuracy

is obtained. Because a three-dimensional stream function cannot be

- defined, the use of velocity potential results in a boundary-value prob-
lem of the second kind, which is more difficult to handle in the calcu-
lation than the first kind. The boundary condition to be satisfied is
that the relative velocity normal to the moving blade is zero, or
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Wy 0 + W, ny +W, n, =0 (27)

where n 1is the unit normal vector at the boundary surface, and that,
at inlet and exit stations far away from the blade, the velocity is
parallel to the bounding hub and casing walls, which, in the case of
the axial machine, means that

oo
Vp=35=0 at z= o (27a)

In both the subsonic and supersonic cases, the solution is
extremely time-consuming. Furthermore, this direct approach to the
three-dimensional problem requires that the absolute velocity at the
inlet to the blade row be irrotational and the flow be adiabatic. In
actual machines, the flow entering the blade rows is always rota-
tional, which is caused by a nonuniform total enthalpy and entropy at
the inlet of the machine, by entropy change caused by shock waves or
heat transfer, or by the effect of boundary layers.along the hub and
casing walls. Some other approach to the problem, which is simpler to
handle and is also applicable to rotational inlet flow, is therefore
desirable. One approach is suggested in the following sections.

FOLLOWING FLUID FLOW ON RELATIVE STREAM SURFACES

In order to solve the steady three-dimensional flow, with either an
irrotational or rotational absoluté flow at the inlet, in a relatively
simple manner, an approach is taken to obtain the three-dimensional
solution by an appropriate combination of mathematically two-dimensional
flows on essentially two different kinds of relative stream surface
(figs. 1 to 3). The first kind of relative stream surface is one whose
intersection with a z-plane either upstream of the blade row or midway
in the blade row forms a circular arc (fig. 1). The second kind of
relative stream surface is one whose intersection with a z-plane either
upstream of the blade row or somewhere inside the blade row forms a
radial line (fig. 2). These two kinds of relative stream surface will
be hereinafter designated stream surfaces S3 and 82, zrespectively.

Sl Stream Surface of First Kind

In figure 1 is shown & stream surface of the first kind formed by
fluid particles lying on a circular arc ab of radius oa upstream
of the blade row. It is usually assumed in ordinary two-dimensional
treatments (for example, references 27 to 30) that the stream surface
thus formed is a surface of revolution., In the following development,
the surface willl be allowed to take whatever shape it should have in
order to satisfy all the equations governing the three-dimensional flow.

2055
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In most cases, the deviation of the surface from a surface of revolution
is not large, and it is satisfactory to consider 8S; surfaces formed by

fluid particles originally lying on a circular arc upstream of the blade
row. If the rotationality of the inlet absolute flow is large, if the
blade is .designed for a velocity diagram quite different from the free-
vortex type, or if the blade length is long in the direction of the
through flow (radial- and mixed-flow machines), the twist of the surface
may be quite large, resulting in very large circumferential derivatives.
If this effect is found during calculation or known from experience, it
is more satisfactory to consider Si surfaces formed by fluid particles
originally lying, in front of the blade row, on curves inclined to the
circular arc in a direction opposite to the twist of the surface. In
this way, the intersection of the 8 surface with a constant z-plane

“about midway in the flow path is a nearly circular arc, and the total

twist of the surface will be about equally distributed toward the
upstream and downstream directions (fig. 3). If this distribution of
the twist of the stream surface is still not enough, it may be necessary
to divide the complete flow path into a few shorter paths and consider
an 87 surface for each of them. Under these conditions, 87 surfaces

formed by fluild particles originally lying on “the hub or casing walls
upstream of the blade row should not be chosen in order that the compli-
cation arising from the possibility of fluid particles leaving the wall
and flowing along the blade surface may be avoided. In such cases it

is better to consider the 837 surface a short distance from the hub and
casing; otherwise, for an approximate solution the fluld can be con-
sidered to follow the hub and casing walls, which are surfaces of rev-
olution, and the calculation is thus much 51mpler than that for a
general surface.

S, Stream Surface of Second Kind

A stream surface of the second kind is shown in figure 2. The
most important surface of this family is the one about midway between
two blades dividing the mass flow in the channel into two approximately
equal parts. This surface is designated the mean stream surface
(SZ,m)' For blades with radial elements, such as the one shown in fig-

ure 2, it is convenient to consider a mean stream surface formed by
fluid particles originally lying on a radial line &b upstream of the

‘blade row if the twist of the surface is not expected to be large.

Otherwise, the radial line is chosen about midway in the passage with
the fluid particles originally starting out from a curved line upstream
of. the blade row such as shown in flgure 3.

The mean stream surfaces for axial-flow gas turbines designed on a
free-vortex velocity diagram are shown in figures 3 and 4. The radial
element of the mean stream surface (fig. 4) is chosen accordingly as the
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stator is designed to aline the blade sections radially at the leading »
edge, trailing edge, or somewhere between. Inasmuch as the rotor-blade

sectlons are usually alined radially at or near the center of gravity

of the blade sections, the radial position of the mean relative stream

surface is chosen at the same position (figs. 3 and 4). The continua-

“tlon of the stream surface outside the blade row is not shown. The mean

stream surfaces for the inlet stage of a multistage axial compressor

designed on the principle of a symmetrical velocity diagram at all radii

are shown in figure 5.

Both of these two kinds of stream surface are employed, in general,
in the solution of the three-dimensional problem. The correct solution
of one surface often requires some data obtainable from the other, and,
consequently, successive solutions between these two are involved. Yet,
the solution of each surface is manageable with the present mathematical

technique and computational facilities. In many practical cases, and -

especially in the inverse problem, however, this iteration may not be
required if only an approximate solution is required or if the prescribed
values lead to a satisfactory blade shape. These points will be dis-
cussed in the section next to the last (pp. 53 to 57),

Relations among Relative Velocity of Fluid, Coordinates of
Stream Surface, and Normal to Stream Surface

In general, the coordinates of the stream surfaces and their differ- ;
entials are related, respectively, by the following equations:

S(x,®,2) = 0 (28)
%i—dr+%§—pd¢+g-2—dz=0 (29)

Rather than use the three partial derivatives of S with respect to
the coordinates, it is convenient to consider the unit vector n normal
to the surface, which is related to S by

Oy oy, Ny 1 L
§=}-—§_§=§= 3\ | (13 | (s =0
Ty \I@ *(m) + (%)

2055

The vector n is, of course, perpendicular to the relative velocity W, . |

so that

n.w=0 ‘ -
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or
MWy, + oWy + W, =0 ~ (31)
By using equation (30), equation (29) can be written

n. dr + n, r @+ n, dz = 0 - : (29a)

The vectors n and W are shown on S, and Sy surfaces in fig-
ures 1 and 2.

- EQUATIONS GOVERNING FLUID FLOW ON 51 SURFACE FOR AXIAL-FLOW AND
AXTAT.-DISCHARGE MIXED~FLOW TURBOMACHINES

If the fluid motion on §; is followed, equations (28) and (31)
‘can be used to eliminate one of the three coordinates. For axial-flow °
(figs. 6(a) to 6(c)) and axial-discharge mixed-flow turbomachines
(fig. 6(d)), it is convenient to express r in terms of ® and z.
For radial-flow and radial-discharge mixed-flow turbomachines (figs. 6(e)
and 6(f)), this system will encounter difficulty at the exit where the
rate of change of fluid state with respect to =z becomes infinite. Tt
is therefore necessary to eliminate 2z and to consider r and © as
the two independent variables.

- Flow Along General 8, Surface

For axial- and mixed-flow turbbmachines, any quantity q on the -

81 surface is considered a function of ¢ and z; that is,

q = q[Cp, z,r(®, Z)]

The change in q along Sl due to a small change in ¢ while z is
held constant is (see fig. 1) o

dq=%d¢+%%§)d€p

From equation (29a),

or n,r

E
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hence

dq ¥ 8q>
o (-2 F) o0

Similarly, for dp = O,

With a bold partial derivative sign used to denote the rate of
change of any quantity q on S; with respect to @ or gz, with the
other kept constant, the preceding relations give

(32)

With the relations (31) and (32), the rate of change of q along a
streamline on S; is

W
u 3q 9q
?T+w25£ (35)

=l
Ro
&

BEquations of continuity and motion. - When the fluid motion is
followed along the stream surface and equations (31) and (32) are used,
the continuity equation for steady relative motion becomes

i 1 3(pW_u) a(pWZ)

5t 5= ¢ c(®2) (34)
where |
o(W_r) W oW
1 (% xr Z
@2 = -\ —r t =+ % 3?') (35)

For rotational steady relative motion, the equations of motion (14)
in the radial, circumferential, and axial directions are

2055
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2 : : ' '

Wy My Wy oWy <5Wr BWZ> oI ds )
T Ty tr® th\m Tw) Mt wy Ty
WpWy My Wy OWy 1 Wy ) oWy 10I T 3s

T +W1”F'?3'¢T'WZ<'£5'CP—'SE"‘+2‘“Wr='§%+5¥p?

| aWr aW'z> (1 aWz 5Wu> I ds .

'Wr(gz"'a'r—*wu r3® X%/ T TnRYTE: )

(36)

Relations (9), (16), (31), and (32) along the relative stream sur-
face S7 can be used to reduce equations (36) to the following:

- 2 ’ B
Wu_ Wuawr ’aWr ah BS 2 \
Tt T oep TV W= -\ - T 0T

WW,. W, oW, W, oW | - N /: '

rfu Wy My 1 Wz Wy _ 13 Tas Sufon 88-2&
“r T 83p % (:'E. 'an"iTZ') + 2y "?ﬁp"'?ﬁ&'i’;(&?'T Pl

Wy, 1M, Wy R a.s n Bh’ s 2 >

- Wr 37 +Wu(?a¢(3 '3z>=_az+Taz—nT<5r-T5r—m Y,

(=)

The last term in each of the preceding three equations is propor-
tional to the components of the normal vector and therefore can be
expressed as a component of a vector that is parallel to n and has
the dimension of force per unit mass. If this term is defined as

1 [dn ds- 2 B 1 (13 2

the preceding equations can be written

‘ o 2 :
Wy Wy W, Wy,
T35 * W25y - T Wy = (392)
W, W, W, oW oW W f
ru r r 19z u 1l a3l T 9s .
=TT Z(FW'E‘)J’E‘DWI‘"'?S_CP+?'8_CP+fu(39b)

awr 1 awz aWu ol - 9s | ‘ :
‘WraT*’Wu(?EE“Sz":""*T + T, (39¢)
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Similarly, the equations of motion in the form of equations (2) can be
written

W,, oW . A
e A )
r a3 9z r r
Wu aWu Wy WrWu 1 ap .
Tap TVt v W= -5ty (40)
W, oW W,
u "'z z _lap .
T TVW23z T 53zt Tz )
where
§1 1 109dp
= - n
np. p or

Because this vector f is parallel to n, it is perpendicular to
the relative velocity of fluld, or

fWy + Wy + £W, =0 (41)

By the use of equation (41) and equations (39), it can be shown that for
steady flow on an S, surface,

DI Ds ’
]3% = T D_t (4:1&)

which agrees with equation (20). Therefore, for the present problem of
steady relative flow on a stream surface, the relation (4la) can be
taken either as one of the equations of motion or to represent the rela-
tion given by equation (41). In other words, there are only four inde-
pendent relations among equations (39a), (39b), (39c), (41), and (41a).

Just as in the case of the continuity equation, either set of the
preceding equations of motion is expressed in terms of the special par-
tial derivatives with respect to the two independent variables ®@ and
Z. The effect of radial pressure gradient is taken into account in all
these equations by the § +term, which is neglected in the ordinary two-
dimensional treatment on a surface of revolution. -Equations (28), (31),
(34), and (39) or (40), however, lead to a possibility of correctly
solving the three-dimensional flow of fluid particles on an S1 surface

in a mathematically two-dimensional manner.

Principal equation. - The equations of continuity and the equation
of motion in the circumferential direction can be combined into a prin-
cipal equation through the use of a stream function ¢ as follows:
First, if a variable b 1is introduced such that

SS02
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Dlnb - ng W,
or
b n, Wy 1 Oy Wz\ | .
lnT)-;=_ < --n;?>dx=— W(C-E;T dx (42‘3)
in which the integration is performed along a streamline on the 51 -
- surface, then the continuity equation (34) can be written
(bW )  d(bpW_r)
2 Z =0 - (34a)

+
90 -4

The preceding équation is the necessary and sufficient condition that
there exist a function ¢ with

oy .
5% = rboW,, (43s)

v _ : '

~ The difference in Wl at two points J and k on the S, surface is

k [k
S -y = ay = bp(W,r do - W, dz)
‘ J J :

In particular, the difference in w\ at two points J and k on the

constant-z plane at the inlet where the fluid state is uniform is

ok
k4l
- ¥ = Dbip; Wy 5 r do

pd

These two equations show that, physically, the integrating factor b
can be interpreted as proportional to the local radial thickness of a
thin stream sheet whose mean surface is the stream surface considered
here. The continuity equation (34a) can also be obtained by consider-
ing the mass flow going into an element of such a stream sheet as shown
in figure 7. By equating to zero the mass flow going into the element,
which is defined by two axial planes d¢ apart and two normal planes
dz apart (see fig. 7(a)), and letting d® and dz approach zero,
there is obtained - . _ ,

v
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a(toW,)  a(TeW,r)
+

5% 55— = O . (34b)

where T 1is the radial thickness of the stream sheet. From equa-

tions (34a) and {34b), it is apparent that b is proportional to T,
and the differences in ¢ at two points Jj and k as given by the

two equations preceding equation (34b) are proportional to the mass flow
across any line joining the two points. In actual computation, only the
ratio b to b; or T to T; 1is important (a different initial value

amounts to a different constant multiplier of the relation between V
and mass flow). In the following, b will be retained in the equation,
but In actual calculation it is simpler to evaluate the ratio T to

T, than to evaluate the ratio b to bj, both from the data obtained

on the 5o surface to be discussed later. Although the evaluation of

this ratio requires, in general, calculatiens on the S, surfaces, a
means is nevertheless provided to determine correctly the flow on a
general 84 surface through iteration.

From equation (43),

W 2
1, 19% 1alnbpay, Mu 1 3y (44a)

-bp 5= - ~ (44b)

The third terms in the preceding equations can be expressed in terms
of h through the use of equation (12b):

dlnbp=dlnb+-ah-ads* (45)
) | |

where s* = s/R. But from equations (9) and (43),

2 2
2.2 W
B S Y W S
h=TI+=5—-— -3 (bo) [<r8tp> (azﬂ (46)
Then from equations (45) and (46),
2.2 -7 2

[ 2 - W, '] 129 ln bp _1a I+_® T Wy > EE 3 In b as*\ _

K + r 3 T 3% Z T T\ sp 39/ "

-
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-W *
]2 2 2\] @1nbp _ @ @ ofaInb @s
2% - (WU. +wz —57 " 3z I+.___.Z___r_. + 3 5. - 32 -

Substituting the preceding two equations into equations (44a) and (44Db)
and adding yield v '

2 2 o o
b['iaz_wz ] JB a8t - Wy ey Wllp oy
P u T acp 3z 2 off T 552

2 w2 a 2 N\ a2yl g
(a2_2) %y |1 s (I+_1‘_"_7__> La (2 In b as*) aWy 1ay
27 342 T 3 a r ap 1) r qrr ol

2.2 2 : . 2
I4or ~x x ;g2 (3lnb _3s¥) Wz Pz | 3y (47)
az 2 3z 9z . r n,.| 9z

Substituting the preceding equation into equation (39b) and dividing by
al give the principal equation for the determlnatlon of fluid motion
along a general S surface:

2 2
W 2 WW, a2 W 2 .
]___.l'_l__' _]:_u_z uzg_l[_.i. __E_ L.l..l\_xa_”l{.pMﬂ:_-o’
2 rZ rd

.a 9 azr Pz a2 822 z
48
where ( )
2..2 2
M__alnb+as*+_ W r+°3r "'Wz_r_l_g
- 9z 3z T 3z r o

ye-L3inb 18s +l _19L Vr dWr & -(Wu2+Wz)Wr+
TTr © r 90 ran r 3P T W,

-(W Z)nu> 2 QW W 2) |:-— a_I-+ll ‘aS + £, 4 W (_]; i&k - 203)]

T Or azw 2 rae

The equation of the characteristics of the differential equation (48) 1is
(reference 31) :
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2 2 2
W, W W W
R ap Wz ap () W)
<\ = > :r(dz + 2 : vt Y 0 (49)

from which

LA AaZ (W2 +W,2 - a?) (50)
al, 2 af -W,°

r g2== -
dz

Equation (50) shows that the characteristics are real when
A/Wuz + WZ2 >a, in which case the method of characteristics for two inde-

pendent variables (references 20, 30, 31, and 32) can be applied. When

/JWu? + sz'< a8, the characteristics are imaginary, and it is more con-
venient to solve the equation by relaxation (references 25, 33, 26, and
29) and matrix methods (references 26 and 29) in the following form,
which is obtained by substituting equations (44) into equation (39b):

1%y, oy ii_ln_m_ﬁ)ﬂ+mw_+
rchz - Z\_ 99 n./ az oz

W.. W W
os r “r u
5$+fu+T-aF-Wr<—I—‘—+&D)i|=O (4:83-)

Procedure of solution. - It may be noted that equation (39b),
instead of (39c), is chosen to form the principal equation (48) or (48a),
because f; is, in general, much smaller than f,. The various quan-
tities appearing in equation (48) or (48a) are to be computed from
other equations given earlier. With the introduction of the stream
function, there are altogether seven basic independent relations - one
energy equation (21); three equations of motion, (48) or (48a), (39a),
and (39c); two equatlons between V¥ derivatives and fluid propertles,
(43a) and (43b); and the orthogonal relation between W and f, equa-
tion (41) or (4la). On the other hand, there are ten basic dependent
variables in ¥, b, Wy, Wy, W,y £, fi» £,5, 8, and I (or 'h or p)
to define the flow and the shape of the surface. In general, the vari-
able b is to be evaluated according to equation (42a) or from the var-
iation in the radial thickness of stream sheet using the data obtained
in the solution of 8y surfaces and is therefore considered as given
here. If during the complete solution of the three-dimensional flow the
shape of an S5; surface is taken as the one obtained by joining corre-
sponding streamlines obtained on S, surfaces of the preceding cycle,
two relations between the n- (or f-) components are given by equa.-
tions (29), and there are now altogether nine equations to be solved to

"SI!—‘

81H
Hll—E!

_I
EY)

HIH

¢ Sop
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find the nine unknowns. Alternatively, the variation of W, may be
considered as known from the S5 solutions of the previous cycle, and

the remaining eight variables, which determine the flow on and the shape
of the S, surfaces, can be determined from the seven preceding rela-

tions given and the following additional relation: Because £, fu,

o8 198 . 08
and f,, respectively, are proportional to 3 T 3@ and 39 of the

.integral surface S,  they satlsfy the following equation (reference 34):
”  f.UXf= S ' (51)
"which may be written

. [% of, 1 o(fyr) - of Bf%> . [iea(fur) 1 Of, o
T|r3p r'_TE"_' u\oz ~ or, z|r~ or T o®_l-

(51a)
By using equations (31) and (32), equation (5la) becomes simply
' f [T
o (2 = 2 (L . (SIb)
9P \f, 9z \f, :
This equation can be used to give £, Dby integrating along a constant
® line: . . ' : S :
Vg
f.r f.r bl
?E_ - <EE;> + ] gi <fi> dx | (51c)
r Nr 2=z Zo P Ny '
If at z =2z, f;=0, then
Z ‘ : : ‘
= — | 2 (F)ax (514)
r 9P \f,.
. Zo '

In this case, then, the shape of the Sl surface is determined after
the f-components (or n-components) are obtained in the solution. In
either case, equations (21) and (4la) are invariably to be used first to
determine the change of s and I. If the flow is isentropic, s

and I remain constant along its streamlines on the surface. (For
such a case and for a uniform 1Elet conditlon, p in the contlnuity

equation may be replaced by Hr and, consequently, the q> and z
derivatives of s, as well as those of I, will not be involved in
the equations (46) to'(48)). In case of heat transfer or shock, the
changes in s and I can be estimated by whatever method is available
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and used in the calculation. For supersonic flow, all the equations are
used to compute the fluid state at each point and the solution is carried
downstream step by step. For subsonic flow, iteration over the whole
domain is necessary. The details of these computations will be given in
the last section. In general, the solution of the flow on the general
5, surface is very laborious, and is to be used in the final stages of
calculation of the complete three-dimensional problem or when a high-
speed computing machine is available.

If the flow is such that it may be assumed to take place on a sur-
face of revolution (at the hub and casing walls or other radii), the
equations are considerably simplified as follows:

Flow along Surface of Revolution
When the S, surface is a surface of revolution,
n,=17%f =20 .(52)

Let

-2 2. Lo tano= A _(53)

where A 1is a given function of z. (For a conical flow surface, A
is simply a constant.) Equation (35) now gives

W oW oW
(3=-(-‘_(-‘z-l-sr—:r)-F)\gx—_E (54’)

Whether c¢ can be taken as zero will be determined by the relative
magnitude of the three terms on the right side of the equation. In
general, for nonnegligible c, equations (43) now become

% = rbpW, _ (55a)
a‘
a—‘g = - bpW, (55Db)

Because W, is now related to W, by equation (55), the three velocity

components can be solved simultaneously as follows: By use of the rela-
tions (52) and (53), equation (39b) can be changed to

oW oW W,
2y 1L Mz u u 1 (10 T Os
(1+A)?W’é'?’)‘(?+&°> T Wy ?EC’.D’FBFP@)=O (56)

SG0z
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" Instead of equation (46),

h=TI+ w22r2 - % (bp) [(1#\2) (%— %%)2 + (%92] (57)

should be written. Then

2, W
(a2 %) :]C.Blnbp__%%%p ar Bln‘b %g_) _,(bp)-l[(lJr;\z) Wz % Muo w]

2 N ? Xpd
(o) 2300 B oo (2322 320 4 (Pt 2vh -
| 1 2, Wz a2y a2y
(op) [(l+7\ - 3Pz - Wy ;—Z—Z_
| (58)

Combining the preceding equations with equations (55) and substituting

the resulting equation into equation (56) give the following principal
equation for the flow on a surface of revolution:

2 2, < 2
W 2 WW, 32 W5 W 2
2 u 1 %Y %y r Wz | 8%y Naqr Yy _
(1+>\)(_._a2>__r2 aqﬁ 2(1>\) 6'_—cpaz+(l' 5 ) 5 r%m

a Jz

(59)
where

r

L (19) 161nb 13s* . 11231 = w2 2(1)}\ L 13 T 3s
= "TI TLZT 9 W2 \f 3 r 39

For this equation, the characteristics are real or imaginary when the
resultant relative velocity W is supersonic or subsonic, respectively.
For the subsonic case, it is again better to use the following form

obtained by differentiating equations (55) and substituting the result-
ing equations into equation (56):

, 22 i 2oy 22,2 |
wo_ 2mb 8s* 1 er WM O oz A
- 3z az a2 \ 9z AT
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2 2
) 5 SB[ h) e e
r” 0P a9z T

(p)ff1ar _Tas\_,
Tor \T3® T "
T oP

3o d9" ez az:I - ZNwdp -

(59a)

"With A given and b determined from data obtained on the 8o
surface, there are now the six independent relations equations (21),
(59) or (59a), (55a), (55b), (53), and (4la) for the determination of

the six main variables in V¥, W, W,, W., s, and I.

The f-components

are not involved in the calculation. If the flow is adiabatic with
uniform I and s, +the equations are further simplified.

Flow along Cylindrical Surface

If the flow near the walls of an axial-flow turbomachine can be
considered to take place on a cylindrical surface, then

n, =n, = fy= fz =Wy, = 0

Equation (35) now gives
| ' Wy
¢C= -5

which is relatively small. (If c¢ 1is negligible, b

(60)

" (61)

can be taken as

1 everywhere.) For flow without change in radial distance, the quantity

w2

I can be replaced by Hy (‘= h + ——). The equations governing the

2
cylindrical flow are then (compare reference 29)

d
%:I‘bpwz
oy

5z = " Wy

Ds

T o=
DHy . Ds
Dt T Dt

(62a)
(62b)

(83)

(64)
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and

(65)
where
yo . Olnb  3s* 1 O
) 0z -‘;ﬁ oz
go . ldlnb 108 1 _a'wuzg,_aﬁw_!_az-WZT%
T op T 0P " 2 W2 T 00 sz rEE?
or
Y ‘ 2 {1 JE.

1 0%y , oY 1 3 1lnbp O , O 1n bp O} {(pp)® (L w T 3s\ _
2GR st Fe TR - o
: : T 5% _

| (65a)
In general, the circumferential derlvatlves of and s are to

be determined by the inlet flow and equations (63) and (64). For adia-
“batic flow with uniform H, and .s upstream of the blade row, these
derivatives are equal to zero everywhere, making the problem much sim-
pler. The main differehce between this simplified case and the ordinary
two-dimensional flow on a cyllndrlcal surface is the inclusion of the

factor b in equations (62) and (65) (in general, b is a function of

® and z). If the velocity diagram is such that there is considerable
radial gradient in the radial velocity or considerable variation of the
distance between the adjacent streamlines, the factor b is not
negligible.
EQUATIONS GOVERNING FLUID FLOW ON S; SURFACE FCR RADIAT.-FLOW
AND RADIAT-DISCHARGE MIXED-FIOW TURBOMACHINES

Flow along General S Surface

For turbomachines with radial discharge, r and ® are considered
as the two independent variables; that is, : ‘

= ‘1[3_'-": P, _Z(r,CP)]

|




32 NACA TN 2604

Then ~
3 _ 93 "r3q )
r or n, dz
laq_laq uaq
T3~ TP m oz (66) N
8
D aq , Yu aq 7
Dy _, 21 Mu )

BEquations of. continuity and motion. - By the use of these relations,
the equations of continuity and motion become

1 a(pwrr) + 1 3(9Wu)

fam = - 1
r or r -1eo) pe (67)
where
W, oW awz>
' - ——
Cc' = nz nr az— + Ilu r + nza—z— (68)
and ‘ .
2
-Y_"l__w Wy E?ﬁ .azq_z._gwwl— 2N T.a_s+f'(69a)
r u 3r r oY Z23 u~ T ar ar .
WrWu+ awu_w._r_a_W.I:-EEH_z.+m~_.l§£+?_.a_§_+f!
r r dr r 9y r a8y r ra r 9 u
(69b
DW, oW, W, W ' 9
ot “Yra trag -z (69¢)
with
1 {oh Js 1 1 Jdp
| R - = e o =
f! = n, <gz— T&)ﬂ n, pgz-n (70)
Principal equation. - If a variable D' 1s introduced such that
D ln b’ !

- = . ¢! (71)
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- or
t L
H 1
ln%—,—:- ¢! dx = - c—wdx © (71a)

in which the integration is perforﬁed along a streamline on the surface,
then the continuity equation (67) can be written

a(b'pW.r)  B(b'pW.)
r’ . " ul g

2
37 30 (72)
and a stream-fun¢tion ¥ can be defined on the surface with
NV Ly ,
8% = ~b'oWy - , (73a)
P ﬂ _ ‘ ' PN ‘ ’
3 = rb'pW,. (73b)

Here D' can be interpreted as the thickness (in the z~direction) of
the stream sheet whose mean surface is the S1 surface congidered. The
continuity equation (72) can again be obtained by equating the mass flow
into and out of an element of the stream sheet as defined by two axial
Planes 4% angle apart and two cylindrical surfaces dr distance apart
as shown in figure 7(b). As before, the difference of ¥ at any two
points on the S surface is equal to the mass flow across any line
connecting these two points. By the use of the Preceding two equations
and the relation

2 W2 1. 2 2 2]
et [(@f L 2af] o

the principal equation for thé flow of this surface is obtained from
equation (39b):

2 2
W 2 W W 2 ‘ W 2
) T
) ar g2 T ora® a 72 3F ar ' T
(75)
where .
2 2, 2 2.2, 2 |
M = a]_n'bx +as*+i[-£+w BWz+a -(Wr +Wu) a)I‘-l-Wr]
- T T ar ar 8l ar Z 3r T T T r
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1 * W
N = - 1 91lnb + 19s” + 1 (3l W A
‘ r 2939 ra alr 2? Z 9
aZ - (W,.24 2) W, oW
r U _E.a_I.*.E?i.}.f'_zww +_..Z___Z_
azwrz ra ra u r r oY

This equation is seen to be hyperbolic or elliptic when 4/wr2+wu2 is

greater or less than the speed of sound, respectively. For the elliptic
case, it is preferable to use the following form:

3%y . 1 3%y (8 Inb'pdy 13 1nb'pay),
arz I.Zacpz 31‘ aI' I'2 aw acp

2 W, oW W |
(b'p) 19T , T 3s . z Mg u _
Ty |“raptrapt it ap Vg A =0 (75)
r 3Q

The integrability condition (51) is now written

F- fr>~ 3 fur
2@ 2@ (76)

hence
f.r f.r f .
fr (B | 2 _£>dx (765)
T, £, ap \f,
r=r, ro
The procedure of solving the principal equation with the various terms
in it determined by other flow equations is the same as that in the
‘previous system.
Flow along a Surface of Revolution
For the special case of flow on a surface of revolution, equa-

tions (52) and (53) hold (with A considered as a function of r) and
the expression of c¢' reduces to

1
NI T (77)
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Furthermore, equations (73) become

- ooy - . (78a)
%: b 'oW., | ~ (78p)

and equation (69b) becomes
‘ OW.,. oW, W : s
1\ 1%y u u 1 {130 T Os
(l'l';_\?)?W-‘aT_(?”l-"3>_W—<?3Tp"'f?w>—o (79)
Using the relation

e e (3 ()RR e

gives the corresponding principal equation as

o2 on L : .‘ | , ‘ |
e e ) 2%y 1\ o a2y 1\ S\ 1 2%y sy N oy
Q_- ot )arz _2<1+.§§> a%r m+<1+_ﬁ)(1-_2_ Zap et 3

where

3 Inb' as*
ar or a

1\/19d 1n b? 135* 1 31\ afwl 2w 1 ai s\
N=?<“;\"z‘>(’£ 3 "rdo T2 Fp>' 2 [W‘* 2 <%'T3?p>j]

M=

=0

1 ay 1\ 1 3% [a1nbp ay L1\ 1.3 1nbp oy |
at Trort Lt Eog | e et \L*yE) 2 0w de)
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Flow on Radial Plane
For the special case of flow on a radial plane,
nr::nu:fr:fu::w = 0 (82)

Z

and equations (77) to (81l) reduce to

o,
e = - - (83)
a‘if = -b'pWy, (84a)
N g, (20)
2 2
h=1+§w2r2-[<%§‘£> + %i—):l (85)
LT W R YT IR - NIVY- R -
a2 / 3r2 glr Oro® a2 / 12 d3of or r 3
(86)
where
2 52y 2_2p2
M__Bé_nb' os* 1 9 +(a W'Wr'“)r>
T or " 2 or T
az—W 2 2
y.._l3lab' 19, ) O  af-W2 _93s) _ a2-w2 2w
r -39 r o9 alr Wrz 3 Wyl o al W
and

O 1n b'p Oy 1alnb'§a¢ ,
( ST &“f—z—'&‘p*—&p)-?wbp'

%%) = 0 (86a)
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Alternative Form of Equations for Flow along

Surface of Revolution

The equations given in the preceding sections are obtained for
turbomachines to avoid an infinite value of the partial derivative with
respect to z. Difficulty still exists in using either of the systems
in the case of a mixed-flow type machine with an axial inflow and a
radial outflow. For solutions of general S, surfaces, this difficulty
can be avoided by dividing the machine at the middle of the flow path
and using the first system at the inlet portion and the second system
.at the exit portion. If the 81 surface can be approximated by a sur-
face of revolution, it is convenient to use a set of orthogonal coordi-
nates 1 and ®, where 1 1s the arc length of the generating line of
the surface of revolution in the meridional plane and ® is the usual
cylindrical angle (fig. 8). Because '

Wy dr .
W{ = 'djl- = Sin 0 (87)
and
W
Z dz
W—l = a-.z‘ = CO8 O (88)

then, for use with the first system, -

dq

9gq _ : * :
‘ 3z = sec’ g '57 (89)
and, for use with the second system,
agq _ og |
x-S oy (90)

By use of the preceding relations, the equation of motion in the circum-
ferential direction as given by either equation (56) or (79) for the
two systems, respectively, becomes in both cases

oW oW W } | '
1 O¥y Wu u . 1 /10 T ds
;W-ar'<?+m>Sm“'ﬁ;(‘f&‘p,';&p>=° (75)

which agrees with the results obtained in references 29 and 30 in a
different manner. The subsegquent equations given in these two refer-
ences can be modified and used for such surfaces. (The last term on the
left side of equation (79a) represents the rotationality of the absolute
flow and is not included in reference 29, which is derived for irrota-
tional absolute flow.)
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By comparing the integrating factor b used herein and the thick- .
ness of the stream filament of revolution T used in these two refer- ‘
ences, it is seen that the two play exactly the same role in the con-
tinuity relation. Although b 1is obtained mathematically as an inte-
grating factor, physically it may then be visualized as the thickness .
of the stream filament in the r or z-direction for the two systems,
respectively. The use of b herein is, of course, more general in that
it varies two-dimensionally over the surface in the general case, where,
as in references 29 and 30, T is considered a function of 1 only.

G502

EQUATIONS GOVERNING FLUID FLOW ON S, SURFACES

In the preceding section, it was shown that the determination of
the flow on 83 surfaces requires a knowledge of the radial variation
- of the velocity components. This knowledge can be obtained by following
the fluid motion along relative stream surfaces of the second kind, Sp.
On 85, the relations (28) to (31) also hold. These relations, how-
ever, will now be used to eliminate the independent variable ®; that
is, any quantity q on 8, 1is now considered as

= ql:r,z,m(r,z[]

Accordingly, on 8o

3 _ 31 _'r19g
ar ~ Or ~ny r o9 N
(91)
2a _9q Iz1ldg
3z Oz 1O, T op
and along a streamline on S,
Dg _ aq . '
o = wr 14w, v (92)

Equations of Continuity and Motion

Equations (30) and (91) are used to change the continuity equa-
tion (35) to

a(pzir) . a(o:z) - o o(e2) ' (93) -

i
T

i
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where

3 | d
W Wy W, ) (84

¢(r,z) = - L <?r Er—-+ ny 3% t 0z 355

u

For general rotational motion, the equatlons of motion (14a) in the
three perpendicular directions are
<8W oW > oI Bs ~

Wy [ 3(vyr) awr]
T L or T 3 % "X/ s

3(Vyr) awr] 1 3y .awu>~ 13T . T 3
"Y2\r3® "%/ "roptrIe

~"

(95)

r ar T 90

= - 3“) u\zdp "2/ "= T3

In following the motion on Sp, equations (95) are reduced to the fol-
low1ng form by using equations (9), (16), (31), and (91):

My 8Vur) (e W\ ares o (968)
T r " ar z\3z "ar) " "a T lar Tir ,
W, a(V.xr) W, a(V,r) D(V,r)
r u Z w w
T e T e " Tu |F R s (960)
W, W, Wy a(vyr) al ds
- I‘(az - 5—;—) - ? -——a—Z——- = - -a—E + T a—Z' + FZ (960)

where F is a vector hav1ng the unit of force per unit mass of gas
defined by:

1 (oh Os 1 lop .
F-——'@ —T'g‘)nzv' EFCP (97)
A 31m11ar result is dbtalned for the equation of motion in the form of /
Wy e Yot 1ap g \
T 3r Z@9z T T par r
W, a(v,xr) W, a(v,r) .
3 e +—Z e u B (98)
r ar r 9z u
oW oW
Wy 5 r a8y z
9z or p 9z
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Because the vector F is normal to the S, surface,
FWp +F W, +F W, =0 (99)

By the use of equations (99) and (96), it can be shown for steady flow
on an S, surface that

DI Ds

This result is the same as that obtained for the §; surface. Again,
for the present problem of steady relative flow on the 8, surface, the
relation (99a) can be taken either as one of the equations of motion or
to represent the relation (99). In other words, there are only four
independent relations among equations (96a), (96b), (96¢c), (99), and
(99a). 1In the following development, it is found convenient to use
equations of motion in the form of equation (96) , not only because
dI/0r is zero in many design problems (whereas dp/dr # 0), but also
because equation (96) leads to a form capable of a rigorous solution
for both subsonic and supersonic flow and shows clearly how the various
design factors affect the three-dimensional motion in general. (See
equations (106) to (114) that follow.)

In a manner analogous to the 87 surface, the continuity equa-
tion (93) is put into the form

a(rBoW,)  8(rBoW )
+ =
or 9z

(100)

by the use of an integrating factor B, which is related to C Dby the
following equation:

9 In B

DInB d1n B
=W s Wy —5—=C (101)
or
t L
B C
In §= = C dx = = dx (101a)

Equation (lOO) is the necessary and sufficient condition that a
gtream function ¢ exist and

Y _
5% = TBeV, (102a)

2055
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. a _ . o
. = rBpW,. ‘ , (102b)

The difference in ¥ at two points J and k on the Sp surface is

k k - |
J ay = rBo(W, dr - Wy dz)
J J

Similar t¢" the flow on the S surface, the preceding equation
indicates that B 1s proportional to the angular thickness of a thin
stream sheet whose mean surface is the stream surface S considered
herein and whose varlable circumferential thickness is equal to rB.
Indeed, if the mass flow into and out of the element of such a stream
sheet (cut between two planes normal to the z-axis, and a distance dz
apart and between two cylindrical surfaces dr apart (fig. 7(c))) is

equated to zero and the distances dr and dz approach zero as a 1imit,
the following equation is obtained:

-GS0z

3(TpWy) a(TpW )
. T oz -

(100a)

Conmparing this equation‘ﬁith equation (100) and considering the mass

flow relations show T 1o be proportional to rB. This proportionality
s means that B can be physically intepreted as a gquantity which is pro-
o portional to the angular thickness of a stream sheet whose mean surface
is the. So surface considered herein. With this interpretation, B 1is
immediately seen to be closely related to the angular distance between
two neighboring blades. In actual calculation, only the ratio rB %o
(rB); or T to T; dis important, and it is also easier to obtain the -
variation in B -from the distance between adjacent streamlines
obtained on §7 surfaces than to evaluate B/B; by equations (10la)
and (94) using data obtained on S surfaces,

Principal Equation for Case with V,r Given

In the solution of flow on an Ss surface, the continuity equatlons
and the equation of motion in the radlal direction are combined to form
the principal equation. The principal equation will now be obtained for
two main groups of present designs in which a certain desirable varia.
tion of the angular momentum of the fluid Vurﬁ-and of the ratio of
relative tangential and axial veloccity are ppescribed on the Sz’m sur-

- face, respectively. These equations can also be used for the solution
of a direct problem, in which the same information obtained on Sq
solutions of a prev1ous cycle 1s used as known values 1n the 8o

- solutlon. S - : ‘
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For the first group, the following equation is considered known:
Vyr = G(r,z) (103)

Among this group of designs are the free-vortex design (in which G 1is
simply a function of z), the more general "solid-body rotation" design,
the "symmetrical velocity diagram at all radii" design, and others (for
example, see references 17 and 18). ,

From equations (102) and (45), 9.
| Q
oW FY:
Z 1) 1 1 a 9s* 9 ln B\ oV
I'Bp—a—r—'-——é-+(--£—7§;+a - >—a— (104:8.)
or
oW *
r 9% 1 dh |, 3s 3 1n B\ 3V
-eg =2t ("_2— 3z 3z~ a2 ) 9z (104p)
9z a
But from equations (9) and (101), )
2 2 2
202 W
wer u 1 -2 |(9V¥ v
h=1I+=——-—5 -3 (rBp) \:(5}) +(§Z>] (105)
Differentiating with respect to r and 2z gives .
af-(w 2wl 7) 3 _ 3 wPr?-u 1. 3nB as* -
oz ar ~ar <I+ )+ (wr2+wz2)<;+ e ) -
2
(rBo)-1 (wz —2! - Wr gr:;) .
A ar
az-(w 24w 2 ) wlrl_y, 2 3 -
Eld w2 (o0 “)+<Wf+"f>(-———i’;3--§-i~ :
; a?v
Substituting the preceding equations into equations (104) and adding
give
W, W, 2
2 fu 2 2] - (2_ z) 3t ur vy
l:a (Wr Wy ) *Bp ( az> W - 2 Wy araz + ,
2 22 ’
(a2-0,2) ?«v[ Y E__:f_)z s sse\] oy,
a®“-Wz) —= T " 37 > 3T ar 5r * R
3 ( Wuz-wzr2> g2 (3 1n B _ 9s*) | a¥ (106) . '.
-V B 2 - 3z 9z 3z _
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Substituting equation (106) into equation (96a) and dividing by
al yield the following principal equation for the fluid flow on sur-
face BSp:

(' ] Wr2> 22y _, ¥z %y (1 Wy 2> 22y oy . oV

where

M= -

BlnB‘+aS*'__l_ a1 ., 8Wu
9z 9z a2 \9% U3z

1 @3InB , a9s* 1 (a1 Wy 2>,
T a7 +3I' -——2-< - W, =— + w°r .+

ar . 4 3r
az—(wrz-}wzz)_ 9T s ' WU. 'G(Vur) .
z Tttt T
ali,’ .

- or ar
From the coefficients of the second derivatives, the principal equation
is .seen to be hyperbollc or elliptic when the meridional velocity

Wy = A/Wrz + WZ2 is greater or less than the speed of sound,; respec-

tively. For the elliptic case, it is again convenient to write the
principal equation in a slightly different form. From equation (101),

oWz 2% 198y 5 1nBp 8Y

rBp —2 =22 1 3Y _
or aprlé T or ar or
‘ ' ! . (108)
Wy 3%y 3 1nBp OV
" T2 ez a2
. 9z
Substituting into equation (96a) results in
%y 18y, 3%V (31nBp 3V, 3 InBp 3W)
apé Tror 3zl ar ar 9z ¥4
2w, a(v,r) : :
(rBp) [u u aT ?s :]__ ,
3V LT or ~p T T v F =0 (107a)
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With the variation of V,; or W, prescribed by the designer in an

inverse problem or taken from the previous 5 calculation in a direct
problem, the meridional velocity components are determined by equa- '
tions (107) and (107a). (Other equations are used to determine various
terms involved in the coefficients M and N.)

Principal Equation for Case with Wu/wz Given

In the second group of designs, the following relation is pre-
scribed on an Sz)m surface (for example, see references 17 and 18):

Wy
W_ = g(r,z) (109)
Z

In order to result in blades with the mean blade surface composed of all
radial elements (for high-speed rotation), it may be desirable to spec-
ify a mean S5, surface consisting of all radial elements. Then

W

ﬁ: r g1(z) (110)

Similarly, in order to obtain a cooled turbine rotor blade with minimum
twist, the following function may be specified on Sz,m:

WU.
W, = go(2) (111)

In application to direct problems, one of the preceding relations is
obtained from the Sy solution in the previous cycle and is considered
as given in the S, solution. In both inverse and direct problems,
with the relation between W, and W, given by these equations, all

three velocity components are to be combined into the main terms of the
principal equation as follows: Substituting relation (109) into equa-
tion (96a) gives '

W, oW
(142) 2 _ % g 95) L (.3 g2 -
(1+2%) 37 az+g(r+ar wz+&ng+wz<ar+Tar+Fr_o

(112)

Instead of equation (105),

2 2
h=1I+ wifz ) % (er)-Z[:(1+g2) (gg) + <§§>i] (113)

G502
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. should now be written. leferentlatlng'W1th respect to r and gz,
‘ combining with equation (104), and substituting into equation (112)
give the follow1ng form of the prlnc1pal equat10n°

: W W, a2 W, 24W,2\ a2
(1g2) \1-5—) 2T 2(1+462) rzaw’+(l —" aur Ng—g+M31-F=o
, aZ '3r8z a ~az or oz
0o (114)
&
o Wwhere
w_ 2InB 3t 1 (a1 W2 ag
9z 27 g2 \9Z aZ 7z
_ 2y[1,91n3B 3s* L(?_I_ 2. w2 éﬁ)
N—-(l+g)[r+ = o T olay T T - MR e )|+

22 2 .2 |
B g (84 28) 2 (L2, 0 @y oo,
2 r ar aZWZZ ar or

*

- This equation is hyperbolic when the relative velocity is supersonic,
elliptic when the relative velocity is subsonic. For the subsonic case,
a form of this equation more convenient for computation is obtained by
substituting equatlon (108) into (112):

| 32 2 .
(1+¢) auf_(_l__g%%>glg+ag_l:(l+gg) 3 1n Bp 3y , 3 1n Bp gwg}L
7

arz r ar ar dr 9z 9z
2gurBe + (@Bo)? (3L, o 3s | + Fy= 0 (114a)
P Y ar a
= ) .

. It may be noted that for both groups, equation (96a) rather

than (96c) is chosen to obtain the principal equation of the present
problem, because Fy, 1is always much smaller than F, in axial
machines and  F, 1s zero or nearly zero on. S, surfaces for high- speed
centrifugal and mixed-flow impellers whose mean blade surfaces are

. usually composed of all radial elements. (For low-speed centrifugal
impellers, equation (96c) can be used to form the principal equation
in a similar manner.)
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Procedure of Solution

Although the equation of motion (96a) is chosen to form the prin-
cipal equation, other equations are to be used to obtain the various
terms involved in the principal equation. As in the case of general
S1 surfaces, there are ten basic variables to define the flow and the

shape of the Sp surface. They are: ¥, B, W,., W,, W,, F,.,, F,, F,, s,
and I (or p). B is considered given. (In the direct problem, B

is evaluated directly from the distances between adjacent streamlines
or according to equation (100a) using the value of C obtained on Sy

surfaces; in the inverse or design problem, B is estimated (refer-
ences 29 and 35) from the blade thickness as desired from blade stress
and other considerations.) On the other hand, there are seven inde-
pendent relations in one energy equation (21); three equations of

' motion, one of equations (107), (107a), (114), or (1l4a), and equations
(96b) and (96c); the orthogonality relation between W and F, equa-
tion (99a); and the two equations relating ¥ and velocity, (102a)

and (102b).

Direct problem. - In the direct problem, two alternative procedures
may be used. If the shape of the 82 surface (determined from the
data obtained on 87 surfaces) is considered as given in the present
S2 solution, two additional relations between the n- or F-components

completely define the problem. The procedure of calculation is as
follows:

(1) Use equations (20) and (21) to determine the variation of
s and I. :

(2) Compute W, from the orthogonality relation as follows:
u
n n
Wy=-(=W,+=W,
Oy oy
(3) Compute Fy from equation (96b).
(4) Solve the principal equation.
(5) Obtain W, and W, from equations (102).

If only the tangential velocity or the relation (109) is taken
from the 87 solutions of the previous cycle and is considered as

given in the present S, solution, one more relation is available

between the F-components such as that which exists between the
f-components on the S5 surface: ’

F-YXF=0 (115)

®

5502
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Writing equation (115) in scalar form and using the relations (31)

and (91) give
9 (¥z) o [Fr . - ; '
31’(Fur> T ez <Fur) (115)

By integrating along a constant z-iine, equation (115a)‘provides'the
following relation to determine the value of Fp to be used in the
Principal equation from the values of Fy and Fy:

F F 2 F,

S-S e + 2 (lz dz (115p)

Fyr Fur/o ar \F,r

Zg :
If F. =0, at z4
2 F ,
= D (z
Fp =Fyr o (Fur) dz (115¢)

Zo

The procedure of calculation is as follows:

b(l) Use equations (21) and (99a) to determine the variation of s
and I. .

(2) Compute F, and F, from equatiohs (96b) and (96c)..

(3) Compute fr from equation (115b) or (115c).

(4) Solve ¥ from the principal equation. |

(5) Compute Wp and W, from equations (102a) and (102b).

Inverse problem. - In the inverse or design problem of a finite
number of thick blades, in addition to the blade-thickness distribution’

or its equivalent. B, either equation (103) or (109) is prescribed on
a mean stream surface Sz,m' It may appear that still another rela-

tion can be prescribed on the mean surface. The differentials of the

coordinates of the surface are now governed by

Fp dr + F,r dp + F, dz = 0 |  (116)
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however, and, in order that this differential equation will lead to an
integral surface of the form represented by equation (28), F must
satisfy the condition of integrability as given by equation (115)
(reference 34). An expression similar to equation (115a) for the case
of an infinite number of blades was first pointed out by Bauersfeld
(reference 2) in a discussion of the Lorenz paper (reference 1). In
effect, it restricts the freedom that the designer has in prescribing
the velocity components of the fluid on the surface. Hence, in the
inverse problem of a finite number of thick blades, in addition to the
blade thickness distribution or its equivalent B, the designer can
specify only one relation on the mean stream surface, which relation may
be either the tangential velocity as given by equation (103), the flow
angle between the tangential and axial velocity as given by equa-

tion (109), the axial velocity, or any other reasonable relation that
will lead to a solution of the set of equations.

In the preceding consideration, the hub and casing shapes are also
prescribed by the designer in the inverse problem. Alternatively, the
prescription of the hub shape can be replaced by a prescription of
another relation at the casing, thereby fixing the shape of and the flow
along S2,m at the casing entirely. The flow is then extended to the

hub and the last streamline gives the hub contour (reference 19).

Approximations Involved in Through-Flow Theory

When the equations previously derived in reference 18 for a large

" number of thin blades are compared with the corresponding equations
derived herein along a stream surface, the two are obviously exactly

the same if the ordinary derivatives used in reference 18 are replaced
by the present partial derivatives following the stream surface, and

if B is equal to 1 or if the variation of B along the flow path

is zero. In the interpretation of the through-flow solutions as the
flow along a mean stream surface (which divides mass flow into two equal
parts circumferentially) or as the flow along the mean channel surface
(geometrical mean), the first difference can easily be removed by simply
interpreting the values obtained in the solution as those along the sur-
face rather than in the meridional plane. The second condition, however,
is satisfied only when the circumferential variation of all the velocity
components approaches zero, or when the circumferential derivative of
the tangential velocity and the ratios of n, and nz; to ny approach

zero (see equation (94)).

_ Besides the use as a limiting solution in general and to give cer-
tain trends where the contribution due to the finite number of blades
is small or constant, the through-flow calculation should be properly
modified by the factor B in its application to actual turbomachines
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of a finite number of thick blades. As B can be physically inter-
preted as the ratio of the local angular thickness of the stream sheet
to its inlet value, a good approximate value can be obtained by solving
the two-dimensional flows on a number of stream surfaces of revolution
starting at different radii at the inlet. For.the subsonic flow in the
turbine cascade reported in reference 29 and for the supersonic flow in
two impulse bladings investigated in reference 30, the reductions in
angular thickness from the inlet value along the mean streamline are
seen to be a chordwise average of 4 and 9 percent more than the reduc-
tion in the channel width, respectively. Also, in the subsonic case,
the influence is extended a certain distance outside the blade row. The
inclusion of this factor B, even if it is approximate, should give a
much closer answer than that obtained with B @aken as 1.

In this interpretation of the infinite number of blades solution
as the solution of through flow along a particular stream surface
between two adjacent blades, the distributed "body force" F has a
definite meaning, as given by equation (97). (For an infinite number
of blades, F becomes the blade force.) For blades with large turning
and large radial twist, as in a free-vortex turbine, the influence of
the radial component of F on the flow is not negligible.

CIRCUMFERENTTIAL VARTATION OF FLUID PROPERTIES BY USE OF POWER SERIES

In general, the blade-to~blade variations of fluid properties are
to be obtained from calculations on £37 surfaces. When the twist of
the 87 surface is large, some other method of obtaining the blade-to-
blade information is desirable. For subsonic irrotational absolute
flow, this information can be obtained by extending the solution
obtained on the mean stream surface in the circumferential direction by
the use of power series (without the consideration of the shape of the
81 flow surfaces). The various derivatives involved in the series are
obtained from the flow condition on the mean stream surface. The higher
the solidity and the thinner the blade sections, the fewer are the terms
required for a given accuracy. Results obtained in references 29 and 36
indicate that only three terms in the series will be required to give
sufficient accuracy for hlgh-solldlty turbines and centrifugal com-
pressors. :

The serins method will also be used in one of the two methods of
the inverse solution in which the flow obtained on the mean stream sur-
face is extended out circumferentially.

Denoting the absolute vorticity VXV by g and using the rela-
tions (16), (91), and (97) in equatlons (19) give '
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1| oWy d(Vyr) 100, 1 8(Vyr) F, OW,
b L 1 1
o T  9dz Trop " r 3z " Fyr o9 (1178)

oW, OW, oW, aW, F, oW, TF, oW,
§u=az "Sr T8z T or +Fur op ~ F,r o9 (1170)

" }_[B(Vur) BW{I 1 a(v,r) 1
z =T or "0 |=r ar TFr "Top (127¢)

From the preceding equations,

3w,  aW, Fot. + F,t, + F b, F, 3a(V,r) . F. 3(Vyr) (118)
3z ar Fy F,r or Fyr 9z )

Thie equation means that the apparent vorticity, which is obtained by
differentiating the velocity on the mean stream surface with respect to
the coordinates, is not zero even if the absolute vorticity is zero or
tangent to the mean stream surface. Substituting equations (1_'L7a.)

and (117c) into equation (94) results in

1 oM,  FE|F. (V) L Tz 3(V,r) vo. - Fr e | (1)
r o Fé | Fur or Fyr 9z Fy °T  Fy 2

Substituting equation (119) into equations (117a) and (117c) gives

1M, 1 3(v,r) .t F.F, | Fr a(vur)+ F, 9a(v,r) .o Fy . Fr ¢
TrdX r oz r - Fo _Fur ar F,r 3z Fu T F, %
(120)
1 0%, 3 3(Vyr) ¢ F Fy |Fr 3(Vyr) F, a(vyr) c . F, ¢ Fr
rdpe r oar = "z g2 | Fyr ~ ar +Fur oz F, °T FuEZ
(121)

The first derivatives of h or p, and p can be obtained as follows:
From equation (97),

==

g
I
=i

o

- ;1; gg - - T, i (122)
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Or fram‘equatiOn (9),

Loy (e MW R
TOP T op T 0P T 0P T XP, a
Wi oh dp . . .
ith 55 known, 55 can be obtained by using equation (12b):
131np 1 dh 103s* ; '
T T 0% T o% (223)

The second derivatives of the fluid properties with reSpect to o
can be obtained in a similar mammer. Differentiating the continuity
equation (1) with respect to ® and dividing by r give

O (oW .r) 02(eW,) 1 OZ(pW,)

1 Sl
= _85’8&7_'+ = 5q@ + S o = 0 (124)

Equations (91) are used to change equation (124) to

1 82(pwu) _ 1 [73 a(prr) | Fr Bz(pwr{] 1.[T3 a(DWz) Fy az(pwzi]

-— — + o —] e = +
2 3P ar o Fy 32 | T[22 oep Eur o

(124a)

Differentiating equations (117a) and (117c¢) with respect to ¢ and
dividing by r result in
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Substituting equations (125) and (126) into (124a) and noting that F
is perpendicular to W give

1 BZWu - F2[ Fp _Q-B(Vur) . F, ~§_8(Vur) . 18 o(pW,r) .\

2 amz Y Furz ar 9o F r az o pr2 3T o
;L._Q.B(QWZ) _29dlnp F, of; ) F. of, (127)
or 3z OO r  oP F,r 09 ~ F,r op

Equation (103) is to be used in equations (101) and (102) to obtain the
second derivatives of Wy and W,. The second derivatives of h and

p are obtained from equations (9) and (123) as

2 2 2y2
1 0%h _ 1 0°I 1 O°W (128)

re Bqﬁ B 5¢? i or? aqﬁ

(129)

Similar formulas can be obtained for higher-order derivatives. At
a fixed value of r and 2z, the velocity components, h, and p at a
short angular distance away from the mean stream surface 8y can then
be obtained by a Taylor series:

P-q )2 CRGIE
a(®) = al®y) + @-,) a' (@) + S——-zi'-l-—— Q" (@) + % Q"@n) + . ..

(130)

An alternative way to obtain density is to use equation (145) (to be
given subsequently) after the other fluid properties are determined.
Obviously, the preceding equations are most useful when the flow is
isentropic with vorticity equal to zero. Otherwise, the variation of
vorticity along the mean stream surface has to be determined first.

At present no such method is available. It appears, however, that the
method of Squire and Winter (reference 37) and Hawthorne (reference 38)
may be generalized to compressible flow for the variation of vorticity
along a mean stream surface in turbomachines.
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STEPS FOR COMPLETE SOLUTIONS OF THREE-DIMENSIONAL
DIRECT AND INVERSE PROBLEMS

In general, the solution of the three-dimensional direct end inverse
problem involves the use of both B1 and 82 surfaces. In the direct

problem, starting with assumed flow surface, the solution is obtained
through the successilve (alternate) use of the two kinds of flow sur-

face, although a satisfactory approximate solution may be obtained in

one or two complete cycles. The use of an approximate method of solu-
tion to get a good starting value on each surface will shorten the length
of computation. For inverse problems, the process is usually shorter.

The calculation will start on the Sg m surface on which either a con-
dition on the fluid velocity or the shape itself is prescribed and an
estimated value of B for a desirable blade thickness distribution is
used. After the solution on the S2,m surface and its shape are obtained,
the blade coordinates are obtained by extending the solution circumferen-
tially either by the series method or by the method given in reference 35
using the variation of the distances between the streamline obtained in the
S2,m surface. Because it is important only to obtain the right order of
magnitude and the right kind of variation (three-dimensionally) of the
blade thickness, the first solution may give satisfactory results. The
velocity distribution on the blade surface is controlled directly by the
one relation specified on the Sp p surface and the variation of B. ‘

k1

Suitable procedure is subsequently suggested for the solutions of”
direct and inverse problems with either irrotational or rotational inlet
absolute motion, at design or off-design flow conditionms, for turbo-
machines having various wall configurations (fig. 6).

Direct Problem

Axial turbomachines with nontapered straight walls. - In this type
of machine, it is desirable to start the computation on S; surfaces,
because with short axial blade length, the total deviation of the §7
surface from the cylindrical surface is relatively small, especially
along the hub and casing walls.

;

The following steps are therefore suggested:

(a) In the initial calculation, the flow surfaces are assumed to be
cylindrical and the set of equations (60) to (65) derived for cylindrical
flow or the approximate method given in reference 39 can also be used to
- obtain the streamlines and circumferential variation of fluid state on
51 surfaces at three or more radii.
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(b) From the data obtained in step (a), an Sz stream surface about
midway between two blades is constructed by connecting the streamlines
which divide mass flow on the S1 surfaces in the same percentages. The
direction numbers of the surface and the Wy and Wz at the surface
obtained in step (a) give the starting value of Wy Dby use of equa-
tion (31). The factor B 1is evaluated either directly from the angular
distances between streamlines obtained in (a) or according to equa-
tion (100a) with C evaluated from the information obtained in (a). Its
value at other radii is obtained by interpolation or by proportioning
according to the channel-width ratio. Calculation of the flow on this
surface is then made by the use of equations (91) to (115). For subsonic
" flow with irrotational inlet flow, the solution obtained on the 82 m
surface is easily extended circumferentially by series expansion using
eduations (117) to (130). The values obtained can be further adjusted
to fit the given blade (reference 39) and can be used in a more accurate
second calculation on 8] surfaces in the next step. For subsonic flow
with large rotationality at the inlet and supersonic flow with 81gn1fi-
~ cant check caused by the blade entrance angle, it is more desirable to
obtain the information on circumferential variations by the use of two
or more S2 surfaces at or near the two blade surfaces.

(c) The radial variation of fluid state computed from the solution
obtained in step (b) or the variation of the radial distance between
streamlines is used to determine the factor b and used in the principal
equation (48) for a more accurate determination of S37 surfaces and the
flows thereon. The general equations (32) to (51) should now be used
for the S7 surfaces located between hub and casing, if not at or near
these walls.

(d) The calculation of Sz surfaces can again be repeated and so
forth.

If the inlet flow is quite rotational, so that the S; surfaces

. along the walls and the Sp surface near the blades may turn around the
corners, these surfaces should be chosen at a short distance from these
boundary walls as shown in figure 3. By the use of these two kinds of
surface, the secondary flow caused by a rotational inlet profile or by
the turning of the blades is included in the complete solution.

Axial turbomachines with tapered or curved walls. - The steps
involved here are quite similar to those of the preceding case,. except
that for the initial calculation of Sy surfaces along or near the
tapered or curved wall, either equations (52) to (59) are to be used, or
equations (13') to (23') given in reference (35) can be used in the
manner given in reference (39).
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Radial- and mixed~flow type turbomachines with curved walls. - In
this type of machine it is not desirable to start the computation on the
51 surfaces because the flow surfaces near the walls may deviate con-
siderably from surfaces of revolution because of the long flow path. On
the other hand, the solidity of the blade is very high and the blade
section is uniformly thin. As a result, the shapes of the 85 surfaces
are closely related to the blade shape and the factor B can be esti-
mated relatively accurately from the blade thickness distribution. The
following steps are therefore suggested: .

. (a) The computation is begun on the 'Sg)m surface. For subsonic
irrotational inlet flow, computation need be made only on a mean Sp
surface and the solution can be extended out circumferentially by equa-
tions (117) to (130). The approximate method given in reference 40 can
also be used in the initial calculation. For subsonic flow with rota-
tional inlet profile and for supersonic flow it may again be more
desirable to compute two or more Sp surfaces between the bHlades.

(b) The data obtained in step (a) may be used to make calculations
for three or more S surfaces between hub and casing walls.

(¢) The processes (a) and (b) can be repeated until the desired
accuracy is reached.
Inverse Problenm
Conditions préscribed on mean stream surface. - In the inverse or

design problem it is most convenient to consider a mean stream surface
of the 82 kind about midway between two neighboring blades to be

' . designed (figs.IS to 5). From the results developed previously for

such surfaces, it is seen that in addition to the factor B, the
designer can specify only one relation among the fluid properties on
that surface, which can be either a velocity component, a relation
between two velocity components, or one other reasonable condition.

The factor B essentially controls the blade thickness distribution,
whereas the relation specified on the surface esgsentially controls the
mean camber surface of the blade. From a consideration of strength and
Mach number in general, and the requirement of coolant passage in the
case of cooled turbine blades, the designer always has a very good idea
of what kind of blade-thickness distribution he wants. With this thick-
ness distribution, the ratio of pitch minus circumferential thickness
of blade to pitch can be obtained. After correcting this ratio with
some known relations between this ratio and B (such as those given in
references 29, 30, and 35), especially near the leading and trailing
edges, 1t can be taken as the factor B in equation (101). Then from
the type of velocity diagram or a certain feature of blade shape
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desired, a relation along the mean stream surface Sp , can be pre-
scribed and coordinates of the mean surface and the fiow on that surface
can be solved at the same time by equations (101) to (115). It may be
noted that in this process, the designer still has, in general, a little
freedom in choosing the value of 2zg in equation (115¢). For a rota-
ting blade, zp is usually taken somewhere near the center of gravity
of the blade section, whereas for the stationary blade, the position of
zo can be utilized to control the magnitude and distribution of Fs

in the most favorable manner.

Boundary conditions for mean stream surface. - In the solution of
this 82 ,m surface, the boundary conditions are a little different for
subsonic and supersonic flow. For subsonic flow, not only the varia-
tions of the stream function at stations far upstream and downstream
are given, the meridional contours of the hub and casing walls are also
gilven (these contours can be determined by approximate calculations
from blade row to blade row such as given in references 17 and 41). TFor
supersonic flow, the variation of the stream function and its normal
derivative is prescribed on an initial curve, which is not a character-
istic curve. Then either the hub and casing contours are prescribed,
or only the casing contour but with one more velocity component along
the casing is prescribed. In the second case, the flow is extended
toward the axis of the machine and the hub contour is determined by the
shape of the last streamline for the required mass flow.

Determination of blade shape. - For subsonic irrotational flow,
the solution obtained on the mean stream surface can be extended out
circumferentially by using equations (117) to (130). The blade sur-
face can be then determined as follows:

(a) The position of the mean stream surface is first determined
by solving the circumferential coordinate as a function of the axial
coordinate at several radii. With the circumferential coordinate
measured from the radial el%pent of the surface chosen at zp, equa-

tion (116) gives, at a constant r:

zZ

oy - (N’m)z=zo = G:—Z->m dx (131)
Zo

(b) The blade coordinates (r,®) will first be chosen at one
station zy5 as follows (see fig. 9): The mass flow passing through
the 2z, plane between the mean stream surface and the tentative suction
or pressure surface is computed as follows:

SS02
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. [ . .
p W,r dr 4® : - (132)

Ih .
MP f f p Wyr dr aP - (133\)

Because of the inaccuracy in B for the blade-thickness effect, the -
mass flow obtained will be a little different from that required. The
blade coordinates ®g and ®p as functions of z, and r are modi-
fied until the mass flow checks. It is not important that Mg and Mp
are a little different from one-half the required mass flow as long as
their sum is equal to the total mass flow, but once the division is
chosen, it should be maintained at other =z-stations.

(¢) The blade coordinates obtained at 2z = z, are extended
upstream and downstream according to the velocity components evaluated

-at the surface. For example, for a short distance =z - zy away, .the

changes in the blade surface coordinates r and ® are

r =1y + G%)O (z = z0) (134)
o = 4 @ ¥u> (z - 2,) (135)

After r and ® are thus obtained, the total mass flow may be checked
again by equations (132) and (133).

When the blade coordinates are obtained close to the leading and

. trailing edges, they can be faired in according to some standard shapes,

A blade shape is therefore obtained in which the three-dimensional flow
of the fluid is considered. The right kind of three-dimensional blade-
thickness distribution is obtained and a good knowledge about the flow
on the blade surface is also available at the same time. The data
obtained in the solution can also be used directly for a more accurate
and detailed determination of the velocity variation around the nose of -
the blade, for a relatively quick check of the series approximation, or
for improvement, if necessary, of the inverse solution throughout by
the method given earlier for solving the direct problem. This process
seems to be the quickest way of establishing some standard three-
dimensional flow variations for typical designs of blades from which a -
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good. approximate method for routine design calculations can be estab-
lished and of providing a basis on which the viscous flow along the
blade surfaces and hub and casing walls can be analyzed. The results
given in references 29 and 35 indicate that for blades of high
s0lidity, three terms in the series give sufficiently accurate
results.

For subsonic flow with vorticity, the circumferential extension
cannot be accurately made at the present because of lack of adequate
methods for the determination of vorticity variation along the mean
stream surface (S2,p). An estimate of this variation can be made,
however, and the solution can be checked later. An alternative method
is to use the shapes of the streamlines and the distances between them
obtained in the 83 p solution and to design the blades with the

assumption that the flow surfaces are surfaces of revolution by the
method ‘given in reference 35. Inasmuch as the rotationality of inlet
flow is usually serious only in later stages of a multistage compressor
where the hub-tip radius ratio is high, this assumption is reasonably
good.

For supersonic flow, the flow in the mean stream surface S2,m 1is

also determined first. If the shock due to the entrance wedge angle
is small, an approximate solution of the blade shape can also be
obtained by the series method neglecting the finite jump across the
shock or using an estimated value. The improvement of the flow varia-
tion for the resultant blade is then more important than that in the
subsonic case. Local modification of the blade shape can also be made
if the velocity distribution on the blade obtained is unsatisfactory.
A better method is to use the shape of the streamlines and the dis-
tances between them obtained in the Sz p solution and to design the
blades assuming flow surfaces of revolution according to the method
given in reference 30.

The processes described here for the three-dimensional solution
have been and are now being used to analyze the compressible flow
through a number of compressors and turbines. Some of the results
obtained are given in reference 42.

GENERAL METHODS OF SOLVING PRINCIPAL EQUATION

In the solution of the §S] surface for the direct problem and of
the 8p surface for both the direct and inverse problems, the main
caleulation is the solution of the principal equation, which is a
second-order, nonlinear partial differential equation in two independent
variables. The case when the principal equation is elliptic will be
considered first.

[alalals]
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Elliptic Case

A common form of the principal equation is written as follows:

19y, 3%y v . 3% _1 3 1nbp ¥ :]
ns%+a§2+Ja§+K +L _X—E K S50 §5) + Mabo| +

Mp(bp)2 = 0 | (136)

In equation (136), Yy and b are used for both 51 and 82 surfaces;
n denotes @ for the 831 surface and r for the Bz surface;
{ denotes z or r for the 87 surface, and z for the S5 sur-

face.

The values of 7, {, J, and K for each individual case are given

in the following table:

Case Surface Coordinates | J K L Equation
1 g
o)
1 v
1 | 51 (general) R ® z 0 = nT (48a)
2 |81 (surface of ® z % 1 +2>‘ 0 (59a)
revolution) _ r :
3 |81 (cylindrical 1 o z |0 LZ 0 (65a)
‘ surface) r .
4 81 (general) ® T 0 —];2- 0 (752)
T
1| 14+n?
5 |87 (surface of ) r = 5 0 (81a)
revolution) r
6 |81 (radial ® T % Lz . 0 (86a)
plane) : r
R ‘ 1
7 |85 (V,r given) r Z 0 1 - (107a)
8 8, (2 speciried r . | o1+ g@Lig2e (114a)
2 \w, °P & Frtear 2




60 | NACA TN 2604

The equation is nonlinear even in the case of incompressible flow. 1In
the numerical computation, it is convenient to rewrite the equation in
the following form:

2 2

) v 3%y ay
— 4+ J == +K +LSE=N (137)

hwhere
2
_x31nbpay 3 1nbp ¥y _ _ Mp(bp)
N=K —an 1 + —5t 5t M;bp — (138)
an

and is evaluated from any approximate solution at the start of the cal-
culation and from the values of ¥ and p obtained in the previous
cycle during the calculation. For simple boundary shapes for an So
surface and simple functions of J, K, and L, it is possible to find
a Green's function G(n,.-{, X, y) with its proper characteristics so
that the solution of the problem can be written in the following form
(for example, see reference 10):

v (n,¢) = ffc (n, & %, y) N (%, y) dx dy (139)

If the boundary wall is arbitrarily curved, it is necessary in this
method to use the technique of conformal transformation to render the
given boundary into a simpler one, such as cylindrical. Because this
process will involve a numerical solution of the Laplace equation with
the given boundary shape, it may be better to solve the given equa-
tion (137) directly with the given shape by the numerical method.
Furthermore, this method will be the only choice in the general case
where J and K are complicated functions, which makes the task of
obtaining the proper Green's function very difficult if not impossible.

Finite-difference form of principal equation. - In order to solve
the given equation (137) directly, the general humerical differentiation
formula for first and second derivatives with the function value given at
unequally spaced grid points using second- and higher-degree polynomial
representation as given by reference 26 is used to give the finite-
difference expressions conveniently and accurately at the grid point
near the curved boundary. If the value of any quantity q on the
stream surface under investigation corresponding to a number of values

—————
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of one of the independent variables x not equally spaced, denoted by

x0, xl, . .. xi ... xXB ds given, the mbh derivative of q (on

the surface) with respect to x when x = xi may be written

x=xt nj

(") ;= i mpl o + ;';Ri (140)
s _

The differentiation coefficients B ~and the coefficients of the deriva-
tives in the first or second remainder term have been explicitly
expressed in reference 26 in terms of the spacings between the successive

grid points by using polynomials of the second, third, and fourth degree

for general nonuniform spacing throughout and for the speclal case near
a tapered or curved boundary where only the first or last spacing .is '

different from the others. For the special case, these coefficients

have also been computed for different ratios of the distance between the

boundary and the nearest point and the other spacing, from 0.1 to 1.29

in intervals of 0.0l, and are given in reference 26. TFor spacing ratios

lying between these tabulated intervals, B can be obtained from the

- values tabulated by applying interpolation formulas given in refer-

ence 43, or by the direct use of the formulas. Differentiation coeffi-
cients B for equal intervals using various degrees of polynomlals are
given earlier by Bickley in reference 44.

In the present fluid-flow problems, a large region must be covered
in order to get to the boundary conditions which are always given at
stations far upstream and downstream of the blade row. In order to
reduce the labor of computation, it is desirable to.attempt to reduce
the number of grid points required for a given accuracy by using a
degree of polynomial higher than the customary second. A study of the

expression of the remainder terms (see reference 26) and actual experi-

ence in the present problem show that, in most cases, the use of the
fourth-order polynomial will reduce the necessary number of grid points
to less than one-fourth that required by the second-order polynomial.
Near the leading and trailing edges of the flow on surfaces of the 83

kind, the variation of ¢ is such that accuracy is obtained most

- effectively by using small spacing there. In such case, the grid

pattern should be chosen at these regions first, and either be kept
constant or be continuously increased toward the inlet and exit stations.

With the grid pattern and the order of polynomial representation
selected, the coefficients B at each point can be obtained from refer-
ences 44 and 26 for equally and unequally spaced points. Then the dif-
ferential equation (137) at any grid point whose ¥ wvalue is i is

- replaced by the following algebraic equation:
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n . 0 - - 2 n ) . )
S (2t 4kt Ialy yd o+ S0 (2 4 lal) ¢k o nl =0 (141)
= n-J nj =0 ng nJ

where Wl and *k denote the values of V¥ on the surface considered
corresponding to the grid points along constant { and constant 7
lines, respectively. (See figs. 10 and 11.) It should be noted that,
in accordance with the definition of the special partial derivatives,
¥ values are those on the surface §S; whereas the grid spacings
involved are Jjust the distances along the n- and {-coordinates.

Boundary conditions. - In flow on surfaces of the first kind, the
flow picture is as shown in figure 9. Arbitrarily assigning a value
¥1 on the suction surface, the value WYy on the pressure surface of

the next blade is determined from the mass flow passing between them.
These two values are used as the end values in equation (141) for grid
points next to the boundary. Outside the blade region, however, the
position of the dividing streamline is not known. Instead, there is
the condition that the flow repeats itself or the Y-value increases
by WII'WI when ¢ increases by an amount equal to the pitch angle

(2n divided by number of blades). It is then convenient to draw any
two parallel lines up to the leading and trailing edges of the blade and
consider only the grid points lying between the two reference lines.

For the ®-derivative at a point ¥C, for example, the required P
value is cbtained from wf, which is a pitch angle away from Wb

(fig. 10), as

¥o = - (¥pp - ¥p) (142)

This relation is used between the inlet station 1-1 and the leading edge
of the blade and between the exit station 2-2 and the trailing edge of
the blade when the S surfaces are assumed to be surfaces of revolu-
tion. For the general 87 surface where its deviation from the surface

of revolution is considered, modification has to be made in places such
as shown in the exit portion of figure 9. Because of the twist of the
flow surface, the dividing line from station 1-1 to the leading edge of
the blade becomes two separate lines from the trailing edge of the blade
to the exit station 2-2, accompanied by trailing vortices. Although the
flow still repeats itself circumferentially every pitch angle, the use
of equation (142) for the derivative at a point close to these lines
will give inaccurate results. In these cases, it is better to use the
end-point differentiation formulas to evaluate the derivatives.

¢
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At the station 1-1 sufficilently far upstream.ofvthe blades, the
flow condition can be taken as uniform and the flow angle, equal to the
given inlet angle. For the point h, the ¥ value at point 1

.upstream can be obtained from the given flow angle as follows:
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Thus, the required V¥ value upstream of station 1-1 can be replaced by
the values on that station, and only the ¥ values downstream of
station 1-1 will be involved in the finite-difference expression (141).

An alternative method to take account of the inlet condition is
as follows: If the first station 1-1 is chosen sufficiently far from
the blades, the variation of the stream function upstream of the
station 1-1 is linear in the circumferential direction. The value of
the stream function, however, depends on the inlet angle. If solutions
for a range of inlet angle are desired, they can be obtained by speci-
fying a number of sets of linearly varying stream functions upstream of
station 1-1 as fixed boundary values. The slope of the streamlines
obtalned in the sclution at the inlet then gives the value of the inlet
angle. If, however, the solution for a certain specific inlet angle
is desired, the streamline obtained in the solution must be adjusted
according to that inlet angle, for example, as Jjk in figure 10 is
adjusted to position .gk, thereby obtaining an improved set of boundary
values of the stream functions to be used in the next calculation. )
This method is, of course, not so accurate and convenient as the previ-
ous method for obtaining a solution for a given inlet angle, but is
desirable in the matrix solution because the inlet angle is then not
involved in the matrix factorization, theréby making the same matrix
factors usable for a range of inlet angle and Mach number.

At the exit station far downstream of the blade, the same methods
can be applied. For a blade having a sharp trailing edge, the Kutta-
Joukowski condition can be used and the correct exit angle far down-
stream 1s the one that gives the flow at the trailing edge satisfying
that condition. For round trailing edges, either the position of the

stagnation point is assumed or some available empirical rule for the

exit angle is used. If the calculation is made to compare with certain
experimental results, the measured exit angle may be used.
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In flow along surfaces of the second kind, the boundary walls
extend all the way to the inlet and exit stations with the ¢ values
given on the walls (fig. 11). Across the inlet and exit stations, the
flow is considered to be uniform and parallel to the walls so that the
required ¥ value outside the station can be obtained by an equation
similar to equation (143). For the inlet station where the axial
velocity is radially uniform and there is no radial or tangential
velocity, ¥ varies as the square of the radius. For the exit station
with a certain radial gradient in fluid state, the radial variation of
¥ can be determined from the corresponding radial variation in axial

velocity and density.

Solution of finite-difference equations. - With the grid system
and the degree of polynomial representation chosen and the boundary
conditions taken into account, the problem remaining is the solution
of the set of linear algebraic equations (141) written for all interior
grid points. For a small number of solutions with a given blade, the
best method is the relaxation method (references 25, 33, 45, and 36).

A modification of this method involving the use of higher-order differ-
ences is suggested by Fox (reference 46). TFormulas and tables of
coefficients obtained in reference 26 enable the direct use of higher-
degree polynomials for problems with curved boundaries (reference 29).
For the present flow problems, it is necessary to include a large
domain to get to the boundary conditions that are given at places far
from the blades, and the use of higher-degree polynomials whenever it
is applicable greatly reduces the numerical work.

If a number of cases are to be solved for a given geometry (same
blades for 831 surface and same hub and casing shapes for So  sur-

face), it is advantageous to solve the problem on a large-scale digital
computing machine. If a high-speed digital machine is available, the
simultaneous equations may be solved by Liebmann's iterative process,
which is the most simple to set up. For quicker results or when only a
relatively slow-speed machine is available, the matrix process discussed
in reference 26 is most suitable. In a calculation of the S2,m sur-

face for a gas turbine and in a calculation of the S surface of
revolution for a centrifugal compressor, the coefficient matrices
(about 400 and 200 interior grid points for the two problems, respec-
,tively, and the fourth-degree differentiation formula are used) were
factorized into the lower and upper triangular matrices on an IBM CPEC
and an IBM 604, respectively, in about 60 hours. The determination of
¥ for a given set of values of N +took only 2 hours on the CPEC for
the gas-turbine problem. The gas-turbine problem was also worked out
on an Univac; the factorization took only 11 minutes and the determina-
tion of ¥, 2.5 minutes. The increasing availability of these high-
speed large-scale digital calculating machines will render the suggested
method of solving the three-dimensional-flow problem a practical one.
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General table for evaluation of density from +V{-derivatives. -
After the ¥ values are obtained at the end of each cycle of calcula-
tion, the velocity components are evaluated from the derivatives of ¥
with respect to the coordinates, after the density is obtained as
follows: From equations (46), (57), (74), (80), (85), (105), and (113),
the relation between h or p and Vy-derivatives can be put into a
common form as ’

e e ol 868 o

The quantities represented by X, as well as by €, 1, and & for dif-
ferent cases, are given in the following table:

Case Surface : Coordinates k X € | Equation
1 o '
1.2
1 81 (general) u0) Z 1 §'Wf 1 (48)
2 | 81 (surface of ) z [(1 + A2) 0 |1 (s57)
revolution) '
3 S1 (cylindrical ® z 1 0 1
surface) :
' . ] 1
4 |.81 (general) ® r 1 §‘sz 1 (74)
5 S1 (surface of ® r (} + £%> 0 1, (80)
, revolution) A :
6 81 (radial o r 1 0 1 (85)
plane) :
7 8o (Vyr given) r z 1 % W.2| T (105)
W .
8 5o <ﬁ5 given) T z 1+ g2 0,| r (113)
Z .

With the V-derivatives evaluated, if an exact determination of h
or p - from the preceding equation considering the variation of specific
heat with temperature is desired, the Keenan and Kay gas tables (refer-
ence 47) can be used. With two or three readings of h and p (or its
reciprocal, specific volume), the correct value of h or p satisfying
equation (144) is found. TFor most cases where the temperature range
involved 1s not too large the use of an appropriate average value of 7,
?, may give accurate enough results. With the use of an average 7Y,
the density at any point in the flow field can be related to the inlet
total value by equation (12a) as
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i
1
]

Pri  \Hi

(145)

In order to make out a general table for the calculation of density from
the Y-derivatives, the preceding equation is rewritten as

2
2 ¢ \r-1
s7 =1 - 2z (146)
where _ 1
-1
I+ Ealr - X v s*-g* |
z _ o) A e T,l
pT,i) Hy
and T+l

2
- L8y
¢ = [# (; an> +\¢ 14

\ R

The functional relations between I and ® are given in table I for T

equal to 1.4 and 4/3, respectively. From the given inlet condition and
the given X values, the variation of
Ll
2,2 r-1
I+‘D2r - X

-1 -2
(2 ;)" (vpg 4) =
i
is first co%p%ted and plotted as an auxiliary graph or table as a func-
tion of a>§' - X ). A similar auxiliary graph or table is prepared
for the variation of
- L
-1
I+ % 2p8 _ x
Hy

: 2.2
as a function of (‘D Zr

2
- X at each point (in general, X changes during

- X}. Anytime during the calculation, from the

wer
2
successive improvements between S; and S, surfaces),

value of

2.2 2 21\7-1
= % * w-r iﬂ) (_];_3_1[3 » »
o <Il>y>l eST’i—S I+ =—=- X [k(r 3N t\e3 S, 48

1 22 Ny-1
2 -1 -2/1-{-'—(_1) rT - }%Y Z(S*_s* )
1 5 5
(‘ al):\(ZHi) (pr’i) e T,1

[ 2]

2055




GG02

NACA TN 2604 o | 87

_rHl
-1
-1 -2 I+ %-mzrz - X v
(ZHi) (pr,i) . .
i

is read from the first graph or table and 1s combined with

2
k(&ez (;_eu_rz
r an t\e E14
and the entropy factor to obtain ®. The value of I is then read from
tables T or II. After the value of '

is read from the second curve or table, the density ratio is obtained.

Hyperbolic Case

In the hyperbolic case, the main problem is the solution of the
following principal equation, written in a common form for the two kinds
of flow surface:

a’y K%y | L 3%y v . N oy |
g2 X 22¥ L3V, w Nav,_, 147
at? v 8%an T 2 a2 at " v 3y (147)

with the initial condition that ¥ and its normal derivative are given
on a curve which is not a characteristic curve. From equation (147),
the equation of the characteristic curve is

J(u%}z-zK(%>'+L=o . (148)

The slopes of the characteristic curves are

d ”
A= (-&-21>1=§—% K2~ JL, . (1492)
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Ay = Qa -—Tgl> = %— + % K2-JL (149b)

The coefficients J, K, L, and yp and the independent variables
1 and § for the eight cases considered are given in the table on the
following page. Using these values of J, K, and L, A] and 1\2 are

also expressed in terms of the velocity components. Except for cases 2,
5, and 8, they can also be expressed in the usual trigonometric form,
tan (X + u). The values of X and p are also given.

Changes of V-derivatives along characteristic curve. - When the
reference point on the nf-plane moves &long the image of the charac-
teristic curve in the mnf-plane corresponding to a small change in ¢,

df, the change in 7 is dn = % df. Because of these two small
changes, the change of any quantity g on the surface is (fig. 12)

_da 4 _ & 3q A
dq_dc dg-ag d§+anvd§ (150)
or
dg _81 , A3q
Eg"a + 95 5 (151)
Hence along A-l
2, Ay o2
a9y _ 33y, M osoay 2%, d1a%y
LS 3L AL T B s " apz T v olem (152)
e av_ 2oy, M s av_ % , Moy (153) -
atam st an v af ag  atan Y 5n2
From equations (152) and (153),
2 Ay A2
oy _ day 1 23%
aton “ A a "V 52 (15¢)
A A |
2 2
% _aoy M oaay _1>a_15
22 Ty aWan N\ on? (185)
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Substituting equations (154) and (155) into equation (147) gives

;4 8y 1 4d 8y 182 8y Noay
T 5t oK - L 4 9V - A
ar 5t * ( JA{) > B * (JAl 2K + 1) = 32 M3F+55m =0
(156)
By virtue of equations (149a) and (149b), equation (156) becomes
aay M2 a ay Ma_mg Naw
—_— = + =0 157a
Ty Wan TTaL T (1572)
Similarly, along tﬁ% second characteristic curve Az,
d ay A oa ey Mav N ay _
...___...+____ = oX =
EHX T Ao T T THE (1570)

Starting from two points a and b a short distance apart on the
initial curve, equations (149a) and (149b) give the tangent to the
characteristic curves at these two points and equations (157a) and
(157b) give the new value of JY/d¢ and Oy/On at the point of inter-
section C of the two tangent lines (fig. 11). The auxiliary equa- -
tions corresponding to the particular problem are then used to deter-
mine other pertinent quantities at the point C. This process is to
be carried step-by-step downstream.

Changes of fluid velocity and direction along characteristic
curve. - When the characteristic curve hits the boundary wall, it is
more convenient to express equations (157a) and (157b) in terms of the
magnitude of the fluid velocity and the flow direction. In order to
do this, the definitions of V-derivatives are first put in a common
form for all cases as

v _

™ bp We r (1s8)
3

5% = - bp W € (159)

where € equals 1 and r for the S and S, surfaces, respectively.
By the use of equation (45),
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d 9 dlnb 1 dn as* ¢1In Wnp ‘dince
X "prTI‘(cK FET STt T i
(160)
d oy _ dinb 1 ¢ ds* dIln¥Wt diInr
Ty - PR T (\ & At & Tt
(161)
Substituting equations (160) and (161) into equation (156) yields
dlnb 1 dn ds*\ A We  diy
(ABWQ‘WH)(T’:M;‘&‘;‘)*(23‘('@@ *
dlnr d ln € N M
AZWCT-WT]T-FWQE—WT)E—-O (162)
Let
Wn=wsinx v
, (163)
WngcosX'
and
2.2 2.2
= wor” 12 2 2y _ wrr® 12 2
h=I+——-3 (wg + WS+ W ) =1+ =— - 3 (we + We )

(164)

where WE is equal to W,, W,., O, Wy, Wy, O, Wy, and W, for cases 1

to 8, respectively. By the use of equations (163), (164), and (144),
equation (162) can be written ‘

l"ﬁ lﬂ+cosx+A2sinXg _l__(_l_Ierzrz §2>
w\g2 df " A, cos X - sin X df 52 df 2 2/

dlnd 1 | X d In€ ) dlnr ds *
at ,+A2‘cosX-sinX%lnx at - A3 cosX at >+d§ +
1 MsinX -~ N cos X _
J Ay cosX - sin X =0 (165)
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A similar expression can be obtained for the éha.nge in w and ¥
along Az by replacing AZ by Al in the preceding equation. For
cases 1, 3, 4, 6, and 7, A can be written as +tan (X & p), where p is

equal to sin~L1 %, through purely trigonometric transformations as

follows:

K *AK2-IL ) W We £ a A’w2—a2

A= = -
hj a2 - W?

sin X cos X + sin p cospy _ sin 2X £ sin 2u

cosz X - Sinz u cos 2X + cos 2u

sin (X+u) cos (X-p) cos (X+u) sin (X-p)
cos (X+u) cos (X-p) °F cos (X+u) cos (X-u)

tan (X+p) or tan (X-p) |

For these cases,‘equation (165) can then be written (compare refer-
ence 30):

1av o ax 2 14 (;, ofr2 Wx

wd§+tanud§+tan.“[-a2d§<]:+ 5 _.2__

dInb  ds* 1 . d 1ln ¢ dIinr\,

& Ta& TEcosX - sim x(smx at - Acos X =47 )+
1 MsinX - N cos X | _ ‘
JACOSX-SinX:l_O (166)

where the minus and plus signs on the second term and subscripts 2
and 1 for A in the last two terms are used along characteristics Al

and A5, respectively. Equations (165) and (166) are most useful when

the characteristic hits the boundary wall. For a direct problem, the
slope there is known from the given blade shape and for an inverse or
design problem, either the desired turning at the boundary or the
velocity on the boundary is prescribed. With either d¥ or dw known,
dw or dX is evaluated from equation (162) or (165) (only one charac-
teristic equation is used at the wall). For convenience of setup in
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calculation, this system can alsc be used for interior points. . Except
that more terms are involved in the present problem and that w takes
different meanings in different cases, the procedure of calculation is
very much the same as ordinary two-dimensional flow described in refer—
ences 32 and 30. : :

CONCLUDING REMARKS

A general theory of steady three- dlmen51onal flow of a nonviscous -
fluid in subsonic and supersonic turbomachines having arbitrary hub and
casing shapes and a finite number of thick blades is presented. The
solution of the three-dimensional direct and inverse problem is
obtained by investigating a combination of flows on relative stream
surfaces whose intersection with a z-plane either upstream of or some-
where inside the blade row form a circular arc or a radial line. The
equations obtained to describe the fluid flow on these stream surfaces
show clearly the several approximations involved in ordinary two-
dimensional treatments. They also lead to a solution of the three-
dimensional problem in a mathematically two-dimensional manner through
an iterative process. The equation of continuity is combined with the
equation of motion in either the tangential or the radial direction
through the use of a stream function defined on the surface, and the
resulting equation is chosen as the principal equation for such flows.
The character of this equation depends on the relative magnitude of
the local velocity of sound and a certain combination of velocity com-
ponents of the fluid. A general method to solve this equation by both
hand and machine computations when the equation is elliptic or hyper-
bolic is described. The theory is applicable to both irrotational and
rotational absolute flow at the inlet of the blade row and to. both
de31gn and off de31gn operations.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 13, 1951
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TABLE I - GENERAL DENSITY TABLE

NACA TN 2604

(a) v =1.4
-2
T-1
- (:-3)
z
1 1 1
Sp 5 z So 5 T So 3 z
0,001 |1.,0005007 0.,99949955 0,056 | 1,0303554 0.97053890 0,111 | 1.0659554¢ |0,93812555
.002 |1,0010027 .99899830 .057| 1,0309453 96998357 .112 | 1.0666704 .93749672
,003 |1.0015061 .99849616 .058 | 1.0315371 96942708 .113 | 1.0673882 93686627
.004 |1.0020109 99799314 .059 | 1.0321307 .96886954 .114 | 1.0681087 .93623430
.005 | 1.0025171 .99748922 .060 | 1,0327263 .96831077 .115 | 1,0688320 93560073
0,006 |1.0030246 0.,99698452 0.061| 1.0333238 0.96775086 0.116 | 1,0695582 }0,93496548
007 | 1.0035335 .99647894 .062| 1.0339232 .96718983 117 | 1.0702883 .93432857
.008 |1,0040438 .99597249 063 | 1.0345246 .96662757 .118 | 1,0710192 »93369008
.009 |[1.0045555 99546516 .064 | 1.0351279 .96606419 .119 [1.0717540 93304993
.010 | 1.0050687 .99495686 .065| 1.0357332 96549961 120 |1.0724918 .93240806
0,011 |1.0055833 0.99444770 0.066 | 1.,0363404 .96493392 0,121 | 1.0732326 0.93176447
.012 | 1.0060993 99393768 .067| 1.0369496 .96436702 122 11.0739763 .93111924
.013 | 1.0066168 .99342669 .068 | 1,0375609 96379885 .123 | 1.0747230 93047232
.014 |1,0071357 .99291486 069 | 1.0381742 96322948 124 |1.0754728 92982361
.015 [1.0076561 .99240207 .070| 1.03878395 96265894 125 | 1.0762256 .92917321
0,016 |1.0081779 0.99188844 0,071 | 1.0394069 0.96208713 0.126 | 1,0769815 |0.92852106
.017 | 1.0087012 99137386 .072| 1.0400263 .96151415 127 | 1.0777405 .927686714
.018 | 1,0092260 .99085834 073 | 1.0406478 .96093991 .128 | 1.0785026 92721149
.019 | 1,0097522 .99034199 L.074 | 1,0412714 96036442 129 [ 1.0792678 92655410
.020 | 1.0102800 .98982460 075 1.0418971 .95978768 .130 | 1.0800362 .92589489
0.021 |1.0108093 0.98930629 0.076 | 1.0425249 0.95920970 0,131 | 1.0808079 0,.,92523380
.022 |1,0113401 .98878706 L.077| 1.0431548 .95863049 .132 | 1.,0815828 .92457092
.023 [1,0118724 .98826690 .078| 1.0437869 .95804996 .133 | 1.0823610 92390616
.024 |1.0124063 .98774573 .079 | 1.0444212 .95746812 134 | 1.0831424 .92323964
025 1 1.0129417 .98722365 .080 | 1.0450576 .935688506 .135 | 1.0839272 .92257118
0.026 |1.0134786 0.98670066 0,081 | 1.0456962 | 0.95630069 .136 { 1,0847153 92190089
.027 [1.0140171 .98617666 .082 | 1.0463370 .95571503 .137 | 1.0855068 .92122868
.028 | 1,0145572 98565167 .083 | 1.0469800 .95512808 .138 | 1.0863017 92055458
.029 | 1.0150989 .98512569 .084 | 1.,0476253 95453976 .139 | 1.0871000 .91987858
.030 | 1.0156421 .98459881 .085 | 1,0482729 95395006 .140 | 1,0879018 91920061
0,031 | 1.0161869 0.98407094 0,086 | 1,0489227 0.95335910 0.141 | 1.0887071 0.91852069
.032 | 1,0167333 .98354210 .087| 1.0495748 .95276678 .142 | 1.0895160 .91783875
033 | 1,0172814 .98301217 .0881 1.,0502292 .95217311 .143 | 1.0903284 91715487
.034 | 1.,0178311 .98248128 .089| 1.0508859 .95157809 144 | 1,0911444 91646898
.035 | 1.0183825 298194932 .090| 1.0515449 .95098174 145 | 1,0919640 .91578111
0.036 | 1.0189354 0.98141649 0.091| 1.0522063 0.95038397 0.146 | 1.,0927873 |0.91509116
.037 11.0194900 .98088260 .092 1.0528701 .94978478 147 | 1.0936143 .91439916
.038 | 1.0200462 98034775 .093| 1.0535362 .94918428 .148 | 1.0944450 91370512
.039 | 1.0206042 97981176 .094| 1.0542048 .94858229 2149 | 1.0952795 .91300896
.040 | 1,0211638 .97927482 .095| 1.0548758 +94797890 .150 | 1.0961178 .91231070
0,041 |1.0217252 0.,97873675 0.096 | 1.0555492 0,94737413 0.151 | 1.0969599 0.91161035
042 | 1.0222882 .97819773 .097| 1.0562251 .94676788 152 | 1.0978058 .91090792
043 | 1.0228530 297765759 .098| 1.0569034 94616026 153 | 1.0986557 .91020326
.044 | 1,0234194 .97711652 .099 | 1.0575842 .94555119 154 | 1,0995095 90949646
,045 | 1.0239876 .97657433 .100| 1.0582675 94494067 .155 | 1.1003674 .90878737
0,046 { 1.0245575 | 0.97603112 0,101 | 1.0589534 0.94432862 0.156 | 1.1012292 |0.90807618
.047 | 1.,0251292 .97548680 .102| 1.0596418 .94371513 .157 | 1.1020950 .90736280
.048 | 1,0257027 297494137 .103 | 1.0603327 .94310022 158 | 1.1029650 90664708
049 | 1.0262780 97439485 104 | 1.0610263 94248371 159 [ 1.1038391 .90592913
.050 | 1,0268550 297384733 .105| 1.0617225 .94186569 160 | 1.,1047174 90520888
0,051 | 1,0274338 | 0.,97329872 0,106 | 1.,0624213 | 0,94124619 0.161 | 1.1055999 0.90448633
.052 | 1,0280145 97274893 .107 | 1.0631227 .94062520 .162 | 1.1064866 90376151
.083 [ 1,0285970 .97219805 .108 | 1.0638268 .94000264 .163 | 1.1073777 90303426
,054 | 1,0291813 97164610 .109 | 1.0645336 .93937852 .164 | 1.1082731 .90230468
,055 | 1.0297674 .97109308 .110| 1,0652431 .93875285 .165{1.1091730 - .90157261
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TABLE I - GENERAL DENSITY TABLE - Continued
(a) ¥ = 1.4 - Concluded
-2
FefeE)
EZ
1 1 ~ 1
S A z 5 5 z 50 3 Z
0.166 | 1.1100772 | 0.90083825 0.221 | 1.1683271 | 0.85592468 0.276] 1.2556050 | 0.79642881
.167 1 1.1109859 -90010143 .222 | 1,1695813 .85500683 «277| 1.2576894 .79510887
.168 | 1.1118991 -89936218 .223 | 1.1708444 .85408445 .278 | 1.2598004 . 79377654
.169 | 1.1128170 89862035 224 | 1.1721164 ,85315759 .279 | 1.2619389 . 79243139
«170 | 1.1137394 .89787611 .225 1 1.,1733975 .85222612 .280 | 1.2641055 .79107321
0.171 | 1.1146665 | 0,89712932 0.226 | 1.1746880 | 0,85128987 0.281| 1.2663012 | 0.78970153
0172 | 1.1155983 .89638000 .227 | 1.1759880 .85034881 .282| 1.2685268 78831602
<173 | 1.1165348 .89562815 .228 | 1.1772974 .84940305 .2831 1.2707833 .78691623
.174 | 1,1174762 89487364 .229 | 1.1786165 . 84845240 .284 | 1,2730715 . 78550184
«175 | 1.1184225 -89411649 .230 | 1,1799455 .84749677 .285| 1.2753927 . 78407223
0.176 |1.,1193737 | 0.89335670 0.231 | 1.1812846 | 0.84653605 0.286 | 1.2777476 | 0.78262718
«177 | 1,1203298 .89259431 T .232 ] 1.1826339 .84557021 .287 | 1.2801376 . 78116602
.178 | 1,1212910 .89182915 .233 | 1.1839935 .84459923 .288 | 1.2825638 .77968831
<179 | 1.1222573 89106126 .234 {1,1853636 84362300 .289 | 1.2850276 . 77819340
.180 | 1,1232287 .89029064 .235 | 1.1867445 .84264136 .290 | 1.2875299 . 77668099
0.181 | 1.1242053 | 0.88951724 0.236 | 1.1881362 | 0.84165435 0.291| 1.2900725 | 0.77515023
.182 | 1.1251871 .88874108 .237 | 1.1895390 .84066180 .292 | 1.2926566 . 77360066
.183 | 1.1261742 .88796209 .238 | 1.1909530 .83966370 0293 | 1.2952840 . 77203146
.184 | 1.1271667 .88718022 .239 | 1.1923785 .83865987 .294 | 1,2979563 . 77044196
2185 | 1.1281647 88639540 .240 |1.1938156 .83765030 .295 | 1.3006755 . 76883127
0,186 | 1,1291681 | 0,88560773 0,241 | 1.1952645 | 0.83663490 0.296 | 1.3034429 | 0.76719893
.187 11.1301771 88481708 .242 | 1.1967255 .83561351 .297 | 1.3062609 . 76554385
.188 | 1,1311917 +88402346 .243 | 1.1981988 .83458605 2298 | 1.3091314 . 76386526
.189 1 1,1322120 88322682 .244 | 1,1996846 .83355242 .299 | 1.3120571 .76216195
2190 | 1,1332381 . 88242709 .245 | 1.2011831 .83251255 .300 | 1.3150400 .76043314
0.191 | 1.1342699 | 0.88162438 0.246 | 1.2026946 | 0,83146628 0.301 | 1.3180832 | 0.75867745
.192 1 1.1353077 .88081848 .247 | 1.2042193 .83041353 .302 | 1.3211890 . 75689398
2193 | 1,1363514 .88000948 .248 | 1,2057574 .82935423 2303 | 1.3243612 . 75508102
.194 1 1.1374012 | .87919724 .249 | 1.2073092 .82828823 2304 | 1.3276021 . 75323774
2195 | 1.1384571 .87838180 | .250 | 1.2088750 .82721539 .305 | 1.3309163 . 75136205
0.196 1 1.1395191 | 0.87756318 0.251 {1,2104551 | 0.82613558 0,306 | 1,3343067 | 0.74945288
2197 1 1.1405873 .87674131 «252 | 1,2120497 .82504868 .307 | 1.3377787 J 74750779
.198 | 1,1416619 .87591607 .253 | 1.2136591 .82395460 .308 | 1.3413356 . 74552558
<199 | 1,1427429 87508748 .254 | 1,2152836 .82285320 .309 | 1.3449840 . 74350327
.200 | 1.1438304 .87425548 .255 | 1.2169235 .82174434 2310 | 1.3487277 . 74143951
0,201 | 1.1449245 | 0.87342004 0.256 | 1.2185792 | 0.82062783 0,311 | 1.3525748 | 0,73933065
.202 | 1.1460252 .87258116 .257 | 1.2202510 .81950353 .312 | 1.3565299 . 73717505
<203 | 1,1471327 |~ .87173873 .258 | 1.2219392 .81837132 2313 | 1.3606032 . 73496814
<204 | 1.1482470 .87089276 .259 | 1,2236442 .81723102 .314 | 1,3648001 . 73270804
<205 | 1.1493681 87004329 .260 | 1,2253663 .81608251 .315 | 1,3691338 . 73038880
0,208 | 1.1504963 | 0,86919011 0.261 | 1.2271059 |0.81492559 0.316 | 1.3736105 | 0.72800841
.207 | 1.1516316 86833324 .262 | 1,2288634 .81376010 L3171 1.3782479 .72555888
2208 | 1.1527741 <86747265 .263 | 1.2306393 .81258578 .318 | 1.3830531 . 72303804
.209 | 1,1539238 .86660835 .264 | 1.2324338 .81140261 .319 | 1.3880508 . T2043473
210 | 1.1550810 -86574015 .265 | 1,2342475 .81021027 2320 | 1.3932489 . 71774684
0.211 | 1.1562457 | 0,86486808 0.266 | 1.2360808 | 0.80900860 0.321 | 1.3986833 | 0.71495813
0212 1 1.1574179 .86399217 .267 | 1.2379342 .80779738 23221 1,4043617 . 71206727
<213 | 1.1585978 86311229 .268 | 1.2398081 .80657644 2323 | 1.4103403 .70904873
.214 1 1.1597855 86222840 .269 | 1.2417032 .80534543 2324 | 1.4166227 . 70590426
+215 | 1,1609811 - 86134046 270 | 1.2436198 80410428 +325 | 1,4233067 70258926
0.216 | 1,1621847 | 0.86044843 0.271 | 1.2455586 | 0.80285263 0.326 | 1,4303770 | 0.69911639
.217 | 1.1633964 | 85955226 .272 | 1.2475200 .80159036 2327 | 1.4380371 .69539235
.218 | 1.1646164 .85865183 .273 | 1.2495048 .80031705 2328 | 1.4461815 .69147614
.219 | 1,1658447 .85774718 0274 | 1.2515134 . 79903260 +329 | 1.4554567 .68706956
.220 | 1.1670816 .85683812 .275 | 1.2535466 . 79773660 .330 | 1.4650468 .68257205
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TABLE I - GENERAL DENSITY TABLE - Continued

NACA TN 2604

(b) ¥ =4/3
.2
P =<1 - 3) I
2 ‘iilllllin"'r'
1 1 6 i
69 ¥ z 69 3 z P F z
0.001 | 1.0005006 |0.99949965 0.056 | 1.0303226 | 0.97056980 0,111 | 1.0657881 [0.93827281
.002 |1.0010026 .99899840 .057 | 1.0309112 .97001565 112 | 1.0664991 .93764730
.003 | 1.0015060 +99849626 .058 | 1.0315016 .96946044 ,113 | 1.0672128 .93702025
004 | 1.,0020107 .99799333 .059 | 1.0320939 96890409 .114 | 1,0679293 .93639158
,005 | 1.0025168 .99748952 .060 | 1.0326880 .96834668 .115 | 1.0686486 .93576130
0,006 |1.0030242 | 0.,99698492 0.061 | 1,0332840 | 0.96778814 0.116 | 1.0693706 10.93512951
.007 | 1,0035330 .99647944 .062 | 1.0338819 96722846 2117 | 1.0700954 .93449612
.008 | 1.0040432 .99597308 .063 | 1.0344817 .96666766 .118 | 1,0708230 .93386115
009 | 1.0045548 99546585 .064 | 1.0350835 .96610563 .119 1 1,0715534 .93322461
.010 [1.0050678 .99495775 .065 | 1,0356872 96554249 120 | 1.0722867 «93258641
0,011 | 1.0055822 0.99444879 0.066 | 1.0362928 0.96497824 0,121 [ 1,0730229 0.93194656
.012 | 1.0080980 .99393896 .067 | 1.0369003 .96441288 .122 11.0737620 .93130508
.013 [ 1.0066152 .99342827 .068 | 1.0375099 .96384622 .123 | 1,0745040 .93066196
.014 | 1.0071339 99291663 .069 [1.0381215 .96327838 .124 | 1.0752489 .93001723
,015 | 1.0076541 299240404 .070 [ 1.0387350 96270945 .125 | 1.0759968 .92937079
0.016 |1.0081756 0.99189070 0.071 | +,0393506 0.96213924 0,126 | 1,0767477 0.92872267
.017 |1.0086985 .99137651 .072 [ 1.0399681 .96156796 .127 1 1,0775017 .92807278
.018 |1.0092230 .99086129 073 | 1.0405876 96099550 .128 | 1.,0782587 92742122
019 | 1.0097490 .99034513 .074 | 1.0412093 .96042169 .129 | 1.0790187 .92676800
.020 | 1.,0102764 .98982813 .075 [ 1.0418331 .95984664 .130 | 1.0797818 .92611304
0.021 | 1.0108053 0.98931021 0.076 | 1.0424589 0.95927043 0.131 | 1.0805481 0,92545626
022 [ 1.0113357 .98879136 077 |1.0430867 95869308 .132 { 1,0813175 .92479776
.023 [1.0118676 -| ,98827159 .078 | 1.0437167 95811440 .133 | 1,0820901 «92413746
.024 |1.0124010 .98775090 079 | 1.0443488 »95753449 .134 | 1,0828659 .92347538
.025 | 1.0129359 .98722930 .080 | 1.0449830 .95695337 .135 | 1.0836449 .92281152
0.026 | 1.0134723 0.98670679 0.081 | 1.0456194 0.95637093 0,136 | 1.,0844271 0.92214590
.027 [1.0140104 .98618318 .082 | 1,0462580 .95578720 2137 | 1.0852126 +92147843
.028 | 1.0145499 .98565876 .083 | 1.0468987 .95520226 .138 | 1.0860015 92080904
.029 | 1.0150910 98513335 .084 1 1.0475416 .95461603 «139 | 1.0867937 92013783
.030 | 1,0156336 .98460705 .085 | 1.0481868 .95402842 .140 | 1,0875893 .91946473
0.031 |1.0161778 .98407975 0.086 | 1.0488341 | 0.,95343963 0,141 }|1,0883882 [0.91878982
.032 [ 1.0167236 .98355148 087 1 1.0494837 95284948 .142 | 1,0891906 .91811295
.033 | 1.0172710 .98302222 .088 { 1.0501355 .95225807 2143 | 1.0899965 «91743414
.034 | 1,0178200 ,98249199 .089 | 1.0507896 .95166530 .144 | 1,0908058 91675347
.035 | 1.0183707 .98196069 .090 | 1.0514460 .95107119 .145 | 1.0916187 .91607079
0.036 | 1.0189229 0.98142853 0.091 | 1.0521047 0.95047575 0,146 | 1,092435]1 0.91538619
2037 | 1.0194767 98089539 .092 | 1.0527657 .949878397 .147 | 1.0932551 .91469960
.038 | 1.0200322 .98036121 2093 | 1.0534290 .94928087 .148 | 1.0940787 .91401103
.039 | 1.0205894 .97982597 094 | 1.0540947 .94868137 .149 | 1,0949059 91332050
.040 | 1.0211482 97928978 095 | 1.0547628 94808046 150 | 1.0957368 .91262792
0.041 |1.0217087 0.97875255 0.096 | 1,0554332 0.94747825 0.151 | 1,0965714 0.,91193332
.042 | 1.0222708 .97821438 .097 | 1.0561061 .94687456 .152 | 1.0974098 .91123662
2043 | 1.0228346 .97767518 .098 | 1.0567813 +94626958 .153 | 1,0982520 .91053784
044 | 1.0234001 . 97713494 .099 | 1.05745380 .94566314 154 | 1,0990979 +90983706
4045 | 1.0239673 .97659369 .100 | 1.0581391 »94505533 .155 | 1,0999477 .90913413
0.046 |1.0245363 0,97605131 0.101 | 1.0588217 0.94444608 0,156 | 1.1008014 0.90842908
.047 | 1,0251070 .97550792 .102 | 1,0595068 94383538 157 | 1,1016591 90772182
,048 | 1.0256794 97496352 .103 | 1.0601944 94322324 .158 | 1.,1025207 90701245
.049 | 1.0262536 .97441802 .104 | 1,0608846 .94260959 .159 | 1,1033863 90630090
.050 | 1.0268295 .97387151 .105 | 1.0615773 .94199452 2160 | 1.1042559 .90558719
0.051 |1.0274072 0.97332392 0.106 | 1.0622726 0.94137795 0.161 | 1,1051296 0,90487125
.052 | 1.0279867 .97277523 .107 [ 1.0629704 .94075997 .162 | 1,1060074 .90415308
.053 | 1.0285679 .97222556 ,108 [ 1.0636709 .94014041 .163 | 1,1068894 .90343263
.054 11.0291510 97167471 2109 | 1.0643740 +93951938 .164 | 1,1077756 .90270990
2055 11.0297359 .97112279 .110 | 1.,0650797 .93889687 .165 | 1,1086660 .90198491
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TABIE I - GENERAL DENSITY TABLE - Conclutied
(v) ¥ = 4/3 - Concluded
.2
T-1
pg (1 - 59.) T
8¢ L s 60 B b2 69 L b5
£ 3 3 ,
0.1668 | 1.1095607 0,90125759 0.22] | 1.1669283 0.85695068 0.278 | 1.2514571 0.79906854
167 | 1.1104597 .900527395 .222 | 1,1681568 .85604946 277 | 1.2534457 » 79780081 |
.168| 1.1113630 .89979602 «223 | 1,1693937 .85514399% .278 { 1.2554579 . 79652213
169 1.1122708 .89906163 224 | 1.1706391 .85423424 279 | 1.2574944 . 79523217
.170| 1.1131830 .89832489 ?225 1.1718931 .85332015 .280 | 1.,2595556 . 79393081
0,171 | 1.1140997 0.89758574 0.226 | 1.1731558 0.85240170 0.281 | 1.2616424 0.,79261782
.172 | 1.1150210 89684410 .227 | 1,1744273 .85147884 .282 | 1.2637555 . 79129230
L1731 1.1159468 .89610006 .228 | 1,1757079 85055140 .283 | 1,2658957 278995450
«174 1.1168773 »89535350 .229 | 1.1769977 .84961933 .284 | 1.2680636 . 78860398 N
.175 1,1178125 .89460442 230 | 1.1782966 .84868275 285 | 1,2702602 278724028
0,176} 1.1187524 0.89385283 0.231 | 1.1726049 084774148 0,286 | 1.2724861 0.78586320
o177 1.1196871 89309868 232 | 1.1809228 +84673540 .287 | 1,2747424 278447222
.178| 1.1206466 .89234197 233 | 1,1822504 .84584450 .288 | 1,2770299 . 78306702
.179 | 1.1216010 .89158266 «234 | 1,1835879 .84488866 .289 | 1,2793498 . 78164705
.180 | 1.1225603 .89082074 2235 1 1.1849354 84392786 .290 | 1.2817028 . 78021207
(0,181 | 1.1235246 0.89005617 0,236 | 1.1862930 0.84296207 0,291 | 1.2840902 0.77876149
.182 | 1.1244940 .88928887 .237 | 1,1876610 .84199111 2292 [ 1.,2865130 77729490
.183 | 1.1254685 88851887 .238 | 1.1890394 .84101502 .293 | 1,2889726 .77581168
184 | 1.1264481 .88774618 239 | 1,1904285 84003365 .294  1,2914700 . 77431144
.185| 1.1274329 .88697075 .240 | 1,1918285 83904689 .295 | 1.,2940068 .77279347
0.186 | 1.1284230 0.88619250 0.241 | 1.1932395 0.83805472 0.296 | 1.2965843 0.77125722
.187 | 1.1294184 .88541146 242 | 1.1946617 83705705 2297 | 1,2992041 . 76970200
.188 | 1.1304192 .88462758 243 | 1,1960954 83605371 .298 | 1.3018675 . 76812732
.189 1 1.1314255 .88384078 244 | 1,1975408 .83504476 .299 | 1,3045765 . 76653228 [
.190 | 1.,1324372 .88305117 .245 | 1.1989976 .83403003 .300 | 1.3073325 . 76491635
0,191 | 1.1334545 0,88225862 0.246 | 1.2004666 0,83300943 0.301 | 1.3101379 0.768327843
2192 1.1344774 88146313 .247 | 1,2019473 .83198282 ,302 | 1,3129943 . 76161793
193 | 1,1355061 88066458 ,248 | 1,2034416 83095017 .303 | 1,3159043 . 75993368
»194 | 1.,1365405 .87986306 249 | 1.2049480 .82991133 .304 | 1.3188697 . 75822502
.195| 1.,1375807 .87905851 250 | 1.2064673 .82886623 .305 | 1,3218935 . 75649059
0,196 | 1.1386269 0,87825081 0,251 | 1.2079997 0.82781478 0.306 | 1.3242779 0,75472957
.197| 1.1396790 . 87744005 .252 | 1.2095455 +82675683 .307 | 1.3281263 . 75294044
198 | 1.1407372 87662610 .253 | 1.2111050 .82569224 .308 | 1.3313412 75112225
.199 | 1.1418015 87580897 .254 | 1,2126783 .82462101 309 | 1.3346266 . 74927324
.200 | 1.1428719 .87498870 ,255 | 1,2142658 82354292 310 | 1.3379854 74739231
0.201 | 1.1439486 0,87416515 0,256 | 1.,2158677 0.82245730 0.311 | 1.3414224 0,74547734
.202| 1.1450317 87333827 257 | 1,2174844 .82136576 2312 | 1.3449408 . 74352715
.203 | 1,1461212 87250807 258 { 1,2191161 82026642 2313 | 1.3485465 . 74153913
2204 | 1,1472172 87167452 259 | 1.,2207632 .81915969 2314 | 1.3522432 273951195
205 | 1.1483197 .87083762 2260 | 1.2224259 .81804548 315 | 1,3560384 73744224
0,206 |. 1.,1494289 0.86999727 0.261 | 1,2241045 0.81692372 0,316 | 1.3599361 0,73532867
,207 | 1.1505449 .86915332 262 | 1,2257994 .81579417 0317 | 1.3639457 273316702
.208 | 1.1516677 .86830602 .263 | 1.2275110 .81485665 .318 | 1.3680720 . 73095568
.209 | 1.1527975 86745504 .264 | 1,2292396 .81351105 .319 | 1,3723269 . 72868935
210 | 1.1539342 886680054 .265 | 1.2309855 81235725 .320 | 1.3767161 . 72636617
0,211 | 1.1550780 0.86574240 0.266 | 1.2327492 0.81119501 0,321 | 1.3812551 0.72397923
.212| 1,1562290 . 86488057 267 | 1.2345310 .81002421 .322 | 1.3859506 72152644
.213| 1.1573873 .86401501 .268 | 1.2363314 80884462 .323 | 1,3908236 . 71899844
.214 | 1.1585530 86314567 269 | 1.,2381508 .80765606 .324 | 1.3958818 . 716839304
.,215| 1.1597262 .86227249 270 | 1.2399896 80645838 ,325| 1,4011550 271369691
0,216} 1.1609069 Ou8613955é 0,271 | 1.2418483 0.80525133 0,328 | 1.4066513 0,71090824
217 | 1.,1620953 .86051462 .272 | 1.2437273 80403478 ,327 | 1.4124156 . 70800691
.218 | 1.1632916 85962969 273 | 1.,2456273 .80280835 328 | 1.4184546 » 70499260
,219| 1.1644958 .85874075 274 1 1,2475485 .80157204 .329 | 1.,4248420 .70183220
,220 | 1,1657080 .857847786 275 | 1.2494916 ©.80032551 ,330 | 1.4315749 69853139
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Figure 3. - Intersecting S; and S5 surfaces in a blade row.
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Figure 4. - Mean stream surfaces for axial-flow gas turbine.
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Figure 5. - Mean stream surfaces for inlet stage of axial-flow compressor.
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(a) Single-stage
turbine.

P

(b) Two-stage turbine. v (c) Seven-stage axlal-flow compreésor.

(a) Axial;discharge

mixed-flow impeller. .

- - - - zZ

(e) Radial-discharge (£) Centrifugal
mixed-flow impeller. compressor.

Figure 6. -~ Axial-, radial-, and mixed-flow turbomachines.
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(a) S; surface with ¢ and 2z as (v) S; surface with r and @ as
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(¢) 85 surface with r and z as
independent variables.

Figure 7. - Elements of stream sheet.
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Figure 8. - Orthogonal coordinates ‘for surface of revolution.
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Figure 9. - Relation between mean stream surface and
blade surfaces.
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Figure 10. - Grid system and

boundary conditions for general Sl surface
(elliptic case).
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Figure 12, - Characteristic system for hyperbolic -case,
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