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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2604 

A GENERAL THEORY OF THREE-DIMENSIONAL FLOW IN 

SUBSONIC AND SUPERSONIC TURBOMACHINES OF 

AXIAL-, RADIAL-/ AND MIXED-FLOW TYPES 

By Chung-Hua Wu 

SUMMARY 

A general theory of steady three-dimensional flow of a nonviscous 
fluid in subsonic and supersonic turbomachines having arbitrary hub and 
casing shapes and a finite number of blades is presented. The solution 
of the three-dimensional direct and inverse problem is obtained by 
investigating an appropriate combination of flows on relative stream 
surfaces whose intersections with a z-plane either upstream of or some- 
where inside the blade row form a circular arc or a radial line. The 
equations obtained to describe the fluid flow on these stream surfaces 
show clearly the several approximations involved in ordinary two- 
dimensional treatments. They also lead to a solution of the three- 
dimensional problem in a mathematically two-dimensional manner through 
iteration. The equation of continuity is combined with the equation of 
motion in either the tangential or the radial direction through the use 
of a stream function defined on the surface,, and the resulting equation 
is chosen as the principal equation for such flows. The character of 
this equation depends on the relative magnitude of the local velocity of 
sound and a certain combination of velocity components of the fluid. A 
general method to solve this equation by both hand and high-speed 
digital machine computations when the equation is elliptic or hyperbolic 
is described. The theory is applicable to both irrotational and rota- 
tional absolute flow at the inlet of the blade row and at both design 
and off-design operations. 

INTRODUCTION 

The problem of three-dimensional flow in turbomachines of axial-, 
radial-, and mixed-flow types is treated in references 1 to 19. Because 
of the enormous mathematical difficulties involved in the problem, Lorenz 
(reference l) first introduced the idea of an infinite number of blades 
of infinitesimal thickness in order to follow the flow on a given surface. 
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Bauersfeld (reference 2) added to the theory the condition of integra- 
bility for the blade surface that must he satisfied in the inverse, or       * 
design, problem. The theory is further clarified and strengthened by 
the works of Stodola (reference 3), von Mises (reference 4), and Dreyfus 
(reference 5), and is the basis of many recent investigations on axial-, 
radial-, and mixed-flow compressors and turbines. 

For incompressible flow, Ruden (reference 6) proves that the g 
through-flow solution obtained under the assumption of an infinite num-       ^ 
ber of blades gives a circumferentially average value of the fluid prop- 
erties, provided the deviations of the fluid properties from their cir- 
cumferential averages are small. In reference 7, Traupel points out the 
oscillatory nature of radial flow in a multistage turbomachine and gives 
solutions of the three-dimensional potential flow through inclined 
stationary blades and also of the rotational flow through a homogeneous 
stage of identical nontwisted blades for an incompressible fluid and an 
infinite number of blades bounded by cylindircal walls. Meyer gives a 
detailed treatment of three-dimensional potential flow in a stationary 
blade row, for an incompressible fluid and cylindrical bounding wall, 
in reference 8, where the solution for an infinite number of blades is 
extended to a finite number of blades by the vortex-and-source method of 
Ackeret, which is originally given for two-dimensional flow (reference 9). 
In reference 10, a linearized solution for an incompressible fluid and an 
infinite number of blades for a prescribed loading and cylindrical 
bounding walls is obtained by Marble, and is used later to investigate 
the problem of mutual interference of adjacent blade rows and off- 
design operations (reference ll). Siestrunck and Fabri (reference 12) 
also obtained a linearized solution for incompressible flow, and the * 
method is extended to compressible flow. For general wall shapes, 
Spannhake (reference 13) examines the flow through diffuser and impeller 
by the use of bound vortices for blades.  The incompressible through 
flow in a mixed-flow impeller is treated by Gravolos (reference 14). 
In reference 15, Wislicenus examines the influence on the meridional 
flow of the blade force and nonuniform circulation along the blade span. 

For compressible flow, Reissner (reference 16) gives a blade-design 
method in which the extension from an infinite number of blades to a 
finite number of blades is accomplished by the use of a power series in 
the circumferential direction, and the terms in the series are deter- 
mined by a comparison of the equations for an infinite number of blades 
and a finite number of blades,  (in reference 5, Dreyfus gives a method 
of designing water turbines of thin blades, in which the solution for 
an infinite number of blades is extended to a finite number of blades by 
the use of a power series, the second term of which is determined from 
the equations of continuity and irrotational absolute flow and is 
explicitly given.) In reference 17 the compressible flow problems in 
axial turbomachines having an infinite number of blades are treated, and 
both the direct and inverse problems' are considered. Methods for 
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limiting solutions for zero and infinite blade-row aspect ratios and a 
step-by-step method of solution, as well as a simpler method based on an 
approximate knowledge of the shape of the streamline, for a finite blade- 
row aspect ratio are given.  Unaware of the work of Traupel at the time, 
the authors of reference 17 also emphasized the oscillatory nature of 
radial flow in multistage machines and suggested the use of a simple 
sinusoidal form of the streamline as a first approximate solution. Their 
methods are derived for compressible flow, however, and are also extended 
to the case where both the hub and casing walls or either is tapered. 
Reference 18. gives a general through-flow theory for both direct and 
inverse problems and for subsonic or supersonic flow in turbomachines 
having arbitrary hub and casing shapes. The supersonic through flow in 
rotating impellers having a prescribed flow along the casing and pre- 
scribed blade shapes is treated in reference 19. 

A general theory of three-dimensional flow in subsonic and super- 
sonic turbomachines of axial-, radial-, and mixed-flow types for a 
finite number of thick blades of finite thickness has been developed at 
the NACA Lewis laboratory and is presented herein. Both the direct and 
inverse problems are considered. The theory is applicable to either 
irrotational or rotational absolute flow at the inlet of a blade row 
and to both design and off-design operations. 

In the section BASIC AEROTHERMODYNAMIC RELATIONS, the motion and 
energy equations for the unsteady flow of a nonviscous compressible fluid 
in a rotating blade row are expressed in terms of the velocity components 
and of two basic thermodynamic properties of the fluid, namely, entropy 
and a modified total enthalpy for flow in rotating blade rows with change 
in radial distance from the machine axis. Estimated entropy changes due 
to shock waves (in the case of supersonic flow), heat transfer (in the 
case of a cooled turbine), or viscous effect can be easily accomodated 
in the calculation. The equations obtained show clearly the condition 
under which the flow through blade rows can be treated on the basis, of 
irrotational absolute flow. 

In the following section, a general potential equation is obtained 
for steady three-dimensional compressible flow through rotating or 
stationary blade rows when the absolute flow can be taken as irrota- 
tional. The methods of solution for both subsonic and supersonic flows 
are briefly discussed. 

A simpler method of solving the three-dimensional irrotational 
(absolute) flow, which is also applicable to rotational'(absolute) flow, 
is obtained'by considering fluid flows on a number of relative stream 
surfaces whose intersection with a z-plane either upstream of or some- 
where in the blade row form a circular arc or a radial line. Equations 
governing the flow on these surfaces are obtained in the next four sec- 
tions. Through the use of a stream function defined on the stream 
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surface, the equations of continuity and motion for fluid flow on these      „ 
surfaces are combined into one principal equation. The character of the 
principal equation is dependent on the relative magnitude of the local 
velocity of sound and a certain combination of velocity components. 

/in 
The process involved in solving the direct and inverse problems by       g 

this approach is described in the section STEPS FOR COMPLETE SOLUTIONS        ^ 
OF THREE-DIMENSIONAL DIRECT AND INVERSE PROBLEMS. In the inverse prob- 
lem, besides the blade-thickness distribution determined by blade 
strength and other considerations, either the tangential velocity, a 
relation between the tangential and axial velocity, or one other rela- 
tion is prescribed on a mean stream surface about midway between two 
blades. The last section gives a general method of solution of the 
principal equation when it is elliptic or hyperbolic. 

SYMBOLS 

The following symbols are used in this report: 

a velocity of sound 

B,b       integrating factor for continuity equation for S2 and Si 
surfaces, respectively 

TaBx. differentiation coefficient used to multiply function value 
at point j to give the m**1 derivative at point i based 
on n*" degree polynomial 

C,c       nonzero term on right-hand side of continuity equation for 
Sg and S^ surfaces, respectively 

Cp,cv      specific heat of gas at constant pressure and volume, 
respectively 

=rr        differentiation with respect to time following relative 
motion of fluid particle 

L^q       m  derivative of q 

F,f       vectors having the unit of force per unit mass of fluid 

G,g       given function of Wu/wz on S2 

H total enthalpy per unit mass of fluid, h + ^V 

h static enthalpy per unit mass of fluid,  u + p/p 
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I         modified total enthalpy for flow in rotating blade row with 
change in radial distance from machine axis, 

h + |w - 2 üßr2    or H - a>( Vur) 

<J.,K,L,M.,N  coefficients of first- and second-order derivatives in the 
. principal equation 

k        thermal conductivity 
co 
o 
oi      L distance along streamline 

i Z,Cp       orthogonal coordinates on surface of revolution 

M mass flow between mean stream surface and one surface of 
"blade 

N number of blades 

n unit vector normal to relative stream surface S 

p static pressure 

Q heat added to fluid particle along its path per unit mass 
per unit time 

q. any quantity on relative stream surface S 

R gas constant 

mR1       remainder term of mr*1 derivative at point i obtained by 
using h^k degree polynomial 

r radius vector 

S"L        relative stream surface passing through fluid particles 
lying on a circular arc upstream of or midway in blade 
row 

Sg        relative stream surface passing through fluid particles 
lying on a radial or curved line upstream of or midway in 
blade row 

s entropy per unit mass 

s *        s/R 

T static temperature 
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t time . 

U velocity vector of blade element at radius r 

u interval energy per unit mass 

V absolute velocity of fluid 
CO 
o 

W     velocity of fluid relative to blade, V - U oi 

v W + w^2 

x,y   independent variables 

z distance along turbomachine axis 

lWu a    arc tan 
r Wz 

X ratio of specific heats 

If average value of T for the temperature range involved 

6 grid spacing 

e equal to 1 and ,r for S-,  and Sg surfaces, respectively 

£     independent variable z or r for S^ surface and z for 
Sg surface 

T)     independent variable cp and r for S]_ and Sg surfaces, 
respectively 

8     angular distance of fluid particle measured with respect to 
stationary radial line 

A    slope of characteristic curves, u -r3- 

X    tan a 

. a u. arc sin — ^ w 

V equal to r and 1 for S]_ and Sg surfaces, respectively 

£     absolute vorticity, Vx V 

p     fluid density 
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2     generalized variable used for general density table 

a angle between tangent of streamline or boundary wall in the 
meridional plane and axial direction 

T     radial, axial, or angular thickness of stream sheet 

$     velocity potential 
M ■   .   .. 

oi       t> generalized variable used for general density table 

cp    angular distance of fluid particle measured with respect to 
radial line on rotating blade 

X    angle between w and axial direction 

TJf,\|r  stream functions defined on relative stream surfaces S2 
and S

1J 
respectively 

0> angular velocity of blade 

Subscripts: 

c     casing 

e     exit 

•      h hub 

i inlet 

I meridional component 

m mean stream surface 

0 lower limit of integration 

r,u,z radial, circumferential, and axial components 

s isentropic 

T total state 

f\>£ components in T)- and "{;-direction, respectively 

1 on S-[_, or in front of rotor 

2 on S2,  or behind rotor 
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Superscripts: 

a,b; . . . k  refer to points a,b, . . . k, respectively 

BASIC AEROTBERMODYNAMIC RELATIONS1 

The three-dimensional flow of a nonviscous, compressible fluid g 
through a turbomachine is governed by the following set of basic laws 
of aerothermodynamics. From the principle of conservation of matter, 
the equation of continuity is 

|£+v.(Pw)=o (1) 

or 

V.W + 2-g-E-0 (la) 

For a blade rotating at a constant angular velocity co  about the 
z-axis, Newton's second law of motion gives 

2£-o>2r + 2u,xW *= - iVP (2) Dt p 

Because the boundary walls are surfaces of revolution and the relative 
flow can be approximated as being steady in many cases, it is convenient 
to use a relative cylindrical coordinate system r, cp, and z  with 
cp measured with respect to the rotating blade (see fig. 1). By use of 

the scalar forms of the equation of motion (2) in the axial, circum- 
ferential, and radial directions can be expressed as 

ÖWr     oW   Wu dWr    o¥r  Wu
2  j, 1 dp /  x 

öWu     ÖWU  Wu ÖWU     oW   WrWu ! öp 

5F + WrS- + 7^- + WZ3r + — +Mr=-^^   (2b) 

•   öwz öwz    wuöwz öwz        lö 
5_ + Wr5_ + _s_ + Wz^  3j (2c) 

^ome of the relations given in this section have been given in refer- 
ence 18. They are repeated here for completeness and easy reference 
for the following developments. 

to 
Ü1 
oi 
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The first law of thermodynamics may be written 

DH + p Dtp'
1) . a (5) 

Dt  P  Dt    ^ ^ 

where u is related to the temperature T by 

du = cv dT (4) 

and Q is given by the following equation if only conduction is 
considered: 

Q » p"1 V.(kVT) (5) 

For the ranges of temperature and pressure encountered in ordinary 
turbomachines, p, p, and T of the gas are accurately related by the 
following equation of state: 

p = R pT (6) 

Although the flow of the gas through the turbomachine is completely 
defined by the preceding equations together with the known variations of 
cv and Is.   with temperature and the given boundary and initial condi- 
tions, it is found more convenient in references 17 and 18 to express 
the state of the gas in terms of the entropy and the total enthalpy or 
a quantity I of the gas, besides its velocity components. These 
quantities are defined as follows: 

T ds = du + p  d(p_1) (7) 

H = h + i V2 (8) 

I = h + iw2-|u2 = H- cü(Vur) (9) 

and • 

h » u + pp-1 (10) 

From equations  (10),   (4),   and (6)   is  obtained 

dh =  (cv+R)   dT =  cp dT « Ö_ dl (11) 

where y" is equal to cp/cv and is a function of temperature. Another 

expression for dh is obtained by using equations (10) and (7), so that 

dh = ^ + T ds (11a) 



10 NACA TW 2604 

By the use of equations (7), (4), and (6), 

and 

d(|) = ^ d In T - d In p (12a) 

can be obtained, and the equation of continuity can be -written 

r-i Dt   Dt R  u *• ' 

Equation (13) can be expressed in a slightly different form. From the 
definition of the local velocity of sound (reference 20), 

*2 - (l)s <"> 
By the use of equations (12) and (6), 

a2 = x - -  rRT (14a) 

Substituting this relation into equations (12a) and (13), with the use of 
equation (ll), results in 

d In p = % - d | (12b) 

and. 

From equations   (9)   and (lla), 

-VP + ivw2  - cn2r  =VI  - Tys 
P 2 

The equation of motion (2) can then be written 

^ - WX(VXW) + 2ü/XW = - VI + Tys (15) 

An alternative form of equation (15), which involves the vorticity of 
the absolute motion, is obtained as follows: With the z-axis parallel 
to (i), 

c a 
a 
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hence 

But 

therefore 

V = W + tt»x r 

V X V =VXW +VX(wX r) 

(16) 

(17) 

Vx(o)Xr) = (r-v) tu -(w«v) r + w(v« r) - r(vo>) = 2w 

VX V = VXW + 2a> (17a) 

This relation can also be seen from the following expressions of rela- 
tive and absolute vorticity expressed in terms of the rotating and 
stationary cylindrical coordinates r, cp> z and r, 0,  z,  respectively: 

""N 

(vxW)u = 3F-- 
o¥z 

3r~ 

1 a(wur) 
^VXW)Z = r-^r- 

1 <^r 
r Hep- J 

(7 XV)     -±       * 
*         yr      r 00 " dz 

\ 

(VXV)u=o^- dr 

,     ■               v                     1     Ö(VUr) 
vxvL = £    A *         ' z      r      or 

1 övr 
" r 30~ i 

(18) 

(19) 

and the relation 

S(Vur)  d(wur) 
+ 2üDT 

5r     5r 

Using equation (17a) results in the alternative form of equation (15) 

ÖW 
3t - WX(VX V) » -VI + T7s (15a) 
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By use of equations (2), (9), and (lla), „■ 

■
I^ + f^*«Vr-a.X«)-U.^.Tgti||  (20) 

CO 
o 

It may "be emphasized that the preceding equation is a consequence        yj 
of the equation of motion (2) and the thermodynamic relations (4), (6), 
(7), and (10). For steady relative flow, the rate of change of I 
along the streamline is seen to be proportional to the rate of change 
of entropy along the streamline. 

The energy equation (3) can be used to express the rate of change 
of entropy along the streamline by the use of equation (7) as follows: 

Q-T* (21) 

The preceding equations lead to several important general consider- 
ations:  If the blade rows are not placed too close together and no 
trailing vortices are shed from preceding blade1 rows (or where these 
effects can be neglected), the fluid properties at a fixed point rela- 
tive to the blade can be taken as constant with respect to time. Con- 
sequently, according to equations (20) and (21), the quantities s and 
I of the gas remain constant along the streamline for adiabatic flow. 
The invariancy of I means that the rate of change in total enthalpy 
along the streamline is equal to the angular speed of the blade multi- 
plied by the rate of change in angular momentum (about the machine axis) 
of the fluid particle along its streamline, which is the well-known 
Euler turbine equation usually derived under less general conditions. 
In a cooled turbine where the heat transfer may be large, the rate of 
change of s and I along the streamline can be corrected by equa- 
tion (21) for an estimated value of Q. Again, for steady relative flow, 
equation (15a) shows that either when gradient I and gradient s both 
vanish or when the difference between VI and TVs vanishes, the 
absolute vorticity either vanishes or is parallel to the relative 
velocity. 

For the flow through a stationary blade row a> = 0, W becomes V , 
I becomes H, and equation (l5a) becomes 

^-VX(VXV) a -VH + TVs (15b) 

which agrees with similar relations previously obtained by Vazsonyi 
(reference 21) and Hicks, Guenther, and Wasserman (reference 22). It 
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is interesting to see that, for relative flow in a rotating "blade row, 
VX(yXV) "becomes WX(vXV) and H "becomes I. 

If it is assumed that the fluid enters the inlet guide vanes of a 
turbomachine with uniform H and s and zero vorticity and that the 
flow is adiabatic,  s does not vary in the inlet guide Vanes and p 
is then a function of only p, according to equation (12). Conse- 
quently, "by virtue of Kelvin's circulation theorem, the absolute vor- 
ticity will remain zero in passing through the inlet guide vanes and the 
flow in the inlet guide vanes can be treated on the basis of irrota- 

tf\ tional absolute flow. 

If the guide vanes impart a radial variation of tangential velocity 
of the fluid in a z-plane downstream of the vanes similar to that in a 
potential vortex, that is, inversely proportional to the radius, the 
circulation is constant along the blade span and the fluid maintains a 
uniform s and H and a zero vorticity of absolute flow entering the 
following rotor-blade row. If the rotor-blade row is situated far away 
from the inlet guide vanes, the fluid enters the rotor with a uniform 
I 'in the circumferential direction, as well as in the radial direction, 
and the flow through the rotor blades can again be treated on the basis 
of zero absolute vorticity and steady relative flow. If the rotor is 
close to the guide vanes, however, vortices are shed from the inlet 
guide vanes because of periodic variation in circulation caused by 
unsteady flow, and the flow downstream of the stator and through the 
rotor blades should theoretically be treated on the basis of rotational 
flow. 

If the guide vanes impart a radial variation of tangential velocity 
of the fluid at a z-plane downstream of the vanes not inversely propor- 
tional to the radius, the circulation varies along the span of the guide 
vanes, vortices are shed from the trailing edge to the fluids downstream 
in the direction of the exit velocity, and the fluid enters the follow- 
ing rotor blades with a uniform s and H but a nonuniform I and a 
nonzero value of absolute vorticity. Consequently, the flow through the 
rotor-blade row can no longer be treated on the basis of zero absolute 
vorticity, even if it is far apart from the preceding guide vanes. 

From the preceding discussion, the choice of s and H or I 
as the two basic thermodynamic variables of the gas besides its veloc- 
ity components is apparent. Compressor and turbine rotors are usually 
designed to impart or subtract the same amount of energy to or from the 
gas radially:; hence H is usually radially constant throughout the 
machine if the inlet flow is uniform (except in the boundary layer along 
hub and casing walls). If the circumferential velocity of the gas 
upstream of the blade row is zero or varies inversely with radius,  I 
is then constant throughout the machine. These facts will be utilized 
in the following developments. 
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POTENTIAL EQUATION FOR THREE-DIMENSIONAL FLOW THROUGH 

ROTATING BLADE ROW 

Consider first the special case of steady relative flow where the 
fluid upstream of the blade row is free of vorticity and is uniform in 
I and s. The adiabatic flow through the blade row is then relatively 
steady and absolutely irrotational and is most conveniently treated by 
the use of a velocity potential $ based on the zero absolute vorticity 
and related to the relative velocity components through equation (16) as 
follows; 

o 
Ol 

d$ -\ 
37 - Vr " ¥r 

1 d$  „   TT  , 
F^p= Vua Wu + üir 

d$ 

(22) 

For steady isentropic flow, the continuity equation (13a) becomes 

1 ^Wjj)   1 ÖWu  ÖWZ   ! /  öh  Wu öh     öh\ 
 3  + - SZT + T— + -5- IW-p -$- + — -vri+ Wr, -$-) = 0 (23) r      ör r öcp        dz        a2 \ r dr       r   dcp       z dz/ v     ' 

From equations (9) and (22), 

I + o 
dS>      1 £* B?) + ^ 35J + 

dh 
d7 

dcp     2 

d2^      Wu d2<J>       Vu
2 

^57 + d2$ 
r   drdcp        r z dzd: 

(24) 

(25a) 

1 dh =      far d2$        ^ c^$     ^z d2$ N 

r d~cp \r   drdcp+    2 ->  2 +   r   dcpdz. 
(25b) 

Oh a2$ Wu d2$ M d $ 
B^ 

ä
 ■ \^r d^5?+ — 3^+ Wz ^/ 

(25c) 

By the use of equations (22) and (25a) to (25c), the continuity equa- 
tion (23) may be written 
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\      a2 / Or2 

9 
wrwu 1 ö2$ wuwz 1 ö2$        ^r ö2$       i /i  4. ILJ 

ö$     n 
~^2~ r oro^> "      a2    r o^z" "      a2    5z5r      r   \^ + a2 / or ~ U 

(26) 

Equation (26) is then the three-dimensional potential equation for 
isentropic flow in a rotating blade row.  It is seen from this equation 
and equation (16) that the three-dimensional flow through a rotating 
blade row cannot be treated by a three-dimensional flow through a sim- 
ilar stationary blade row with the same inlet condition relative to the 
blade row, as in the case of two-dimensional flow on a cylindrical sur- 
face, because the difference between the absolute and relative vorticity 
2w does not enter into the two-dimensional flow on a cylindrical surface 
but does enter into the three-dimensional case. 

Equation (26) is very similar to the ordinary three-dimensional 
potential equation for flow past stationary objects,, except that both 
relative and absolute velocity components are involved in the coeffi- 
cients of $ derivatives and that $ is directly defined by the abso- 
lute velocity. The real difficulty in solving this equation lies in 
the fact that all the velocity components change greatly in passing 
through a turbomachine and, consequently, the equation cannot be lin- 
earized and yet give a good approximate answer. For supersonic relative 
velocity, the method of characteristic surfaces (references 23 and 24) 
may be used to solve equation (26), with the initial conditions not 
given on a characteristic surface. For subsonic relative flow, the 
equation is more conveniently written in the form 

^® + l^+±.^l+-t®, + w   a ^ P + ^ a ^ P + w   a fr1 P = 0 
ör2 + r■ 3F + r2 ^2 + öz2 + Wr      dr      +   r        öcp     + Wz      dz U 

(26a) 

and can be solved by Southwell's relaxation method (reference 25) or 
other numerical methods using the differentiation formulas obtained in 
reference 26 to take care of the unequal grid spacings near the blade 
surfaces and the curved hub and casing walls. The last three terms in 
equation (26) are computed from the $ values or velocities obtained 
in the previous cycle and kept as constants during each improvement of 
$ values, and the whole process is repeated until the desired accuracy 
is obtained. Because a three-dimensional stream function cannot be 
defined, the use of velocity potential results in a boundary-value prob- 
lem of the second kind, which is more difficult to handle in the calcu- 
lation than the first kind. The boundary condition to be satisfied is 
that the relative velocity normal to the moving blade is zero, or 
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Wr nr + Wu nu +-WZ nz « 0 (27) 

where n is the unit normal vector at the boundary surface, and that, 
at inlet and exit stations fai 
parallel to the bounding hub E 
the axial machine, means that 

at inlet and exit stations far away from the blade, the velocity is in 
parallel to the bounding hub and casing walls, which, in the case of o 

Vr = |^= 0 at z m  ±» (27a) 

In both the subsonic and supersonic cases, the solution is 
extremely time-consuming. Furthermore, this direct approach to the 
three-dimensional problem requires that the absolute velocity at the 
inlet to the blade row be Irrotational and the flow be adiabatic. In 
actual machines, the flow entering the blade rows is always rota- 
tional, which is caused by a nonuniform total enthalpy and entropy at 
the inlet of the machine, by entropy change caused by shock waves or 
heat transfer, or by the effect of boundary layers.along the hub and 
casing walls. Some other approach to the problem, which is simpler to 
handle and is also applicable to rotational inlet flow, is therefore 
desirable. One approach is suggested in the following sections. 

FOLLOWING FLUID FLOW ON RELATIVE STREAM SURFACES 

In order to solve the steady three-dimensional flow, with either an 
irrotational or rotational absolute flow at the inlet, in a relatively 
simple manner, an approach is taken to obtain the three-dimensional 
solution by an appropriate combination of mathematically two-dimensional 
flows on essentially two different kinds of relative stream surface 
(figs. 1 to 3). The first kind of relative stream surface is one whose 
intersection with a z-plane' either upstream of the blade row or midway 
in the blade row forms a circular arc (fig. l). The second kind of 
relative stream surface is one whose intersection with a z-plane either 
upstream of the blade row or somewhere inside the blade row forms a 
radial line (fig. 2). These two kinds of relative stream surface will 
be hereinafter designated stream surfaces Si and S2> respectively. 

S-]_ Stream Surface of First Kind 

In figure 1 is shown a stream surface of the first kind formed by 
fluid particles lying on a circular arc ab of radius oa upstream 
of the blade row. It is usually assumed in ordinary two-dimensional 
treatments (for example, references 27 to 30) that the stream surface 
thus formed is a surface of revolution. In the following development, 
the surface will be allowed to take whatever shape it should have in 
order to satisfy all the equations governing the three-dimensional flow. 

<N 
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In most cases, the deviation of the surface from a surface of revolution 
is not large, and it is satisfactory to consider S-j_ surfaces formed by- 
fluid particles originally lying on a circular arc upstream of the blade 
row. If the rotationality of the inlet absolute flow is large, if the 
blade is designed for a velocity diagram quite different from the free- 
vortex type, or if the blade length is long in the direction of the 
through flow (radial- and mixed-flow machines), the twist of the surface 
maybe quite large, resulting in very large circumferential derivatives. 
If this effect is found during calculation or known from experience, it 
is more satisfactory to consider S^_ surfaces formed by fluid particles 
originally lying, in front of the blade row, on curves inclined to the 
circular arc in a direction opposite to the twist of the surface. In 
this way, the intersection of the S]_ surface with a constant z-plane 
about midway in the flow path is a nearly circular arc, and the total 
twist of the surface will be about equally distributed toward the 
upstream and downstream directions (fig. 3). If this distribution of 
the twist of the stream surface is still not enough, it may be necessary 
to divide the complete flow path into a few shorter paths and consider 
an S]_ surface for each of them. Under these conditions, Sj_    surfaces 
formed by fluid particles originally lying on the hub or casing walls 
upstream of the blade row should not be chosen in order that the compli- 
cation arising from the possibility of fluid particles leaving the wall 
and flowing along the blade surface may be avoided. In such cases it 
is better to consider the Si surface a short distance from the hub and 
casing) otherwise, for an approximate solution the fluid can be con- 
sidered to follow the hub and casing walls, which are surfaces of rev- 
olution, and the calculation is thus much simpler than that for a 
general surface. 

S2 Stream Surface of Second Kind 

A stream surface of the second kind is shown in figure 2. The 
most important surface of this family is the one about midway between 
two blades dividing the mass flow in the channel into two approximately 
equal parts. This surface is designated the mean stream surface 
(S2 m). For blades with radial elements, such as the one shown in fig- 

ure 2, it is convenient to consider a mean stream surface formed by 
fluid particles originally lying on a radial line ab upstream of the 
blade row if the twist of the surface is not expected to be large. 
Otherwise, the radial line is chosen about midway in the passage with 
the fluid particles originally starting out from a curved line upstream 
of the blade row such as shown in figure 3. 

The mean stream surfaces for axial-flow gas turbines designed on a 
free-vortex velocity diagram are shown in figures 3 and 4. The radial 
element of the mean stream surface (fig. 4) is chosen accordingly as the 
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The vector n is, of course, perpendicular to the relative velocity W, 
so that 

n .W » 0 
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stator is designed to aline the blade sections radially at the leading       • 
edge, trailing edge, or somewhere between. Inasmuch as the rotor-blade 
sections are usually alined radially at or near the center of gravity 
of the blade sections, the radial position of the mean relative stream 
surface is chosen at the same position (figs. 3 and 4). The continua- $ 
tion of the stream surface outside the blade row is not shown. The mean       £ 
stream surfaces for the inlet stage of a multistage axial compressor 
designed on the principle of a symmetrical velocity diagram at all radii 
are shown in figure 5. 

Both of these two kinds of stream surface are employed, in general, 
in the solution of the three-dimensional problem. The correct solution 
of one surface often requires some data obtainable from the other, and, 
consequently, successive solutions between these two are involved. Yet, 
the solution of each surface is manageable with the present mathematical 
technique and computational facilities. In many practical cases, and        * 
especially in the inverse problem, however, this iteration may not be 
required if only an approximate solution is required or if the prescribed 
values lead to a satisfactory blade shape. These points will be dis- 
cussed in the section next to the last (pp. 53 to 57), 

Relations among Relative Velocity of Fluid, Coordinates of 

Stream Surface, and Normal to Stream Surface 

In general, the coordinates of the stream surfaces and their differ-     » 
entials are related, respectively, by the following equations: 

S(r,cp,z) a 0 (28) 

I^ + o!dCp+of dz~° <29> 
Rather than use the three partial derivatives of S with respect to 
the coordinates, it is convenient to consider the unit vector n normal 
to the surface, which is related to S by 

öS s r5s * OS *  |,  ,  ,   o  .  o       (30) 

o^  r «Jcp c5z 
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or ■ • 

Vr + nuwu + nzwz = 0 (31) 

By using equation (30),   equation (29)   can be -written 

rtp dr + nu r dcp + nz dz = 0 (29a) 

The vectors n and W are shown on Sj_ and S2 surfaces in fig- 
ures 1 and 2. 

EQUATIONS GOVERNING FLUID FLOW ON S-[_    SURFACE FOR AXIAL-FLOW AND 

AXIAL-DISCHARGE MIXED-FLOW TURBOMACHINES 

If the fluid motion on S-^    is followed, equations (28) and (31) 

can be used to eliminate one of the three coordinates. For axial-flow 
(figs. 6(a) to 6(c)) and axial-discharge mixed-flow turbomachines 
(fig. 6(d)), it is convenient to express r in terms of cp and z. 
For radial-flow and radial-discharge mixed-flow turbomachines (figs. 6(e) 
and 6(f)), this system will encounter difficulty at the exit where the 
rate of change of fluid state with respect to z becomes infinite. It 
is therefore necessary to eliminate z and to consider r and cp as 
the two independent variables. 

Flow Along General S^    Surface 

For axial- and mixed-flow turbomachines, any quantity q on the 
S]_ surface is considered a function of cp and zj that is, 

q = q[cp,z,r(cp,z)] 

The change in q along S^    due to a small change in cp while z is 
held constant is (see fig. l) 

^"%w + ^%w 

From equation (29a), 

dr _      nur 

(5cp   np 
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hence 

/dq_   V  öq\ 
\<5cp~  n^.    c5r/ 

Similarly,  for    dcp = 0, 

/dq      nz dq\   , \n 

With a hold partial derivative sign used to denote the rate of 
change of any quantity q on S^ with respect to cp or z, with the 
other kept constant, the preceding relations give 

1 3q  1 dq  fu öq    "^ 
r acp** r 3q>  n,, 5r 

3q _ dq  nz dq 

J 
3z  ciz " n^. 5r 

(32) 

With the relations (31) and (32), the rate of change of q along a 
streamline on S-^ is 

5a _ Üü 2a + w 2ä (33) 
Dt - r 3p + Wz dz Köö) 

Equations of continuity and motion. - When the fluid motion is 
followed along the stream surface and equations (31) and (32) are used, 
the continuity equation for steady relative motion "becomes 

13(pWu)  3(pWz) 

where 

^..i(: 
n d(w r)     ö¥     o¥ r v r '      u      z 

=(<■>,.) - - £ V-F -5- + »« ZT + n* 5#      (35) 

For rotational steady relative motion, the equations of motion (14) 
in the radial, circumferential, and axial directions are 
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W„2 ÖWU     W„ ÖWr /öWr      ÖWZ\ ÖI ös 

WrWu      TT    ÖWU      Wr ÖWr /!ÖWZ      ÖWU\ läl      T äs 
-7- + wr ^r- - — ^p- - wz ^- 3^- - ^ + 2a)Wr * - - ^ + ? ^ 

(36) 

Relations  (9),   (l6),   (3l),  and (32)  along the relative stream sur- 
face    Sj_  can "be used to reduce equations  (36)  to the following: 

Wu
2      Wu3Wr 8Wr /oh      mds       2\ A 
 + — __ + y    _ 2tüWn =  - 1-r T -r—CD r) 

r r   9cp z 9z u \or or / 

wrwu  wr awr       /-L awz   awu\ x 3I   T 3S   nu /öh      ös    2 \ I 
—" ~W^Z \rW3TJ  + a*"-rS9+r^-^^-!I!5-<DrJ/ 

TT    
3wr      „    /l 9Wz      3Wu\ 31 A m as      nz /öh      _ ÖS      sV 

(37) 

The last term in each of the preceding three equations is propor- 
tional to the components of'the normal vector and therefore can he 
expressed as a component of a vector that is parallel to n and has 
the dimension of force per unit mass. If this term is defined as 

" % (lH!-4"=-^i-A)"    (38) 

the preceding equations can he written 

2 
 r  wi w„ aw~    äw,, w„ 
— -zzr +'WZ ~ - — - 2coWn ■ fr (39a) 

) 
wrw„    wr awr       / •, awz    awu\ ■, ai    T as 

aviL 
r  8z 
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Similarly", the equations of motion in the form of equations (2) can be 
written 

^u<Wr 

r acp + W, 
'u 
r 

as f ' 
\ 

Wu awu 3Wu     WrWu      0 TT 

r   acp *■ az r x 

wuawz 

3"cp~ 

where 

+ W 
8W, 

z 3z 

f»  - 
_1_ _ 
% P 

1 3p 
p az 

1 dp 
or 

l ap 
or acp       u / (40) 

+ f' T xz y 

o 
01 
en 

Because this vector f is parallel to 
the relative velocity of fluid, or 

n, it is perpendicular to 

frWr + fuWu + f ZWZ = 0 (41) 

By the use of equation (41) and equations (39), it can be shown that for 
steady flow on an Sn  surface, 

DI- m Ds 
Dt "" ■"■ Dt 

(41a) 

which agrees with equation (20). Therefore, for the present problem of 
steady relative flow on a stream surface, the relation (41a) can be 
taken either as one of the equations of motion or to represent the rela- 
tion given by equation (41). In other words, there are only four inde- 
pendent relations among equations (39a), (39b), (39c), (41), and (41a). 

Just as in the case of the continuity equation, either set of the 
preceding equations of motion is expressed in terms of the special par- 
tial derivatives with respect to the two independent variables cp and 
z. The effect of radial pressure gradient is taken into account in all 
these equations by the f term, which is neglected in the ordinary two- 
dimensional treatment on a surface of revolution. Equations (28), (31), 
(34), and (39) or (40), however, lead to a possibility of correctly 
solving the three-dimensional flow of fluid particles on an S]_ surface 

in a mathematically two-dimensional manner. 

Principal equation. - The equations of continuity and the equation 
of motion in the circumferential direction can be combined into a prin- 
cipal equation through the use of a stream function i|r as follows: 
First, if a variable b is introduced such that 
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D In b 
Dt 

= -c + 
nz wz 

"r 
(42) 

to 
o 
Ol 

or 

Pt 
In 

b_ nz Wz\ 
C   - n^ ~» to - 

^i^ "      ' ^i 

i /   ^y 
dx      (42a) 

in which the integration is performed along a streamline on the Sj_ 
surface, then the continuity equation (34) can he written 

3(bpWu)  a(hPwzr) 

8cp 8z 
(34a) 

The preceding equation is the necessary and sufficient condition that 
there exist a function i|r with 

®i _ 
3Cp~ rbpWr (43a) 

Ü - "bPWu (43b) 

The difference in i|r  at two points j and k on the S-,  surface is 

tk - iH -  I  <ty - 
u 

bp(wzr dcp - Wu dz) 

In particular, the difference in i|r at two points j    and k on the 
constant-z plane at the inlet where the fluid state is uniform is 

biPi ¥z,i 

Pqjk 

r dcp 

cpJ 

These two equations show that, physically, the integrating factor h 
can be interpreted as proportional to the local radial thickness of a 
thin stream sheet whose mean surface is the stream surface considered 
here. The continuity equation (34a) can also be obtained by consider- 
ing the mass flow going into an element of such a stream sheet as shown 
in figure 7. By equating to zero the mass flow going into the element, 
which is defined by two axial planes dcp apart and two normal planes 
dz apart (see fig.. 7(a)), and letting dcp and dz approach zero, 
there is obtained , 
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a(Tpwu)  a(Tpwzr) 
—ä^- + af--0 ^ 

where T is the radial thickness of the stream sheet. From equa- 
tions (34a) and (34b), it is apparent that b is proportional to T, 
and the differences in ty at tvo points j    and k as given by the J£ 
two equations preceding equation (34b) are proportional to the mass flow       £J 
across any line joining the two points. In actual computation, only the 
ratio b to b^ or T to T^ is important (a different initial value 
amounts to a different constant multiplier of the relation between i|r 
and mass flow). In the following, b will be retained in the equation, 
but in actual calculation it is simpler to evaluate the ratio T to 
T. than to evaluate the ratio b to hi, both from the data ohtained 

on the So surface to be discussed later. Although the evaluation of 
this ratio requires, in general, calculations on the S2 surfaces, a 
means is nevertheless provided to determine correctly the flow on a 
general S^ surface through iteration. 

From equation (43), 

bo l ^i = JL i!i   .19 ^^p §i + üü -L B.        tAAa.\ 
r 3Cp   r23^' r2  3Cp   acp+ nr r2 3Cp      ^***' 

3WU  32^  a ln bp a+ 

The third terms in the preceding equations can be expressed in terms 
of h through the use of equation (l2b): 

dlnhp=dlnb+-^dh-ds* (45) 
a 

where s* = S/R. But from equations (9) and (43), 

2 i^>-2[(>§!)2 + (g)2]      (46) o)2r2  wr h a I + ^ 2    2 

Then from equations (45) and (46), 

/.   s-i(^z a2^    wu a2t ) 
K P       \r2 aq£ "   r aCP9z/ "    r    ^ 
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t2 - (V ♦ «,23 ^ - A (j ♦ 
■oj2r2  - ¥r

2\        2/9 in b      as" 
"2 / + a V   az    " aT 

;/9 In b      9s *\ 
\ az        az y 

,.  ,-iKa2t      „   BH)    
W

Z
2
 

nz 

Substituting the preceding two equations into equations  (44a)  and (44b) 
and adding yield 

bp[a2-(wu
2
+H

2)](i acp     az r2       acp2 r    az2 

(a2-Wz
2)  1| 

3z„   Lr acp\i + 

?  ?       2 
i!)    a2 (a mt   as^\     a2-wu2 *u 

/  + r   \   acp    "acp/ r       iij. r acp 

■      / air2  -Wr
2\        2f3  Inb      as' /a In "b _ as*\ _ 

\   az        az I 
■   

r    nr. 

3\|f 

az (47) 

Substituting the preceding equation into equation (39b)  and dividing by 
a2    give the principal equation for the determination of fluid motion 
along a general    S^    surface: 

\     WM 1 ^    2 uwz a2t      f      ^z\ 32t    N at , H at _ 
2r    aq» +  V ■ a2 / 8Z2 + r 3<p 3z " 

0 

(48) 
where 

a mb     as*     1 
M~        az    + az   + „2 

31     TT    
awr      a^+Wz

2 *z 
az ' "r az 

2  A.T-2.T.T 2 

nv 

H =-- 
1  8 In- b    1 as*     if   1 31   Wr awr    aMWuW) Wr • + — wr 

+ 
r      acp    T r acp   ' a2 \ r acp    r   acp r 

a2-(Wu
2^r")nu\    a2-(wu

2
+Wz

2)     [   x ai  V8s / x 

n7/f       ^~2 |_"r acp+r 3cp+ 1u + v*c^r r 
3Wr 
3qT 

2tü 

The equation of the characteristics of the differential equation (48) is 
(reference 31) 
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wuwz      dcp 
  r —— + 
a2         ^ (-V) =0               (49) + 2 

from which SU 

dcp m  _    WUWZ /ja2(Wu
2 + Wz

2-a2) .     . ^ °) 
r Of « _ "u"z ± 

/NJQ v"u ^"z -a ^ (50) 
dz    a2-Wz

2      a2-Wz
2 

Equation (50) shows that the characteristics are real when 

tyWu
2 + Wz

2 > a, in which case the method of characteristics for two inde- 

pendent variables (references 20, 30, 31, and 32) can be applied. When 

/\|Wu + Wz < a, the characteristics are imaginary, and it is more con- 
venient to solve the equation by relaxation (references 25, 33, 26, and 
29) and matrix methods (references 26 and 29) in the following form, 
which is obtained by substituting equations (44) into equation (39b): 

1 3 \|r  9 j      I _1_ / 3 In bp  "u\ 3\|r  3 In bp 3i|r 
r2 acp2  9z2 " I ^2 V 8CP   ~ nj 9Cp +  8z   8z 

T— (* ^ ^P      —V 2t |_r2 ^   8cp        ~ r^/ 9cp + 

M!r.l2i + !3s + f    +^^-W    fc+Jl-O       (48a) 1 ajr   |_   r acp + r acp + xu +  r   acp       wr ^r   + «7J - u      ^oa> 
r acp 

Procedure of solution. - It may be noted that equation (39b), 
instead of (39c), is chosen to form the principal equation (48) or (48a), 
because fu is, in general, much smaller than fz. The various quan- 
tities appearing in equation (48) or (48a) are to be computed from 
other equations given earlier. With the introduction of the stream 
function, there are altogether seven basic independent relations - one 
energy equation (21)j three equations of motion, (48) or (48a), (39a), 
and (39c); two equations between i|r derivatives and fluid properties, 
(43a) and (43b); and the orthogonal relation between W and f,  equa- 
tion (41) or (41a). On the other hand, there are ten basic dependent 
variables in \|r, b, Wr, Wu, Wz, fr, fu, fz, s, and I (or h ' or p) 

to define the flow and the shape of the surface. In general, the vari- 
able b is to be evaluated according to equation (42a) or from the var- 
iation in the radial thickness of stream sheet using the data obtained 
in the solution of Sg surfaces and is therefore considered as given 
here. If during the complete solution of the three-dimensional flow the 
shape of an S]_ surface is taken as the one obtained by joining corre- 
sponding streamlines obtained on Sg surfaces of the preceding cycle, 
two relations between the n- (or f-) components are given by equa- 
tions (29), and there are now altogether nine equations to be solved to 
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find the nine unknowns. Alternatively, the variation of Wr maybe 
considered as known from the S2 solutions of the previous cycle, and 
the remaining eight variables, which determine the flow on and the shape 
of the Sn surfaces, can be determined from the seven preceding rela- 
tions given and the following additional relation: Because 

and fz, respectively, are proportional to -$-> — -r^' and ^ of the 

integral surface S, they satisfy the following equation (reference 34) 

fr>  fu> 

f.VXfaO (51) 

which may be written 

- 1 h{f 
r
 [_r dcp  r  5r 

löfz 
\5T " or-/ + f s 

xd(fur)  x^l 

_r  "5r   r dcpj ~ 

(51a) 

By using equations (31) and (32), equation (51a) becomes simply 

This equation can be used to give fu by integrating along a constant 
cp line: 

r   \ r /zs=5 
(51c) 

If at z ss z0, -fu » 0,  then 

fu- -2- (-) a* 
3<P\fr/ 

(51d) 

In this case, then, the shape of the Sj_    surface is determined after 
the f-components (or n-components) are obtained in the solution. In 
either case, equations (21) and (41a) are invariably to be used first to 
determine the change of s and I. If the flow is isentropic, s 
and I remain constant along its streamlines on the surface.  (For 
such a case and for a uniform inlet condition,■ p in the continuity 

T-T equation may be replaced by h' and, consequently, the cp and z 
derivatives of s, as well as ''those of I, will not be involved in 
the equations (46) to (48)).. In case of heat transfer or shock, the 
changes in s and I can be estimated by whatever method is available 
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and used in the calculation. For supersonic flow, all the equations are 
used to compute the fluid state at each point and the solution is carried 
downstream step by step. For subsonic flow, iteration over the whole 
domain is necessary. The details of these computations will be given in 
the last section.  In general, the solution of the flow on the general 
S]_ surface is very laborious, and is to be used in the final stages of re 
calculation of the complete three-dimensional problem or when a high- 01 
speed computing machine is available. 

If the flow is such that it may be assumed to take place on a sur- 
face of revolution (at the hub and casing walls or other radii), the 
equations are considerably simplified as follows: 

Flow along Surface of Revolution 

When the S]_ surface is a surface of revolution, 

Let 

nu = fu = 0 (52) 

(53) 
nz f

Z      wr                        A 

"r fr     wz 

where X    is a given function of z.  (For a conical flow surface, X 
is simply a constant.) Equation (35) now gives 

Nr      ÖW„\    oW 
C s - ' 

Whether c can be taken as zero will be determined by the relative 
magnitude of the three terms on the right side of the equation. In 
general, for nonnegligible c,  equations (43) now become 

% - rbPWz . (55a) 

H - - bPWu (55b) 

Because Wr is now related to Wz by equation (53), the three velocity 
components can be solved simultaneously as follows: By use of the rela- 
tions (52) and (53), equation (39b) can be changed to 

CXJ.\
2
\   

1 ÖWz      8Wu      X /Wu ., ?\        1   /l öl      T äs\       _        ,_.. 
(1+X )  x W ~ BT - ' X V~ + ^)   ~ i£ \x c*P " x Sty " °       (56) 
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in 
o 

Instead of equation (46), 

ü)2r2      1 ,.   s-2     /.   ,2\ (1 ötV 
h = I + -*- - - (bp)      [(1+X ) [^ ^J 2 2 

should "be written.    Then 

3£ 
3z 

(57) 

(i+x2) — ^ ™ ^ (a2-w2) ii^ie.i^4(^-^ , M- .2 öq£     r   Öcp3z 

2.   dX 
dz 

(bp) 
-1 (^ &-»«§_, 

(58) 

Combining the preceding equations with equations (55) and substituting 
the resulting equation into equation (56) give the following principal 
equation for the flow on a surface of revolution: 

ll+MV    a
2/r2ö^ 

-4SLI-2 (utf1) 
2^ ¥u¥z 32 

a2r 3cpäz \X    a2 / az2 r ^  3z 

(59) 

where 

M 3 In "b  8s^ + _1_ 
az az 

aI  a2-¥2-¥ 2-¥„2-CD2r2      2 dA
N 

2i +  £ ^  X + ¥,A ^ 
3z r dz 

H = - (l+>T) 
'l 5 In h 
r  dcp 

1 ÖE 
dcp 

1 1 öl 
+ 2 r o^ 

a2-¥2 2ü)X ^_ /l ÖI T ds\ 
V + ¥ 2 \r S^'r S^/ 

For this equation, the characteristics' are real or imaginary when the 
resultant relative velocity ¥ is supersonic or subsonic, respectively. 
For the subsonic case, it is again hetter to use the following form 
obtained by differentiating equations (55) and substituting the result- 
ing equations into equation (56): 



30 

(1+*2) \ 
r 

NACA TN 2604 

0*3 1X9+ 

dcp    az 

f-\^\    1   ö In bp di|r    9 In bp    8* 
^1+/r; r2     6cp      ocp1     3z         az - 2Xiobp  - 

(bp)2/lcil      I ÖS\ 
1 6\|r    \r 3cp     r 3cpy ~ 
r o^ 

(59a) 

With X given and b determined from data obtained on the Sg 
surface, there are now the six independent relations equations (21), 
(59) or (59a), (55a), (55b), (53), and (41a) for the determination of 
the six main variables in \|r, Wu, Wz, Wr, s, and I. The f-components 

are not involved in the calculation. If the flow is adiabatic with 
uniform I and s, the equations are further simplified. 

Flow along Cylindrical Surface 

If the flow near the walls of an axial-flow turbomachine can be 
considered to take place on a cylindrical surface, then 

nu = nz = fu « fz m Wr -  0 (60) 

Equation (35) now gives 

c-g^ (61) 

which is relatively small,  (if c is negligible, b can be taken as 
1 everywhere.) For flow without change in radial distance, the quantity 

I can be replaced by  Hw I = h + -r-U    The equations governing the 

cylindrical flow are then (compare reference 29) 

|i=rbPWz (62a) 

|| = - bpWu (62b) 

*j£«Q (63) 

D ^      m Ds ,     .' 
"DT " T Dt (64) 

ID 
in o 



CO 
o 
Ol 

NACA TN  2604 31 

and 

W2> 

a2 
(65) 

where 

Ö In b      ös*       1    ÖBw 

a 

= 0 

w    .      1 5 In b   ,   1 ds*   ,    1 ^/läHf     WTÖS 
N = " r      dcp     + r W     a2 L      Wz

2    r -3f        w%2    r 3q> 

or 

1   ö2i|r      öjjr     / _1_ b In bp ot      d In bp M      (bp)2 /l    Hw      T dsS 

r2" dcp2 + dz2  " \r2 ~~^       ^ öz        ^7  " i ^    \r ^" " r ^ 
r^ (65a) 

In general, the circumferential derivatives of B^. and s are to 
be determined by the inlet flow and equations (63) and (64).. For adia- 
batic flow with uniform Hw and .s upstream of the blade row, these 
derivatives are equal'to zero everywhere, making the problem much sim- 
pler. The main difference between this simplified case and the ordinary 
two-dimensional flow on a cylindrical surface is the inclusion of the 
factor b in equations (62) and (65) (in general, b is a function of 
cp and z). If the velocity diagram is such that there is considerable 
radial gradient in the radial velocity or considerable variation of the 
distance between the adjacent streamlines, the factor b is not 
negligible. 

EQUATIONS GOVERNING FLUID FLOW ON S±    SURFACE FOR RADIAL-FLOW 

AND RADIAL-DISCHARGE MIXED-FLOW TURBOMACRINES 

Flow along General S]_ Surface 

For turbomachines with radial discharge, r and Cp are considered 
as the two independent variables; that is, 

q = q£r, cp, z(r,Cp)] 
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Then 

(66) 

9q _ dq  "r dq 
8r ~ 5r " nz 3z 

1 aq _ 1 öq.  % dq 
r acp  r c5cp " nz 3z 

5ä - w Sä 4.^ 21 
Dt  wr 3r "*" r acp   J 

Equations of. continuity and motion. - By the use of these relations, 
the equations of continuity and motion become 

Si 
01 

x 3(pWrr)   ±  9(pWu) 

9r 3cp ss pc' (67) 

where 

oWj 
u dz    z<3z / 

(68) 

and 

V    TT   wu    wuawr awz .        8I       as 
— - Wu 55- + - §qT " Wz op- - 2coWu - - - + T - + f <   (69a) 

wr*u    TT   3WU    wr awr    wz awz 1Q1    T as 

r 3r r   acp        r   acp r acp     r acp u 

DW„ awz    wu awz 

Dt ^r r   3q:> z 

(69b) 

(69c) 

with 

1   (bh ös 
nz \b~z ~b~zj 

J\ _1_ 1 öp 
y n " " n   p 3z n (70) 

Principal equation.   -  If a variable    b'     is  introduced such that 

D In b' 
Dt 

= - c (71) 
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or 

In 
To! 
l 

c1 dx ss 

V 
W 

dx (71a) 

in -which the integration is performed along a streamline on the surface, 
then the continuity equation (67) can be written ■ 

a(b'pW r)  a(h'pWn) 
 £— +  __ü_ _ ö 

9r       3Cp 

and a stream function i|r can he defined on the surface with 

g--v* U 

3cp    pwr 

(72) 

(73a) 

(73b) 

Here b'  can be interpreted as the thickness (in the z-direction) of 
the stream sheet whose mean surface is the Sj_ surface considered. The 
continuity equation (72) can again be obtained by equating the mass flow 
into and out of an element of the stream sheet as defined by two axial 
planes dcp angle apart and two cylindrical surfaces dr distance apart 
as shown in figure 7(b). As before, the difference of \|r at any two 
points on the S]_ surface is equal to the mass flow across any line 
connecting these two points.  By the use of the preceding two equations 
and the relation 

h.= I + 
,2r2  Wz

2 
ocrr i^lsf*^ (74) 

the principal equation for the flow of this surface is obtained from 
equation (39b): 

>1 - 
W, —) ?fi 
a2 / 3r2 

W- 

where 

M - - alnb' + Si! + JL 
3r 3r        Q2 

rwu 1 9V   ,   f,      ^uf\   1   a2t  .  „ 9i|r  .  N a» 
a2    r aracp +   V " a2 J r2 3<$ 

+ M 3? + r ?$ 

(75). 

a2-(Wr
2+Wu

2)       cD2r2+W2 

a" L- 

ai ,.„■ 
3Wz 
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N_  1 3 In b'  13s*   1 
" ~  r  3Cp  T r 3Cp   „2. a r 

5i + w ?^ + acp"1" wz acpy*" 

aMwr
2^u

2) 
a2** 2 \  r acp  r acp  u 2a5Wr + r acp/ 

This equation is seen to be hyperbolic or elliptic vhen  /yWr +WU  is 
greater or less than the speed of sound, respectively. For the elliptic 
case, it is preferable to use the following form: 

3r r" acp2 
a^Tjr    _i a2jf    (a in b'p ajr    _i_ a in b'p ajA 

2 + „2 arn2  " \     3r        ar + r2      acp acpJ+ 

(b'p)2 r   181      T3s WZ3WZ           /Wj, 
13ij(      (_" r 3cp     r 8cp u       r   3cp   " wr\r 

■r 3cp 

The integrability condition (51) is now written 

+ 2m = 0 

9<P Vz 

Wfur 
ar Vf„ 

(75a) 

(76) 

hence 

Pi 

UT f£u 
Z      =   \fZ ") 

+ 
r=r. 

a »fr 
acp \f 

dx (76a) 

The procedure of solving the principal equation with the various terms 
in it determined by other flow equations is the same as that in the 
previous system. 

Flow along a Surface of Revolution 

For the special case of flow on a surface of revolution, equa- 
tions (52) and (53) hold (with A  considered as a function of r) and 
the expression of c' reduces to 

ÖW, 
X c5z   dz 

c.=±ÖWr (77) 
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J* Furthermore, equations (73) become 

§i=-vpwu (78a) 

(78b) 

and equation (69b) becomes 

1\ 1 öwr      9Wu      f"u 
1 + y£j r 3^~ " 9r 

Using the relation 

üü2r2      1 

Wu \       1   /l ÖI      T ds\       .       ,__, 
CF+a7.i-^^^-.FS^'-0      (79) 

h = I + .|Cb.p)-^|i)%(1 + ^(i^ (80) 

gives the corresponding principal equation as 

1- 
Wr

2+¥z
2' 

i2    / 3r2 

(81) 

where 

M _      8 inb' ^ as* x   1   (    31 x a
2-W2-Wr

2-Wz
2-<D2r2      wz

2 dX
N 

3r ar     '  a2   \   ar X    dr. 

1 \/l ö In b'     1 ös*      1    dl\    a2-W2 

2 Ar      5qp" a r a 
Wr  wA   ^     ^; 

or 

^ + 11 + ~z) Z2 ~5cp     ~ 3cpJ ar2 +r9r + I1 + x2/ r
2 öq£ 

3  In b'p 3i|r 
3r ar 

_1_\   1 .d In b'p ÖTjr 

X2/ r2 

o ^< (b'pr /l öl      T ös\      _ 

?3?     N ' 

(81a) 
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Flow on Radial Plane 

For the special case of flow on a radial plane, 

n,. - nu = fr = fu « Wz = 0 

and equations  (77)   to  (81)  reduce to 

c' =  - 
ÖWZ 

g-,*'pwu 

h - I + | a>2r2 

_V? o^y + ^y _ 

d   ?£.) <fi   2 ^ ^t- + d   ^i.) i a2t , M ot , N at _ 
\~a2/ör2~      a2r    ^öcp      \      a2 / r2 öq£ *r      * öcp" 

(82) 

(83) 

(84a) 

(84b) 

(85) 

(86) 

where 

M 
Ö In b'   .   ÖS*   .    1       öl   ,/a "w "wr -v' 

Br~ + ^ " 3F + 
a 

^    T.T^    T.7     ^    ,.,^-v,^ 

>2_TJ    2 

N 

and 

1 0 In b'   .   1 ös*   .     1     /    a  _Wu    öl   .  a2-W2 m ös\      a2-W2  2CD 

r   •  öcp       + r W + n2 a-r   \      Wr
2      ÖCP        Wr

2 a2    Wr 

ö2\|r       lot        1   ö2\|r     /ö In b'p d*       1   ö In b'p ö\|r\      „ _ 

(b'p)2 /i ai T ös' 
l~5ijf      \r 5cp r 3<p,/ ~ u 

r <5<p 

(86a) 
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^ Alternative Form of Equations for Flow along 

~ i 

Surface of Revolution 

CO 

The equations given in the preceding sections are obtained for 
turbomachines to avoid an infinite value of the partial derivative with 
respect to z. Difficulty still exists in using either of the systems 
in the case of a mixed-flow type machine with an axial inflow and a 
radial outflow. For solutions of general S^ surfaces, this difficulty 

g      can be avoided by dividing the machine at the middle of the flow path 
01      and using the first system at the inlet portion and the second system 

at the exit portion.  If the S]_ surface can be approximated by a sur- 
face of revolution, it is convenient to use a set of orthogonal coordi- 
nates I    and cp, where Z is the arc length of the generating line of 
the surface of revolution in the meridional plane and Cp is the usual 
cylindrical angle (fig. 8). Because 

(87) 
wr dr 

dZ 
= sin a 

and 

Wz 
Wz s 

dz 
dZ 

= cos 0 

then, for use with the first syst 

9q_ 

5m, 

„&L 

(88) 

9z = 
sec ° 3l (89) 

and, for use with the second system, 

U " csc a 3? (90) 

By use of the preceding relations, the equation of motion in the circum- 
ferential direction as given by either equation (56) or (79) for the 
two systems, respectively, becomes in both cases 

1 ÖWZ  äwu  /Wu _  \  .     i /1ÖI. T ös 
r ̂ -!H!M.ln..«Ki$-!$.o ™ 

which agrees with the results obtained in references 29 and 30 in a 
different manner. The subsequent equations given in these two refer- 
ences can be modified and used for such surfaces.  (The last term on the 
left side of equation (79a) represents the rotationality of the absolute 
flow and is not included in reference 29, which is derived for irrota- 
tional absolute flow.) 
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By comparing the integrating factor b used herein and the thick-        ^ 
ness of the stream filament of revolution T used in these two refer- 
ences, it is seen that the two play exactly the same role in the con- 
tinuity relation. Although b is obtained mathematically as an inte- 
grating factor, physically it may then be visualized as the thickness .        N 
of the stream filament in the r or z-direction for the two systems, gj 
respectively. The use of b herein is, of course, more general in that      CJ1. 
it varies two-dimensionally over the surface in the general case, where, 
as in references 29 and 30,  T is considered a function of I    only. 

EQUATIONS GOVERNING FLUID FLOW ON S2 SURFACES 

In the preceding section, it was shown that the determination of 
the flow on Si surfaces requires a knowledge of the radial variation 
of the velocity components. This knowledge can be obtained by following 
the fluid motion along relative stream surfaces of the second kind, Sg- 
On S2, the relations (28) to (31) also hold. These relations, how- 
ever, will now be used to eliminate the independent variable Cp; that 
is, any quantity q on Sg is now considered as 

q = q[^r,z,cp(r,z)] 

Accordingly, on Sg 

and along a streamline on 

3q_ 
ar 

öq _ fr 1 dq 
nu r c^ 

31 _ 
az 

dq 
3z" ■ 

^z 1 dq 
nu r <5cp 

s2 

(91) 

T& „ w fa + Wz »a (92) ■ 
Dt   r 3r   z az v  ' 

Equations of Continuity and Motion 

Equations (30) and (91) are used to change the continuity equa- 
tion (35) to 

1 3(Pwrr) , 9(PWZ) 
r  5F- +  s^=PC(r,z) (93) 
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where 

3W, dWY ÖW, 
C(r,z) .« - J- ( nr ^ + nu 3^ + nz ^y nur 

(94) 

O 
01 

For general rotational motion, the equations of motion (14a) in the- 
three perpendicular directions are 

W u 
r 

ö(Vur)  dWr 
"~3r— 

/ÖWr  ÖWZ 01 + T ös  "^ 
3r   cSF 

Wr 
r 

ö(Vur)  dwr 
.  Sr   dcp_ 

/1 ÖWZ _ ÖWU\ _ _ 1 
\r cicp   öz / ~ " r 

■dl  T ös 
3? r3? } (95) 

/a»r  ÖWZ\  w /^W,  ÖWU\    öl  ^ös 

In following the motion on S2>  equations (95) are reduced to the fol- 
lowing form by using equations (9), (16), (31), and (91): 

wu a(vur)  TT / 8wr  9W 

r  3r + wz \» 3r ¥■ + T sr + Fr 3r    ar   r 

Wr 9(Vur)  Wz 9(Vur) 
r   8r    r  8z     L or Fur ss 

D(Vur)" 
Dt 

(96a) 

(96b) 

^r  ^\  *u 9(Vur)    ai    3S 
(96c) 

where F is a vector having the unit of force per unit mass of gas 
defined by: 

« _^(Öh ös\ m 1 1 
nur \o^ 3qp/ nur p 

Op 
3^ n (97) 

A similar result is obtained for the equation of motion in the form of 
(2): 

2 9Wr 3Wr      Vu 18 > 

Wr 3(Vur)      Wz 3(Vur) 

ar az u 

awz awz       1 ax) ■ 

z az       r ar p az      z 

J 

(98) 
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Because the vector    F     is normal to the    S2    surface, 

FrWr + FUWU + FZWZ = 0 (99) 

By the use of equations (99) and (96), it can be shown for steady flow 
on an S£ surface that 

in 
o 

51- rp DS 
Dt    Dt 

(99a) 

This result is the same as that obtained for the S]_ surface. Again, 
for the present problem of steady relative flow on the S£ surface, the 
relation (99a) can be taken either as one of the equations of motion or 
to represent the relation (99). In other words, there are only four 
independent relations among equations (96a), (96b), (96c), (99), and 
(99a).  In the following development, it is found convenient to use 
equations of motion in the form of equation (96), not only because 
äl/ör is zero in many design problems (whereas öp/ör =/ 0), but also 
because equation (96) leads to a form capable of a rigorous solution 
for both subsonic and supersonic flow and shows clearly how the various 
design factors affect the three-dimensional motion in general.  (See 
equations (106) to (114) that follow.) 

In a manner analogous to the 
tion (93) is put into the form 

3(rBpWr) 

S]_ surface, the continuity equa- 

+ 
3(rBpWz) 

§z = 0 (100) 

by the use of an integrating factor 
following equation: 

B, which is related to C by the 

D In B 
Dt = WT 

8, In B 
9r + Wr 

3 In B 
a C (101) 

or 

In B_ B, 
C dx 

'I* W 
(101a) 

Equation (lOO) is the necessary and sufficient condition that a 
stream function i|r exist and 

S - «*», (102a) 
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If - - rBPWr ~(l02b) 

The difference in ¥ at two points j and k on the Sg surface is 

■" k'   •   fk      fk 

.    ¥    - ¥J a   [      d\|r =   I      rBp(¥z dr - Wr dz) 

Similar to' the flow on the S-]_ surface, the preceding equation 
indicates that B is proportional to the angular thickness of a thin 
stream sheet whose mean surface is the stream surface S2 considered 
herein and whose variable circumferential thickness is equal to rB. 
Indeed, if the mass flow into and out of the element of such a stream 
sheet (cut between two planes normal to the z-axis, and a distance dz 
apart and between two cylindrical surfaces; dr apart (fig. 7(c))) is 
equated to zero and the distances dr and dz approach zero as a limit, 
the following equation is obtained: 

a(Tpwr) + a(Tpwz)  o 

3r 3z (100a) 

Comparing this equation with equation (lOO) and considering the mass 
flow relations show T to be proportional to rB. This proportionality- 
means that B can be physically intepreted as a quantity which is pro- 
portional to the angular thickness of a stream sheet whose mean surface 
is the. S2 surface considered herein. With this interpretation, B is 
immediately seen to be closely related to the angular distance between 
two neighboring blades.  In actual calculation, only the ratio rB to 
(rB)-j_ or T to Tj_ is important, and it is also easier to obtain the 
variation in rB -from the distance between adjacent streamlines 
obtained on S]_ surfaces than to evaluate B/B^ by equations (101a) 
and (94) using data obtained on Sj_ surfaces. 

Principal Equation for Case with Vur Given 

In the solution of flow on an S2 surface, the continuity equations 
and the equation of motion in the radial direction are combined to form 
the principal equation. The principal equation will now be obtained for 
two main groups of present designs 'in which a certain desirable varia- 
tion of the angular momentum of the fluid Vur': and of the ratio of 
relative tangential and axial velocity are prescribed on the Sg m sur- 

face, respectively. These equations can also;be used for the solution 
of a direct problem, in which the same information obtained on S]_ 
solutions of a previous cycle is used as known values in the Sg 
solution. 
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For the first group, the following equation is considered known: 

Vur = G(r,z) (103) 

Among this group of designs are the free-vortex design (in which G is 
simply a function of z),  the more general "solid-body rotation" design, 
the "symmetrical velocity diagram at all radii" design, and others (foi 
example, see references 17 and 18). 

From equations (102) and (45), 

»2 3WZ      a^-ur 
rBp  _± = —i +  [ _ 

9r        a 2 
3r 

' aw, 

/    1       1   3h      3s* 

\   r ~ a2 3        9r 

*      9 In B\ 3¥ 
3r    J 3r 

■r _ 3%      /   _1_ 3h      3s^      3 In B\  9? 
~     p az   ~ _ 2    I"  2 az    az   "     az    ) az 

3z \ a / 

(104a) 

.(104b) 

in 
in • o 

But from equations (9) and (101), 

,= I+^-^-|(rBP,-3[(||)
2
+(||)

2]       (105) 
Differentiating with respect to r and z gives 

2^, 2 
aMw^+W/)  3h       3  /T      "^""u 

i? = ^|I + 2^ 2,     L   3 1"B  . la! +  (W^+w/) dr 3r 

^^(w^-Wrf^) 

a2.(wr2+Wz2) 3h        3   / A2^\ 2       2    /ajnB       3^ 
 ^2 37"3T\I+        2         y+^wr+wz'^     az az 

««P)-1    ". !£ - Wr B 3Z 

Substituting the preceding equations into equations (104) and adding 
give 

a^iir aw 
rl " 2 WrWz  3^ + 
3r 

a in B    as 
2        / V    ar 

2 (9 InB      3s*> 

3s »\ 
3r /_ 

aw 
3r 

/        Wu
2-oi2r2\        2 /a In B      3s*\ 

V= 2 ) ~ a" \-BT- ~  BTJ_ 
aw 
az (106) 
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Substituting equation (106) into equation (96a) and dividing "by 
yield the following principal equation for the fluid flow on sur- 

face    Sg: 

Wr
2 

a£ 
a^ 
3r2 

W    0
WrWz 92¥   ^ /J      wz2\ 32¥ ^ _ 3TJT ^ w 9¥      . 

£ -.2 —Ö- ~ ^ + 11 Ö—J —ö + Nr— + M — = 0 2    a2 3r3z  \   a2 / 3z2    3r    3z 

(107) 

where 

r 

3 In B  as" 
T i»l =   - 

3z 

a In B 
3r 8r 

a2-(wr
2+h '.8>r 

3z 
_1_ 
„2 

ai 
az 

awu\ 

1.   Ü. w .2 Var  W 
aw. 

u 3r + arrJ + 

a2-(wr
24Wz

2) r 31  m 3s  ,   Wu a(Vur)~| 
a2w 2 L"aT + Ta7 + Fr + — —äF~.J 

From the coefficients of the second derivatives, the principal equation 
is seen to be hyperbolic or elliptic when' the meridional velocity 

Wj ss /\JWr
2 + Wz

2 is greater or less than the speed of sound, respec- 

tively. For the elliptic case, it is again convenient to write the 
principal equation in a slightly different form. From equation (101), 

rBp 
3W z 
3r 3r 

ai i ay a in BP 3W >j 
2  r 3r    3r   3r 

SW. öwr      ^w      Blri B    ÖUr 
- rBP ä=~ s —Ö ^—~ -XZ 3z az az az 

j 

(108) 

Substituting into equation (96a) results in 

32ljf      1 3Tjf      32 

3r' r 3r 

(rBp)2 

aj- 
ar 

a2¥    /; 

az2 " \ 

3 In Bp  3¥     a In Bp 3j\ 
3r ar az     3z ') 

_r        ar 3r 3r T    i = 0 (107a) 
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With the variation of Vu or Wu prescribed by the designer in an n 

inverse problem or taken from the previous S]_ calculation in a direct 
problem, the meridional velocity components are determined by equa- 
tions (107) and (l07a).  (Other equations are used to determine various 
terms involved in the coefficients M and N.) 

M / ° Principal Equation for Case with W^Wg Given £J] 

In the second group of designs, the following relation is pre- 
scribed on an Sg m surface (for example, see references 17 and 18): 

Jr-g(r,z) (109) wz 

In order to result in blades with the mean blade surface composed of all 
radial elements (for high-speed rotation), it maybe desirable to spec- 
ify a mean Sg surface consisting of all radial elements. Then 

^= r gl(z) (110) 
z 

Similarly, in order to obtain a cooled turbine rotor blade with minimum 
twist, the following function may be specified on S2 m: 

Wu 

In application to direct problems, one of the preceding relations is 
obtained from the S^ solution in the previous cycle and is considered 
as given in the Sg solution. In both inverse and direct problems, 
with the relation between Wu and Wz given by these equations, all 
three velocity components are to be combined into the main terms of the 
principal equation as follows: Substituting relation (109) into equa- 
tion (96a) gives 

aw„  aw. 
<1+S2> 5^ - f? *  g(f ♦ |f) WZ + 2^  + 'z W„ V  8r    3r   x/ 

Instead of equation (105), 

h.1+^.l(lBp)-2 d+g2) (i)2 ♦ tf 

(112) 

(113) 
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should now "be written. Differentiating with respect to r and z, 
combining with equation (104), and substituting into equation (112) 
give the following form of the principal equation: 

(l+g2) (l-g g| -2(l+g2) 
WyW, rwz 9^ 

,2 3r3z 
0+H|S+M|I=o 

t\3 o 
~01 
01 where 

(114) 

..    3 In B ' 3s" 
M = - —r  + -— 

3z    3z 
31 
3z 

Wz
2 

„2 
91 
3z 

N = (l+g2) B 8 In B 
3r 

3s* 
3r a2( 

31 
3r 

ofir Wz2 

a2-W2  /g 
— + 
r 3r a 

'-W2 / 31 

% 2 V ar 
+ T ^+F '■ + 

3r   r 2^u) 

This equation is hyperbolic when the relative velocity is supersonic, 
elliptic when the relative velocity is subsonic.  For the subsonic case, 
ä form of this equation more convenient'for computation is obtained by 
substituting equation (108) into (112): 

(1+g2) 
32y 

3r2 (;- 

3g 
3r 

3j; 
3r 

32f 

3z2 Q l+g*) 2\   3 In Bp 3F 
3r 3r 

3 In Bp 3f 
3z   3z_ 

2gcDrBp + (rBp)' 

3r 

f- + T p- + Fr) = 0 3r    3r   II (114a) 

It may be noted that for both groups, equation (96a) rather 
than (96c) is chosen to obtain the principal equation of the present 
problem, because Fr is always much smaller than Fz in axial 
machines and Fr is zero or nearly zero on Sg surfaces for high-speed 
centrifugal and mixed-flow impellers whose mean blade surfaces are 
usually composed of all radial elements.  (For low-speed centrifugal 
impellers, equation (96c) can be used to form the principal equation 
in a similar manner.) 
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Procedure of Solution * 

Although the equation of motion (96a) is chosen to form the prin- 
cipal equation, other equations are to be used to obtain the various 
terms involved in the principal equation. As in the case of general ro 
Si  surfaces, there are ten basic variables to define the flow and the oi 

01 
shape of the Sg surface. They are: f, B, Wr, Wu, Wz, Fr, Fu, Fz, s, 
and I (or p). B is considered given,  (in the direct problem, B 
is evaluated directly from the distances between adjacent streamlines 
or according to equation (100a) using the value of C obtained on S^ 
surfaces; in the inverse or design problem, B is estimated (refer- 
ences 29 and 35) from the blade thickness as desired from blade stress 
and other considerations.) On the other hand, there are seven inde- 
pendent relations in one energy equation (21); three equations of 
motion, one of equations (107), (107a), (114), or (114a), and equations 
(96b) and (96c); the orthogonality relation between W and F, equa- 
tion (99a); and the two equations relating V and velocity, (102a) 
and (102b). 

Direct problem. - In the direct problem, two alternative procedures 
may be used.  If the shape of the S2 surface (determined from the 
data obtained on S^ surfaces) is considered as given in the present 
S2 solution, two additional relations between the n- or F-components 
completely define the problem. The procedure of calculation is as . 
follows: 

(1) Use equations (20) and (21) to determine the variation of 
s and I. 

(2) Compute Wu from the orthogonality relation as follows: 

¥u = - ( — Wr + — Tf\ U   \nu r  % 7 

(3) Compute Fu from equation (96b). 

(4) Solve the principal equation. 

(5) Obtain Wr and Wz from equations (102). 

If only the tangential velocity or the relation (109) is taken 
from the Si solutions of the previous cycle and is considered as 
given in the present Sg solution, one more relation is available * 
between the F-components such as that which exists between the 
f-components on the S]_ surface: . 

F • V X F = 0 (115) 



MCA TN 2604 47 

Writing equation (115) in scalar form and using the relations (31) 
and (91) give 

F 
" •) '   £ (ft?) (^a) 3r \Fur 

o       By integrating along a constant z-line, equation (115a) provides the 
N       following relation to determine the value of Fr to he used in the 

principal equation from the values of Fu and Fz: 

Fur (115b) 

If Fr = 0, at 

Fr=*ur     £ [=r-    dz (115c) 
z 

The procedure of calculation is as follows: 

(1) Use equations (21) and (99a) to determine the variation of s 
and I. 

(2) Compute Fu and Fz from equations (96b) and (96c). 

(3) Compute Fr from equation (ll5b) or (115c). 

(4) Solve f from the principal equation. 

(5) Compute ¥r and Wz from equations (l02a) and (102b). 

Inverse problem. - In the inverse or design problem of a finite 
number of thick blades, in addition to the blade-thickness distribution 
or its equivalent B, either equation (103) or (109) is prescribed on 
a mean stream surface S2^m. It may appear that still another rela- 
tion can be prescribed on the mean surface. The differentials of the 
coordinates of the surface are now governed by 

Fr dr + Fur dcp + Fz dz = 0 (116) 
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however, and, in order that this differential equation will lead to an 
integral surface of the form represented by equation (28), F must 
satisfy the condition of integrability as given by equation (115) 
(reference 34). An expression similar to equation (115a) for the case 
of an infinite number of blades was first pointed out by Bauersfeld 
(reference 2) in a discussion of the Lorenz paper (reference l).  In to 
effect, it restricts the freedom that the designer has in prescribing u\ 
the velocity components of the fluid on the surface. Hence, in the 
inverse problem of a finite number of thick blades, in addition to the 
blade thickness distribution or its equivalent B, the designer can 
specify only one relation on the mean stream surface, which relation may 
be either the tangential velocity as given by equation (103), the flow 
angle between the tangential and axial velocity as given by equa- 
tion (109), the axial velocity, or any other reasonable relation that 
will lead to a solution of the set of equations. 

In the preceding consideration, the hub and casing shapes are also 
prescribed by the designer in the inverse problem. Alternatively, the 
prescription of the hub shape can be replaced by a prescription of 
another relation at the casing, thereby fixing the shape of and the flow 
along S2 m a_t the casing entirely. The flow is then extended to the 
hub and the last streamline gives the hub contour (reference 19). 

Approximations Involved in Through-Flow Theory 

When the equations previously derived in reference 18 for a large 
number of thin blades are compared with the corresponding equations 
derived herein along a stream surface, the two are obviously exactly 
the same if the ordinary derivatives used in reference 18 are replaced 
by the present partial derivatives following the stream surface, and 
if B is equal to 1 or if the variation of B along the flow path 
is zero.  In the interpretation of the through-flow solutions as the 
flow along a mean stream surface (which divides mass flow into two equal 
parts circumferentially) or as the flow along the mean channel surface 
(geometrical mean), the first difference can easily be removed by simply 
interpreting the values obtained in the solution as those along the sur- 
face rather than in the meridional plane. The second condition, however, 
is satisfied only when the circumferential variation of all the velocity 
components approaches zero, or when the circumferential derivative of 
the tangential velocity and the ratios of nr and nz to nu approach 
zero (see equation (94)). 

Besides the use as a limiting solution in general and to give cer- 
tain trends where the contribution due to the finite number of blades 
is small or constant, the through-flow calculation should be properly 
modified by the factor B in its application to actual turbomachines 
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of a finite number of thick "blades. As B can tie physically inter- 
preted as the ratio of the local angular thickness of the stream sheet 
to its inlet value, a good approximate value can be obtained by solving 
the two-dimensional flows on a number of stream surfaces of revolution 
starting at different radii at the inlet. For.the subsonic flow in the 
turbine cascade reported in reference 29 and for the supersonic flow in 
two impulse bladings investigated in reference 30, the reductions in 
angular thickness from the inlet value along the mean streamline are 
seen to be a chordwise average of 4 and 9 percent more than the reduc- 
tion in the channel width, respectively. Also, in the subsonic case, 
the influence is extended a certain distance outside the blade row. The 
inclusion of this factor B, even if it is approximate, should give a 
much closer answer than that obtained with B taken as 1. 

In this interpretation of the infinite number of blades solution 
as the solution of through flow along a particular stream surface 
between two adjacent blades, the distributed "body force" F has a 
definite meaning, as given by equation (97).  (For an infinite number 
of blades, F becomes the blade force.) For blades with large turning 
and large radial twist, as in a free-vortex turbine, the influence of 
the radial component of F on the flow is not negligible. 

CIRCUMFEREMTIAL VARIATION OF FLUID PROPERTIES BY USE OF POWER SERIES 

In general, the blade-to-blade variations of fluid properties are 
to be obtained from calculations on Si surfaces. When the twist of 
the S]_ surface is large, some other method of obtaining the blade-to- 
blade information is desirable.  For subsonic irrotational absolute 
flow, this information can be obtained by extending the solution 
obtained on the mean stream surface in the circumferential direction by 
the use of power series (without the consideration of the shape of the 
Si flow surfaces).  The various derivatives involved in the series are 
obtained from the flow condition on the mean stream surface. The higher 
the solidity and the thinner the blade sections, the fewer are the terms 
required for a given accuracy.  Results obtained in references 29 and 36 
indicate that only three terms in the series will be required to give 
sufficient accuracy for high-solidity turbines and centrifugal com- 
pressors. 

The series method will also be used in one of the two methods of 
the inverse solution in which the flow obtained on the mean stream sur- 
face is extended out circumferentially. 

Denoting the absolute vorticity  V*V by | and using the rela- 
tions (16), (91), and (97) in equations (19) give 
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^r - r L_5qp~ "      öz   J _ r 
ö»z      1 3(Vur)      Fz    3», 

Sz- " P^r W (ll7a) 

&u ~ ST" " 57" 
aw,,    aw,,    F7   3WT-    FT-   dw9 

az 3r        Fur 5qT " Fur dcp (11713) 
iS 

• i p<y > ÖW: 
5
z ~ rL    ör 

r 
5qT 

1 9(y)      Fr_Ö¥u      l^r 
r      3r      + Fur otp~ ~ r o"qjT I11?0) 

From the preceding equations, 

™r_ 3W2      Frer + Fu|u + FJZ      Fz    3(Vur)   <  Fr  
F„r  3r    Fur  3z 

a(vur) 
9z   3r (118) 

■u -u1 

This equation means that the apparent vorticity, which is obtained by 
differentiating the velocity on the mean stream surface with respect to 
the coordinates, is not zero even if the absolute vorticity is zero or 
tangent to the mean stream surface. Substituting equations (ll7a) 
and (117c) into equation (94) results in 

i öwu =  
Fu2 pv_ 9(y)   ^z_ 9(y) 

r 5cp~      ~ pT" |_Fur      3r Fur      3z 
F     F 

+ C + J- ir - £  |z F u Lu 
(119) 

Substituting equation (119) into equations (ll7a) and (117c) gives 

l^al 9(V>       .        F 

r öcp        r      3z r 
■uFzfFr   a(vur)   FZ   a(y) 
F2    [_Fur      3r        Fur      az 

1 ÖWr = i a(Vur) F£, 
r ckp"      r      3r ^z ~    F2 

+ C + 
■pi     «• 
■^u 

upr    3(Yu 
[_Fur      3r FU   *     a- 

(120) 
F. 

Fur      8z N 
(121) 

The first derivatives of    h    or    p,  and    p    can be obtained as follows: 
From equation (97), 

ldh_Tds=^Löp_=_F 
r 5cp ~ r S<p     pr 5<p      "u (122) 
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Or from equation (9), 

löh_löl      /^rÖWr      V3HU      Vz3W^ 
r §cp     r cKp " \r   dip- +   r d~cp~       r   Sp"/ 

With v-   known, -J^-    can "be obtained by using equation (12b): 

1 5 In p = _1_ öh      lös* 
r      dcp a2r d"q> " r d~Cp~ 

(122a) 

(123) 

The second derivatives of the fluid properties with respect to Cp 
can be obtained in a similar manner.  Differentiating the continuity- 
equation (l) with respect to cp and dividing by r give 

! a2(p¥rr)  . ! d2(p¥j  ±  d2(.pWz) 
+ — -—r-—~ + — -^—^=- = o 

,2 ör dcp dcp2 dz dcp (124) 

Equations (9l) are used to change equation (124) to 

1 ^\) 1 

" r2 

9   d(p¥rr)   |   Fr d  (p¥r) 

_3r      dcp        '  Fu      ^2   _ 
_1 

r 
a d(Pwz) ( FZ   d2(Pwz) 

r2      dcp2     ' _3z      dcp      '  Fur      ^   J 

(124a) 

Differentiating equations (ll7a) and (117c) with respect to cp and 
dividing by r result in 

1_ ö2^ _ i d£r  _i_ d2(Vr) 

r2 ^cp2   r 5cp~  r2 dz dcp 
l^r , 1 9 

5(V) , 1 FzS2wu 
r dcp   r2 3z  ckp    r2 Fu ^^ 

(125) 

i *\ 

r2 dcp2 

i *tz, i \(y> 
r dcp        r2    dr dcp 

i!k'      1     9  5(Vur)        1   Fr ^u 
r dcp    +r2 3r      dcp      + r2 Fu ^2 

(126) 
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Substituting equations (125) and (126) into (124a) and noting that F 
is perpendicular to W give 

n    d2W F 2 
1   u    u _      Ju 

r2 öcp2    ~      F2 

F£._ ^ 5(Vur)       F^ ± 5(Vur)       j_ ^ 5(pWrr) 

2 3r      öcp     + F r az      §cp     +    r2 8r        §cp 
LFur       

Y   "u °"  WY    pr 

1  a d(pWZ)  2C c3 In p  ^ö£r  ^r_ ^z 
pr az  §cp    r   dcp  + Fur 5qT " Fur oXp" 

(127) 

Equation (103) is to be used in equations (lOl) and (102) to obtain the 
second derivatives of ¥r and Wz.  The second 
p are obtained from equations (9) and (123) as 

r2 öcp2 r2 ÖCF2       2r2 dcp2 

1   ö2 In p 

r2      dq£ 

1     ö2 h       1   d2s 
22-x2     ~    2^2 a r    öcp         r    dcp 

1 d2h  1 d2I   1 d2W2 ,12Q, 

(129) 

Similar formulas can be obtained for higher-order derivatives. At 
a fixed value of r and z, the velocity components, h, and p at a 
short angular distance away from the mean stream surface Sg can then 
be obtained by a Taylor series: 

(cp-Cp )2         (cp_cp )3 
q(cp) = q(9m) + (<P-%) q'(c^) +  =2— q"(cpm) +  J2_ q."(cpm) + . . . 

(130) 

An alternative way to obtain density is to use equation (145) (to be 
given subsequently) after the other fluid properties are determined. 
Obviously, the preceding equations are most useful when the flow is 
isentropic with vorticity equal to zero.  Otherwise, the variation of 
vorticity along the mean stream surface has to be determined first. 
At present no such method is available.  It appears, however, that the 
method of Squire and Winter (reference 37) and Hawthorne (reference 38) 
may be generalized to compressible flow for the variation of vorticity 
along a mean stream surface in turbomachines. 
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STEPS FOE COMPLETE SOLUTIONS OF THREE-DIMENSIONAL 

DIRECT AND INVERSE PROBLEMS 

In general, the solution of the three-dimensional direct and inverse 
problem involves the use of both Si and S2 surfaces.  In the direct 
problem, starting with assumed flow surface, the solution is obtained 
through the successive (alternate) use of the two kinds of flow sur- 

M       face, although a satisfactory approximate solution may be obtained in 
oi       one or two complete cycles. The use of an approximate method of solu- 

tion to get a good starting value on each surface will shorten the length 
of computation. For inverse problems, the process is usually shorter. 
The calculation will start on the S2^m surface on which either a con- 
dition on the fluid velocity or the shape itself is prescribed and an 
estimated value of B for a desirable blade thickness distribution is 
used.  After the solution on the S2 m surface and its shape are obtained, 
the blade coordinates are obtained by extending the solution circumferen- 
tially either by the series method or by the method given in reference 35 
using the variation of the distances between the streamline obtained in the 
Sg m surface.  Because it is important only to obtain the right order of 
magnitude and the right kind of variation (three-dimensionally) of the 
blade thickness, the first solution may give satisfactory results.  The 
velocity distribution on the blade surface is controlled directly by the 
one relation specified on the Sg m surface and the variation of B. 

Suitable procedure is subsequently suggested for the solutions of 
direct and inverse problems with either irrotational or rotational inlet 
absolute motion, at design or off-design flow conditions, for turbo- 
machines having various wall configurations (fig. 6). 

Direct Problem 

Axial turbomachines with nontapered straight walls. - In this type 
of machine, it is desirable to start the computation on Si surfaces, 
because with short axial blade length, the total deviation of the S]_ 
surface from the cylindrical surface is relatively small, especially 
along the hub and casing walls. 

The following steps are therefore suggested: 

(a) In the initial calculation, the flow surfaces are assumed to be 
cylindrical and the set of equations (60) to (65) derived for cylindrical 
flow or the approximate method given in reference 39 can also be used to 
obtain the streamlines and circumferential variation of fluid state on 
Si surfaces at three or more .radii. 
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(b) From the data obtained in step (a), an S2 stream surface about      „ . 
midway between two "blades is constructed "by connecting the streamlines 
which divide mass flow on the Si surfaces in the same percentages. The 
direction numbers of the surface and the Wu and Wz at the surface 
obtained in step (a) give the starting value of Wr by use of equa- 
tion (31). The factor B is evaluated either directly from the angular       $ 
distances between streamlines obtained in (a) or according to equa- § 
tion (100a) with C evaluated from the information obtained in (a).  Its 
value at other radii is obtained by interpolation or by proportioning 
according to the channel-width ratio.  Calculation of the flow on this 
surface is then made by the use of equations (9l) to (115). For subsonic 
flow with irrotational inlet flow, the solution obtained on the S2,m 

surface is easily extended circumferentially by series expansion using 
equations (117) to (130). The values obtained can be further adjusted 
to fit the given blade (reference 39) and can be used in a more accurate 
second calculation on Si surfaces in the next step. For subsonic flow 
with large rotationality at the inlet and supersonic flow with signifi- 
cant check caused by the blade entrance angle, it is more desirable to 
obtain the information on circumferential variations by the use of two 
or more S2 surfaces at or near the two blade surfaces. 

(c) The radial variation of fluid state computed from the solution 
obtained in step (b) or the variation of the radial distance between 
streamlines is used to determine the factor b and used in the principal     >■ 

equation (48) for a more accurate determination of Si surfaces and the 
flows thereon. The general equations (32) to- (5l) should now be used 
for the Si surfaces located between hub and casing, if not at or near 
these walls. 

(d) The calculation of S2 surfaces can again be repeated and so 
forth. 

If the inlet flow is quite rotational, so that the Si surfaces 
along the walls and the S2 surface near the blades may turn around the 
corners, these surfaces should be chosen at a short distance from these 
boundary walls as shown in figure 3. By the use of these two kinds of 
surface, the secondary flow caused by a rotational inlet profile or by 
the turning of the blades is included in the complete solution. 

Axial turbomachines with tapered or curved walls. - The steps 
involved here are quite similar to those of the preceding case,, except 
that for the initial calculation of S|_ surfaces along or near the 
tapered or curved wall, either equations (52) to (59) are to be used, or 
equations (13*) to (23') given in reference (35) can be used in the 
manner given in reference (39). 
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■ , Radial- and mixed-flow type turbomachines with curved walls. - In 
this type of machine it is not desirable to start the computation on the 
Si surfaces because the flow surfaces near the walls may deviate con- 
siderably from surfaces of revolution because of the long flow path.  On 
the other hand, the solidity of the blade is very high and the blade 
section is uniformly thin. ' As a result, the shapes of the S2 surfaces 
are,closely related to the blade.shape and the factor B can be esti- 

M       mated relatively.accurately from the blade thickness distribution.  The 
o       following steps are therefore suggested: . ' 
01 

(a) The computation is begun on the 'S2,m surface. For subsonic 
irrotational inlet flow, computation need be made only on a mean Sg 
surface and the solution can be extended out circumferentially by equa- 
tions (117) to (130). The approximate method given in reference 40 can 
also be used in the initial calculation.  For subsonic flow with rota- 
tional Inlet profile and for supersonic flow it may again be more 
desirable to compute two or more Sg surfaces between the blades. 

(b) The data obtained in step (a) may be used to make calculations 
for three or more Si surfaces between hub and casing walls. 

(c) The processes (a) and (b) can be repeated until the desired 
accuracy is reached. 

Inverse Problem 

Conditions prescribed on mean stream surface. - In the inverse or 
design problem it is most convenient to consider a mean stream surface 
of the S2 kind about midway between two neighboring blades to be 
.designed (figs. 3 to 5).  From the results developed previously for 
such surfaces, it is seen that in addition to the factor B, the 
designer can specify only one relation among the fluid properties on 
that surface, which can be either a velocity component, a relation 
between two velocity components, or one other reasonable condition. 
The factor B essentially controls the blade thickness distribution, 
whereas the relation specified on the surface essentially controls the 
mean camber surface of the blade.  From a consideration of strength and 
Mach number in general, and the requirement of coolant passage in the 
case of cooled turbine blades, the designer always has a very good idea 
of what kind of blade-thickness distribution he wants. ¥ith this thick- 
ness distribution, the ratio of pitch minus circumferential thickness 
of blade to pitch can be obtained. After correcting this ratio with 
some known relations between this ratio and B (such as those given in 
references 29, 30, and 35), especially near the leading and trailing 
edges, it can be taken as the factor B in equation (lOl).  Then from 
the type1 of velocity diagram or a certain feature of blade shape 
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desired, a relation along the mean stream surface Sg m can be pre- . „ 
scribed and coordinates of the mean surface and the flow on that surface 
can he solved at the same time by equations (lOl) to (115).  It may be 
noted that in this process, the designer still has, in general, a little 
freedom in choosing the value of zQ in equation (115c). For a rota- 
ting blade, z0 is usually taken somewhere near the center of gravity 
of the blade section, whereas for the stationary blade, the position of        N 
zn can be utilized to control the magnitude and distribution of Fr g 

CJ1 in the most favorable manner. 

Boundary conditions for mean stream surface. - In the solution of 
this S2 m surface, the boundary conditions are a little different for 
subsonic'and supersonic flow. For subsonic flow, not only the varia- 
tions of the stream function at stations far upstream and downstream 
are given, the meridional contours of the hub and casing walls are also 
given (these contours can be determined by approximate calculations 
from blade row to blade row such as given in references 17 and 41). For 
supersonic flow, the variation of the stream function and its normal 
derivative is prescribed on an initial curve, which is not a character- 
istic curve.  Then either the hub and casing contours are prescribed, 
or only the casing contour but with one more velocity component along 
the casing is prescribed.  In the second case, the flow is extended 
toward the axis of the machine and the hub contour is determined by the 
shape of the last streamline for the required mass flow. 

Determination of blade shape. - For subsonic irrotational flow, 
the solution obtained on the mean stream surface can be extended out ^ 
circumferentially by using equations (117) to (130).  The blade sur- 
face can be then determined as follows: 

(a) The position of the mean stream surface is first determined 
by solving the circumferential coordinate as a function of the axial 
coordinate at several radii.  With the circumferential coordinate 
measured from the radial element of the surface chosen at z0, equa- 

tion (116) gives, at a constant r: 

r%i " (*%) z=zr ^) dx (131) 
■^u/m 

(b) The blade coordinates  (r,cp) will first be chosen at one 
station z0 as follows (see fig. 9):  The mass flow passing through 
the z0 plane between the mean stream surface and the tentative suction 

or pressure surface is computed as follows: 
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% = L       p Wzr dr dcp (132) 

MP = L       p Wzr dr dCp (133) 
J ^m d rh 

Because of the inaccuracy in B for the hlade-thickness effect, the 
mass flow obtained will be a little different from that required.  The 
blade coordinates cpg and cpp as functions of z0 and r are modi- 
fied until the mass flow checks.  It is not important that Mg and Mp 
are a little different from one-half the required mass flow as long as 
their sum is equal to the total mass flow, but once the division is 
chosen, it should be maintained at other z-stations. 

(c) The blade coordinates obtained at z = z0 are extended 
upstream and downstream according to the velocity components evaluated 
at the surface.  For example, for a short distance z - z0 away, .the 
changes in the blade surface coordinates r and cp are 

r = ro + Uf-J    (z - zo) (134) 

* = *° + (?^1 (Z - Z°> <135) 

After r and Cp are thus obtained, the total mass flow may be checked 
again by equations (132) and (133). 

When the blade coordinates are obtained close to the leading and 
trailing edges, they can be faired in according to some standard shapes. 
A blade shape is therefore obtained in which the three-dimensional flow 
of the fluid is considered.  The right kind of three-dimensional blade- 
thickness distribution is obtained and a good knowledge about the flow 
on the blade surface is also available at the same time.  The data 
obtained in the solution can also be used directly for a more accurate 
and detailed determination of the velocity variation around the nose of 
the blade, for a relatively quick check of the series approximation, or 
for improvement, if necessary, of the inverse solution throughout by 
the method given earlier for solving the direct problem.  This process 
seems to be the quickest way of establishing some standard three- 
dimensional flow variations for typical designs of blades from which a 
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good approximate method for routine design calculations can be estab- 
lished and of providing a basis on which the viscous flow along the 
blade surfaces and hub and casing walls can be analyzed.  The results 
given in references 29 and 35 indicate that for blades of high 
solidity, three terms in the series give sufficiently accurate c 
results. t 

For subsonic flow with vorticity, the circumferential extension 
cannot be accurately made at the present because of lack of adequate 
methods for the determination of vorticity variation along the mean 
stream surface (S2 m). An estimate of this variation can be made, 
however, and the solution can be cheeked later. An alternative method 
is to use the shapes of the streamlines and the distances between them 
obtained in the S2 m solution and to design the blades with the 
assumption that the flow surfaces are surfaces of revolution by the 
method given in reference 35.  Inasmuch as the rotationality of inlet 
flow is usually serious only in later stages of a multistage compressor 
where the hub-tip radius ratio is high, this assumption is reasonably 
good. 

For supersonic flow, the flow in the mean stream surface S2 m i-s 

also determined first.  If the shock due to the entrance wedge angle 
is small, an approximate solution of the blade shape can also be 
obtained by the series method neglecting the finite jump across the 
shock or using an estimated value. The improvement of the flow varia- 
tion for the resultant blade is then more important than that in the 
subsonic case.  Local modification of the blade shape can also be made 
if the velocity distribution on the blade obtained is unsatisfactory. 
A better method is to use the shape of the streamlines and the dis- 
tances between them obtained in the Sg m solution and to design the 
blades assuming flow surfaces of revolution according to the method 
given in reference 30. 

The processes described here for the three-dimensional solution 
have been and are now being used to analyze the compressible flow 
through a number of compressors and turbines. Some of the results 
obtained are given in reference 42. 

GENERAL METHODS OF SOLVING PRINCIPAL EQUATION 

In the solution of the Si surface for the direct problem and of 
the Sg surface for both the direct and inverse problems, the main 
calculation is the solution of the principal equation, which is a 
second-order, nonlinear partial differential equation in two independent 
variables.  The case when the principal equation is elliptic will be 
considered first. 
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Elliptic Case 

A common form of the principal equation is written as follows: 

nai   3£2        35       3T1
2       aTi 

S In bp öi|r  , /„ ö In lap d\|A   .  %, v 

M2(bp)2 = 0 (136) 

In equation (136), \]r and b are used for both Si and S2 surfaces; 
T] denotes Cp for the Si surface and r for the $2 surface; 
£ denotes z or r for the Si surface, and z for the S2 sur- 
face. The values of r\} \}  J, and K for each individual case are given 
in the following table: 

Case Surface Coordinates J K L Equation 
n i 

1 

2 

3 

Si (general) 

S^ (surface of 
revolution) 

Si (cylindrical 
surface) 

cp 

z 

z 

• z 

0 

X_ 
r 

0 

1 
r2 

1+X2 

nu 

"rr 

0 

0 

(48a) 

(59a) 

(65a) 

r2 

1 

r2 

4 

5 

6 

S^ (general) 

Si (surface of 
revolution) 

Si (radial 
plane) 

cp 

cp 

cp 

r 

r 

r 

0 

1 
r 

1 
r 

1 
r2 

1 +x~2 

0 

0 

0 

(75a) 

(81a) 

(86a) 

r2 

_1_ 
-yCl 

7 

8 

S2 (Vur given) 

s2 Up specifiedJ 

r 

r 

z 

z 

0 

0 

1 

1 + g2 

_1 
r 

r  & 3r 

(107a) 

(114a) 
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The equation is nonlinear even in the case of incompressible flow.  In 
the numerical computation, it is convenient to rewrite the equation in 
the following form: 

4+J|i + K3?! + Lai = N (137) 
H2 ?       an2       ÖTi 

where 

w      v a la bp ajr ^ a In bp 3i|r      .. , M2(bp)2 N = K -^j-H. J. + -^ -£ . Mlbp - _—     (138) 

37} 

and is evaluated from any approximate solution at the start of the cal- 
culation and from the values of i|r and p obtained in the previous 
cycle during the calculation.  For simple boundary shapes for an Sg 
surface and simple functions of J, K, and L, it is possible to find 
a Green's function G(T],.(;, X, y) with its proper characteristics so 
that the solution of the problem can be written in the following form 
(for example, see reference 10): 

* (*)>£) = J J   G in,   i,  x, y) H (x, y) dx dy     (139) 

If the boundary wall is arbitrarily curved, it is necessary in this 
method to use the technique of conformal transformation to render the 
given boundary into a simpler one, such as cylindrical. Because this 
process will involve a numerical solution of the Laplace equation with 
the given boundary shape, it may be better to solve the given equa- 
tion (137) directly with the given shape by the numerical method. 
Furthermore, this method will be the only choice in the general case 
where J and K are complicated functions, which makes the task of 
obtaining the proper Green's function very difficult if not impossible. 

Finite-difference form of principal equation. - In order to solve 
the given equation (137) directly, the general numerical differentiation 
formula for first and second derivatives with the function value given at 
unequally spaced grid points using second- and higher-degree polynomial 
representation as given by reference 26 is used to give the finite- 
difference expressions conveniently and accurately at the grid point 
near the curved boundary.  If the value of any quantity q on the 
stream surface under investigation corresponding to a number of values 
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m of one of the independent variables x not equally spaced, denoted by 

x°, x1, . . . x1, . . . x11, is given, the mth derivative of q (on 
the surface) with respect to x when x = x* may be written 

LTj 

- (^q)   ±-   y    VqJ+V (140) x=xx    Z_/ n j     n \   .   ' 
j=0 

The differentiation coefficients B and the coefficients of the deriva- 
tives in the first or second remainder term have been explicitly 
expressed in reference 26 in terms of the spacings between the successive 
grid points by using polynomials of the second, third, and fourth degree 
for general nonuniform spacing throughout and for the special case near 
a tapered or curved boundary where only the first or last spacing is 
different from the others. For the special case, these coefficients 
have also been computed for different ratios of the distance between the 
boundary and the nearest point and the other spacing, from 0.1 to 1.29 
in intervals of 0.01, and are given in reference 26. For spacing ratios 
lying between these tabulated intervals, B can be obtained from the 
values tabulated by applying interpolation formulas given in refer- 
ence 43, or by the direct use of the formulas.  Differentiation coeffi- 
cients B for equal intervals using various degrees of polynomials are 
given earlier by Bickley in reference 44. 

In the present fluid-flow problems, a large region must be covered 
in order to get to the boundary conditions which are always given at 
stations far upstream and downstream of the blade row.  In order to 
reduce the labor of computation, it is desirable to. attempt to reduce 
the number of grid points required for a given accuracy by using a 
degree of polynomial higher than the customary second.  A study of the 
expression of the remainder terms (see reference 26) and actual experi- 
ence in the present problem show that, in most cases, the use of the 
fourth-order polynomial will reduce the necessary number of grid points 
to less than one-fourth that required by the second-order polynomial. 
Near the leading and trailing edges of the flow on surfaces of the Si 
kind, the variation of i|r is such that accuracy is obtained most 
effectively by using small spacing there.  In such case, the grid 
pattern should be chosen at these regions first, and either be kept 
constant or be continuously increased toward the inlet and exit stations. 

With the grid pattern and the order of polynomial representation 
selected, the coefficients B at each point can be obtained from refer- 
ences 44 and 26 for equally and unequally spaced points.  Then the dif- 
ferential equation (137) at any grid point whose i|r value is ty1 is 
replaced by the following algebraic equation: 
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n n 
X) (J1 M + K1 M) ¥  + JZ    („Ai + >i) tk - Ni = 0  (141) 
j=0      J      J      k=0    J  n J 

where ijf1 and ljr1 denote the values of i|r on the surface considered o 
corresponding to the grid points along constant £ and constant T] 

N 

lines, respectively.  (See figs. 10 and 11.) It should he noted that, 
in accordance with the definition of the special partial derivatives, 
\|r values are those on the surface S; whereas the grid spacings 
involved are just the distances along the i\-    and £-coordinates. 

Boundary conditions. - In flow on surfaces of the first kind, the 
flow picture is as shown in figure 9. Arbitrarily assigning a value 
i|rj on the suction surface, the value ty-j-j on the pressure surface of 

the next blade is determined from the mass flow passing between them. 
These two values are used as the end values in equation (l4l) for grid 
points next to the boundary.  Outside the blade region, however, the 
position of the dividing streamline is not known.  Instead, there is 
the condition that the flow repeats itself or the i|r-value increases 
by llfTj-ifrj when cp increases by an amount equal to the pitch angle 

(2rt divided by number of blades).  It is then convenient to draw any 
two parallel lines up to the leading and trailing edges of the blade and 
consider only the grid points lying between the two reference lines. * 
For the cp-derivative at a point T|T

C
, for example, the required \|rt> 

value is obtained from ty?, which is a pitch angle away from y0 

(fig. 10), as 

*b = ¥ -  (tjj - *j) (142) 

This relation is used between the inlet station 1-1 and the leading edge 
of the blade and between the exit station 2-2 and the trailing edge of 
the blade when the Sj_    surfaces are assumed to be surfaces of revolu- 
tion. For the general Sj_ surface where its deviation from the surface 
of revolution is considered, modification has to be made in places such 
as shown in the exit portion of figure 9. Because of the twist of the 
flow surface, the dividing line from station 1-1 to the leading edge of 
the blade becomes two separate lines from the trailing edge of the blade 
to the exit station 2-2, accompanied by trailing vortices. Although the 
flow still repeats itself circumferentially every pitch angle, the use 
of equation (142) for the derivative at a point close to these lines 
will give inaccurate results.  In these cases, it is better to use the 
end-point differentiation formulas to evaluate the derivatives. 
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At the Station 1-1 sufficiently far upstream of the blades, the 
flow condition can be taken as uniform and the flow angle, equal to the 
given inlet angle. For the point h, the \|r value at point i 
upstream can be obtained from the given flow angle as follows: 

5„ tan an-       , 

CO o 
tn / o 

=    1   - * tan a± ) \|rs + ( j* tan a-J ijr11 (143) 

Thus, the required i|r value upstream of station 1-1 can be replaced by 
the values on that station, and only the \|r values downstream of 
station 1-1 will be involved in the'finite-difference expression (141). 

An alternative method to take account of the inlet condition is 
as follows:  If the first station 1-1 is chosen sufficiently far from 
the blades, the variation of the stream function upstream of the 
station 1-1 is linear in the circumferential direction.  The value of 
the stream function, however, depends on the inlet angle.  If solutions 
for a range of inlet angle are desired, they can be obtained by speci- 
fying a number of sets of linearly varying stream functions upstream of 
station 1-1 as fixed boundary values.  The slope of the streamlines 
obtained in the solution at the inlet then gives the value of the inlet 
angle.  If, however, the solution for a certain specific inlet angle 
is desired, the streamline obtained in the solution must be adjusted 
according to that inlet angle, for example, as jk in figure 10 is 
adjusted to position . gk, thereby obtaining an improved set of boundary 
values of the stream functions to be used in the next calculation. 
This method is, of course, not so accurate and convenient as the previ- 
ous method for obtaining a solution for a given inlet angle, but is 
desirable in the matrix solution because the inlet angle is then not 
involved in the matrix factorization, thereby making the same matrix 
factors usable for a range of inlet angle and Mach number. 

At the exit station far downstream' of the blade, the same methods 
can be applied.  For a blade having a sharp trailing edge, the Kutta- 
Joukowski condition can be used and the correct exit angle far down- 
stream is the one that gives the flow at the trailing edge satisfying 
that condition. For round trailing edges, either the position of the 
stagnation point is assumed or some available empirical rule for the 
exit angle is used.  If the calculation is made to compare with certain 
experimental results, the measured exit angle may be used. 
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In flow along surfaces of the second kind, the "boundary walls 
extend all the way to the inlet and exit stations with the \|r values * 
given on the walls (fig. ll). Across the inlet and exit stations, the 
flow is considered to be uniform and parallel to the walls so that the 
required i|r value outside the station can be obtained by an equation N 

similar to equation (143). For the inlet station where the axial S 
velocity is radially uniform and there is no radial or tangential 
velocity, \|r varies as the square of the radius. For the exit station 
with a certain radial gradient in fluid state, the radial variation of 
i|f can be determined from the corresponding radial variation in axial 
velocity and density. 

Solution of finite-difference equations. - With the grid system 
and the degree of polynomial representation chosen and the boundary 
conditions taken into account, the problem remaining is the solution 
of the set of linear algebraic equations (141) written for all interior 
grid points. For a small number of solutions with a given blade, the 
best method is the relaxation method (references 25, 33, 45, and 36). 
A modification of this method involving the use of higher-order differ- 
ences is suggested by Fox (reference 46).  Formulas and tables of 
coefficients obtained in reference 26 enable the direct use of higher- 
degree polynomials for problems with curved boundaries (reference 29). 
For the present flow problems, it is necessary to include a large 
domain to get to the boundary conditions that are given at places far 
from the blades, and the use of higher-degree polynomials whenever it 
is applicable greatly reduces the numerical work. 

If a number of cases are to be solved for a given geometry (same 
blades for Si surface and same hub and casing shapes for Sg sur- 
face), it is advantageous to solve the problem on a large-scale digital 
computing machine.  If a high-speed digital machine is available, the 
simultaneous equations may be solved by Liebmann1s iterative process, 
which is the most simple to set up. For quicker results or when only a 
relatively slow-speed machine is available, the matrix process discussed 
in reference 26 is most suitable.  In a calculation of the S2 m sur- 
face for a gas turbine and in a calculation of the Si surface of 
revolution for a centrifugal compressor, the coefficient matrices 
(about 400 and 200 interior grid points for the two problems, respec- 
tively, and the fourth-degree differentiation formula are used) were 
factorized into the lower and upper triangular matrices on an IBM CFEC 
and an IBM 604, respectively, in about 60 hours. The determination of 
i|r for a given set of values of N took only 2 hours on the CFEC for 
the gas-turbine problem.  The gas-turbine problem was also worked out 
on an Univac; the factorization took only 11 minutes and the determina- 
tion of ijr, 2.5 minutes. The increasing availability of these high- 
speed large-scale digital calculating machines will render the suggested 
method of solving the three-dimensional-flow problem a practical one. 
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General table for evaluation of density from T|r-derivatives. - 
After the i|r values are obtained at the end of each cycle of calcula- 
tion, the velocity components are evaluated from the derivatives of i]r 
with respect to the coordinates, after the density is obtained as 
follows:  From equations (46), (57), (74), (80), (85), (l05), and (113), 
the relation between h or p and ^-derivatives can be put into a 
common form as 

h = I + 
üo2r2 X -!cbp)-*["(i-I| + -r 

at 
BUJ 

(144) 

The quantities represented by X, as well as by 
ferent cases, are given in the following table: 

€, T), and £ for dif- 

Case Surface Coordinates k X e Equation 
n i 

1 Sj_  (general) cp z 1 IW2 2 r l (46) 

.2 S]_ (surface of 
revolution) 

cp z (1 + Ä2) 0 l (57) 

3 S]_ (cylindrical 
surface) 

cp z 1 0 l 

4 S]_ (general) QP r 1 |wz
2 

■ l (74) 

5 

6 

S]_ (surface of 
revolution) 

Sj_ (radial 
plane) 

cp r 

r 1 

0 

0 

l 

l 

,     (80) 

(85) 

7 

8 

S2 (Vur given) 

S2(^ given) 

r 

r 

z 

z 

1 

1 + g2 
2 Wu 

o, 

r 

r 

(105) 

(113) 

With the ^-derivatives evaluated, if an exact determination of h 
or p from the preceding equation considering the variation of specific 
heat with temperature is desired, the Keenan and Kay gas tables (refer- 
ence 47) can be used. With two or three readings of h and p  (or its 
reciprocal, specific volume), the correct value of h or p satisfying 
equation (144) is found. For most cases where the temperature range 
involved is not too large the use of an appropriate average value of y, 
X,  may give accurate enough results. With the use of an average y, 
the density at any point in the flow field can be related to the inlet 
total value by equation (12a) as 
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3T,i 

'h_ 

1 
r-i   sT;i-s i + 

u02r2 

- Kig) +asr 
2iif-i 

sT,i-s 

H, 
2(T3p)^ % 

v 

(145) 
in o 
CO 

In order to make out a general table for the calculation of density from 
the \|r-derivatives, the preceding equation is rewritten as 

2 

2 
2 k - ff'1 (146) 

where 

2 = W) 
I + i a>2r2 

2 

EU 

X s   -s* 
T,i 

and 

K    = \r 9T] 
lif + (i ff 

y+1 

-1 

H, 

The functional relations between 2 and $ are given in table I for y 
equal to 1.4 and 4/3, respectively. From the given inlet condition and 
the given X values, the variation of 

r+i 

(2 Hi)"1^^) 

22  \ r-i 
,i + <2_E_ _ x 

-2 |     2 

Hi 

is first computed and plotted as an auxiliary graph or table as a func 

tion of 
/ 2 2    \ 
I—=— - X J . A similar auxiliary graph or table is prepared 

for the variation of 

■ T , 1 2 2 I + -g- (x> r X 

1 

7-i 

H< 

/CD r 
as a function of I—s— - X 

value of 

/(D2r2   \ 
I—s— - X J. Anytime during the calculation, from the 

f (jo r     \ / V—s— - X I at each point (in general, X changes during 

successive improvements between S-j_ and Sg surfaces), 
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to 
o 
en 
en 

\ a?x2  - X\ 

_ T+1 

r-i 

(2H1)-
1(DpT>1)-

2,I + 2 

is read from the first graph or table and is combined with 

and the entropy factor to obtain $ .  The value of 2 is then read from 
tables I or II.  After the value of 

T , i 2 2 v\ r-i I + 77 CD r - X 

is read from the second curve or table, the density ratio is obtained. 

Hyperbolic Case 

In the hyperbolic case, the main problem is the solution of the 
following principal equation, written in a common form for the two kinds 
of flow surface: 

j il  + 2 K gjr + L £| +  a* + N ^ m  0 
9^ v a£3T) "*" v2 a 2   a£ + v an (147) 

with the initial condition that i|r and its normal derivative are given 
on a curve which is not a characteristic curve. From equation (147), 
the equation of the characteristic curve is 

?$ -2K|v|] + La0 
The slopes of the characteristic curves are 

V ($1-5-5'^ 

(148) 

(149a) 
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^-^Sl-f^A/^ä ("») 
The coefficients J, K, L, and  v and the independent variables to; 

T) and £ for the eight cases considered are given in the table on the        ST; 

following page. Using these values of J,  K,  and L, Ai and A 2 are ^ 

also expressed in terms of the velocity components. Except for cases 2, 

5,  and 8, they can also be expressed in the usual trigonometric form, 
tan (Xi u). The values of  X  and u are also given. 

Changes of ^-derivatives along characteristic curve. - When the 
reference point on the T}£-plane moves along the image of the charac- 
teristic curve in the T](;-plane corresponding to a small change in t,, 

d£, the change in TJ is &T\  = $ d£. Because of these two small 

changes, the change of any quantity q on the surface is (fig. 12) 

or 

äa = 3a + A aq /151% 
d£     3£ + V 8T] ^lbl) 

Hence along    A-^ 

d at 
df 3£  " 

a a\|r    Ai  33^ 
~ a£ a£     v  3TI a£ 

_ aj£+
Ai a2+ 

3^2        u    353TJ 

d ai|r . 
dlarj 

z _a_ at + ^1 _a_ ajr 
at; 3T]     U 3{; a^ 

_ 32i|r   + 
Ai 32^ 

aCari     v  8T)2 

(152) 

(153) 

From equations (152) and (153), 

aft   =_d_ai_Ai a^ 
§55^    d£ at]    v   BT]2 t154' 

3^2     d£ 3£      u   dC ari +Vv/     •> ^155) 
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Substituting equations (154) and (155) into equation (147) gives 

T .1 Ü + ( ZK     JA ) l± 2i + (JA 2     PICA, +T'>^^- + M?t+^?i-n J a£ a£ + ^ZK    JAi; v dT all + tJAi   " 2KAi + L) ^ ^2 + M äT + v a^i " ° 

(156) 

By virtue of equations  (l49a)  and (149b),  equation (156) "becomes 

49i + ^A.3i + Mal+JL?l = o (157a) 
dl a£ + v  ^ ail    J a£    Jv an u    } 

Similarly, along the second characteristic curve A2> 

dat    Ai dat.Ma*     Hai ,      , 
dTaI + TdTal[+jaI+j^a^"0 (157b) 

Starting from two points a and b a short distance apart on the 
initial curve, equations (149a) and (l49b) give the tangent to the 
characteristic curves at these two points and equations (157a) and 
(157b) give the new value of d\|r/ä£ and cty/ÖT] at the point of inter- 
section C of the two tangent lines (fig. 11). The auxiliary equa- 
tions corresponding to the particular problem are then used to deter- 
mine other pertinent quantities at the point C.  This process is to 
be carried step-by-step downstream. 

Changes of fluid velocity and direction along characteristic 
curve. - When the characteristic curve hits the boundary wall, it is 
more convenient to express equations (157a) and (157b) in terms of the 
magnitude of the fluid velocity and the flow direction.  In order to 
do this, the definitions of i|r-derivatives are first put in a common 
form for all cases as 

St = bp Wf r (158) 

§| = - bp W^ € (159) 

where  £ equals 1 and r for the S-j_ and Sg surfaces, respectively. 
By the use of equation (45), 
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d   ?i v    TT   c   ld ln "b   ■    1   cQi      d-s*      d^Wn       d In £ \ gj §£ - - bp ¥T] €    [—£- + _ ^ - _ + _Tr_i + __) 

(160) 

d   at     .     TT (dint   t   1   dh      ds * ,   d In ^      d In r\ 
di^ = ^w^\-^r- + i2di-dr + -dr-i + -dT->) 

(161) 

Substituting equations  (160)  and (161)  into equation (156)  yields 

/A    „       TT \   /d In b       1   dh      ds*\      A    dw£ (A2 Vg - ^) (-^- + - ^- -g-j■+  (A2 _k 
d¥^ 
d£   J + 

Let 

A TJ       d   ln   r TT       d   1U   €      ■     TT       N rr       M _ / n £ o \ 

¥., = w sin X 
' (163) 

¥f = w cos  X 

and 

h = i + <££.: i A.T..2 ^ „ 2     -•        "-2-2 
\ (WC

2 + ^2 +.¥|2)  = x + o^f _ 1  (v2 + ^2) 

(164) 

where    W*    is equal to    Wr, ¥r,  0, ¥z, ¥z,  0, ¥u,  and   ¥u    for cases 1 

to 8,  respectively.     By the use of equations  (163),   (164),  and (144), 
equation (162)  can be written 

l/vf \ dw      cosx  + A2  sinX  dx     _1_ _d_  I        co2r2      w£2 

y\a2"./cL5     A2'COB x-  sin xcL£  "-a2 d.5   \ 2      "    2 

1 In b   , , 1    /. d la 6        » v d la r\      ds * 
-dr"+A2 cosX  - sinX^inX   "IT"" ^ COsX~dT7 + dr + 

IM sinX - N cos X     n ,_._x 

J  A2  cosx- sin X tl65) 
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A similar expression can be obtained for the change in w and  X 
along A2 by replacing A2 by Aj_ in the preceding equation. For 
cases 1, 3, 4, 6, and 7, A can be written as tan (X ±. u), where u is 

equal to sin_J- -, through purely trigonometric transformations as w 
follows: 

A = 
K + /^K2-JL     WT] \  * a^/wZ-aZ 

W^ 

L\3 
o 

sin X cos X ±  sin u cos^i _ sin 2X ± sin 2\x 

cos2 X - sin2 n     " cos 2X + cos ^ 

_  sin (X+|i) cos (X-u)   cos (X+M-) sin (X-n) 
~ cos (x+ii) cos (x-n) or cos (X+p.) cos (x-u). 

= tan (X+u) or tan (X-u) 

For these cases, equation (165) can then be written (compare refer- 
ence 30): 

ldw-,    dX  .2 — -ry +  tan u -Ts- + tan^ u w d£      ^ dQ      . 
_1_ _d_ /   oftr2  WX 

; a2 d^V      2   - - 

In b  ds*   1  / . 
d£  + d£ + A cos X - sin X lSln X 

d In e   .     d In r\ , 
- A cos X———1 + 

d£ ä-i E> 

1 M sinX 
J A cosX 

N cos X 
sin X (166) 

where the minus and plus signs on the second term and subscripts 2 
and 1 for X    in the last two terms are used along characteristics Al 

and Ag, respectively. Equations (165) and (166) are most useful when 

the characteristic hits the boundary wall.  For a direct problem, the 
slope there is known from the given blade shape and for an inverse or 
design problem, either the desired turning at the boundary or the 
velocity on the boundary is prescribed.  With either dX or dw known, 
dw or dX is evaluated from equation (162) or (165) (only one charac- 
teristic equation is used at the wall). For convenience of setup in 
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calculation, this system can also be used for interior points. . Except 
that more terms are involved in the present problem and that w takes 
different meanings in different cases, the procedure of calculation is 
very much the same as ordinary two-dimensional flow described in refer- 
ences 32 and 30. 

CONCLUDING REMARKS 

A general theory of steady three-dimensional flow of a nonviscous ■ 

fluid in subsonic and supersonic turbomachines having arbitrary hub and 
casing shapes and a finite number of thick blades is presented.  The 
solution of the three-dimensional direct and inverse problem is 
obtained by investigating a combination of flows on relative stream 
surfaces whose intersection with a z-plane either upstream of or some- 
where inside the blade row form a circular arc or a radial line.  The 
equations obtained to describe the fluid flow on these stream surfaces 
show clearly the several approximations involved in ordinary two- 
dimensional treatments.  They also lead to a solution of the three- 
dimensional problem in a mathematically two-dimensional manner through 
an iterative process.  The equation of continuity is combined with the 
equation of motion in either the tangential or the radial direction 
through the use of a stream function defined on the surface, and the 
resulting equation is chosen as the principal equation for such flows. 
The character of this equation depends on the relative magnitude of 
the local velocity of sound and a certain combination of velocity com- 
ponents of the fluid. A general method to solve this equation by both 
hand and machine computations when the equation is elliptic or hyper- 
bolic is described.  The theory is applicable to both irrotational and 
rotational absolute flow at the inlet of the blade row and to both 
design and off-design operations. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, July 13, 1951 
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TABLE I - GENERAL DENSITY TABLE 

(a)    r = 1.4 

■('-?)" 

2 

f-1 

5cp 1 
Z 

2 

0.001 1.0005007 0.99949955 
.002 1.0010027 .99899830 
.003 1.0015061 .99849616 
.004 1.0020109 .99799314 
.005 1.0025171 .99748922 

0.006 1.0030246 0.99698452 
.007 1.0035335 .99647894 
.008 1.0040438 .99597249 
.009 1.0045555 .99546516 
.010 1.0050687 .99495686 

0.011 1.0055833 0.99444770 
.012 1.0060993 .99393768 
.013 1.0066168 .99342669 
.014 1.0071357 .99291486 
.015 1.0076561 .99240207 

0.016 1.0081779 0.99188844 
.017 1.0087012 .99137386 
.018 1.0092260 .99085834 
.019 1.0097522 .99034199 
.020 1.0102800 .98982460 

0.021 1.0108093 0.98930629 
.022 1.0113401 .98878706 
.023 1.0118724 .98826690 
.024 1.0124063 .98774573 
.025 1.0129417 .98722365 

0.026 1.0134786 0.98670066 
.027 1.0140171 .98617666 
.028 1.0145572 .98565167 
.029 1.0150989 .98512569 
.030 1.0156421 .98459881 

0.031 1.0161869 0.98407094 
.032 1.0167333 .98354210 
.033 1.0172814 .98301217 
.034 1.0178311 .98248128 
.035 1.0183825 .98194932 

0.036 1.0189354 0.98141649 
.037 1.0194900 .98088260 
.038 1.0200462 .98034775 
.039 1.0206042 .97981176 
.040 1.0211638 .97927482 

0.041 1.0217252 0.97873675 
.042 1.0222882 .97819773 
.043 1.0228530 .97765759 
.044 1.0234194 .97711652 
.045 1.0239876 .97657433 

0.046 1.0245575 0.97603112 
.047 1.0251292 .97548680 
.048 1.0257027 .97494137 
.049 1.0262780 .97439485 
.050 1.0268550 .97384733 

0.051 1.0274338 0.97329872 
.052 1.0280145 .97274893 
.053 1.0285970 .97219805 
.054 1.0291813 .97164610 
.055 1.0297674 .97109308 

5cp 1 
I I 

0.056 1.0303554 0.97053890 
.057 1.0309453 .96998357 
.058 1.0315371 .96942708 
.059 1.0321307 .96886954 
.060 1.0327263 .96831077 

0.061 1.0333238 0.96775086 
.062 1.0339232 .96718983 
.063 1.0345246 .96662757 
.064 1.0351279 .96606419 
.065 1.0357332 .96549961 

0.066 1.0363404 .96493392 
.067 1.0369496 .96436702 
.068 1.0375609 .96379885 
.069 1.0381742 .96322948 
.070 1.0387895 .96265894 

0.071 1.0394069 0.96208713 
.072 1.0400263 .96151415 
.073 1.0406478 .96093991 
.074 1.0412714 .96036442 
.075 1.0418971 .95978768 

0.076 1.0425249 0.95920970 
.077 1.0431548 .95863049 
.078 1.0437869 .95804996 
.079 1.0444212 .95746812 
.080 1.0450576 .95688506 

0.081 1.0456962 0.95630069 
.082 1.0463370 .95571503 
.083 1.0469800 .95512808 
.084 1.0476253 .95453976 
.085 1.0482729 .95395006 

0.086 1.0489227 0.95335910 
.087 1.0495748 .95276678 
.088 1.0502292 .95217311 
.089 1.0508859 .95157809 
.090 1.0515449 .95098174 

0.091 1.0522063 0.95038397 
.092 1.0528701 .94978478 
.093 1.0535362 .94918428 
.094 1.0542048 .94858229 
.095 1.0548758 .94797890 

0.096 1.0555492 0.94737413 
.097 1.0562251 .94676788 
.098 1.0569034 .94616026 
.099 1.0575842 .94555119 
.100 1.0582675 .94494067 

0.101 1.0589534 0.94432862 
.102 1.0596418 .94371513 
.103 1.0603327 .94310022 
.104 1.0610263 .94248371 
.105 1.0617225 .94186569 

0.106 1.0624213 0.94124619 
.107 1.0631227 .94062520 
.108 1.0638268 .94000264 
.109 1.0645336 .93937852 
.110 1.0652431 .93875285 

5cp 1 Z 

0.111 1.0659554 0.93812555 
.112 1.0666704 .93749672 
.113 1.0673882 .93686627 
.114 1.0681087 .93623430 
.115 1.0688320 .93560073 

0.116 1.0695582 0.93496548 
.117 1.0702883 .93432857 
.118 1.0710192 .93369008 
.119 1.0717540 .93304993 
.120 1.0724918 .93240806 

0.121 1.0732326 0.93176447 
.122 1.0739763 .93111924 
.123 1.0747230 .93047232 
.124 1.0754728 .92982361 
.125 1.0762256 .92917321 

0.126 1.0769815 0.92852106 
.127 1.0777405 .92786714 
.128 1.0785026 .92721149 
.129 1.0792678 .92655410 
.130 1.0800362 .92589489 

0.131 1.0808079 0.92523380 
.132 1.0815828 .92457092 
.133 1.0823610 .92390616 
.134 1.0831424 .92323964 
.135 1.0839272 .92257118 

.136 1.0847153 .92190089 

.137 1.0855068 .92122868 

.138 1.0863017 .92055458 

.139 1.0871000 .91987858 

.140 1.0879018 .91920061 

0.141 1.0887071 0.91852069 
.142 1.0895160 .91783875 
.143 1.0903284 .91715487 
.144 1.0911444 .91646898 
.145 1.0919640 .91578111 

0.146 1.0927873 0.91509116 
.147 1.0936143 .91439916 
.148 1.0944450 .91370512 
.149 1.0952795 .91300896 
.150 1.0961178 .91231070 

0.151 1.0969599 0.91161035 
.152 1.0978058 .91090792 
.153 1.0986557 .91020326 
.154 1.0995095 .90949646 
.155 1.1003674 .908.78737 

0.156 1.1012292 0.90807618 
.157 1.1020950 .90736280 
.158 1.1029650 .90664708 
.159 1.1038391 .90592913 
.160 1.1047174 .90520888 

0.161 1.1055999 0.90448633 
.162 1.1064866 .90376151 
.163 1.1073777 .90303426 
.164 1.1082731 .90230468 
.165 1.1091730 .90157261 
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TABLE I - GEMERAL DENSITY TABLE - Continued 

(a) r = 1.4 

22 = [1 
s2i 

Concluded 

. _2_ 
f-1 

5cp 1 z 
0.166 1.1100772 0.90083825 
.167 1.1109859 .90010143 
.168 1.1118991 .89936218 
.169 1.1128170 .89862035 
.170 1.1137394 .89787611 

0.171 1.1146665 0.89712932 
.172 1.1155983 .89638000 
.173 1.1165348 .89562815 
.174 1.1174762 .89487364 
.175 1.1184225 .89411649 

0.176 1.1193737 0.89335670 
.177 1.1203298 .89259431 
.178 1.1212910 .89182915 
.179 1.1222573 .89106126 
.180 1.1232287 .89029064 

0.181 1.1242053 0.88951724 
.182 1.1251871 .88874108 
.183 1.1261742 .88796209 
.184 1.1271667 .88718022 
.185 1.1281647 .88639540 

0.186 1.1291681 0.88560773 
.187 1.1301771 .88481708 
.188 1.1311917 .88402346 
.189 1.1322120 .88322682 
.190 1.1332381 .88242709 

0.191 1.1342699 0.88162438 
.192 1.1353077 .88081848 
.193 1.1363514 .88000948 
.194 1.1374012 .87919724 
.195 1.1384571 .87838180 

0.196 1.1395191 0.87756318 
.197 1.1405873 .87674131 
.198 1.1416619 .87591607 
.199 1.1427429 .87508748 
.200 1.1438304 .87425548 

0.201 1.1449245 0.87342004 
.202 1.1460252 .87258116 
.203 1.1471327 .87173873 
.204 1.1482470 .87089276 
.205 1.1493681 .87004329 

0.206 1.1504963 0.86919011 
.207 1.1516316 .86833324 
.208 1.1527741 .86747265 
.209 1.1539238 .86660835 
.210 1.1550810 .86574015 

0.211 1.1562457 0.86486808 
.212 1.1574179 .86399217 
.213 1.1585978 .86311229 
.214 1.1597855 .86222840 
.215 1.1609811 .86134046 

0.216 1.1621847 0.86044843 
.217 1.1633964 .85955226 
.218 1.1646164 .85865183 
.219 1.1658447 .85774718 
.220 1.1670816 .85683812 

5cp 1 
z Z 

0.221 1.1683271 0.85592468 
.222 1.1695813 .85500683 
.223 1.1708444 .85408445 
.224 1.1721164 .85315759 
.225 1.1733975 .85222612 

0.226 1.1746880 0.85128987 
.227 1.1759880 .85034881 
.228 1.1772974 .84940305 
.229 1.1786165 .84845240 
.230 1.1799455 .84749677 

0.231 1.1812846 0.84653605 
.232 1.1826339 .84557021 
.233 1.1839935 .84459923 
.234 1.1853636 .84362300 
.235 1.1867445 .84264136 

0.236 1.1881362 0.84165435 
.237 1.1895390 .84066180 
.238 1.1909530 .83966370 
.239 1.1923785 .83865987 
.240 1.1938156 .83765030 

0.241 1.1952645 0.83663490 
.242 1.1967255 .83561351 
.243 1.1981988 .83458605 
.244 1.1996846 .83355242 
.245 1.2011831 .83251255 

0.246 1.2026946 0.83146628 
.247 1.2042193 .83041353 
.248 1.2057574 .82935423 
.249 1.2073092 .82828823 
.250 1.2088750 .82721539 

0.251 1.2104551 0.82613556 
.252 1.212049 7 .82504868 
.253 1.2136591 .82395460 
.254 1.2152836 .82285320 
.255 1.2169235 .82174434 

0.256 1.2185792 0.82062783 
.257 1.2202510 .81950353 
.258 1.2219392 .81837132 
.259 1.2236442 .81723102 
.260 1.2253663 .81608251 

0.261 1.2271059 0.81492559 
.262 1.2288634 .81376010 
.263 1.2306393 .81258578 
.264 1.2324338 .81140261 
.265 1.2342475 .81021027 

0.266 1.2360808 0.80900860 
.267 1.2379342 .80779738 
.268 1.2398081 .80657644 
.269 1.2417032 .80534543 
.270 1.2436198 .80410428 

0.271 1.2455586 0.80285263 
.272 1.2475200 .80159036 
.273 1.2495048 .80031705 
.274 1.2515134 .79903260 
.275 1.2535466 .79773660 

5tp 1 
T Z 

0.276 1.2556050 0.79642881 
.277 1.2576894 .79510887 
.278 1.2598004 .79377654 
.279 1.2619389 .79243139 
.280 1.2641055 .79107321 

0.281 1.2663012 0.78970153 
.282 1.2685268 .78831602 
.283 1.2707833 .78691623 
.284 1.2730715 .78550184 
.285 1.2753927 .78407223 

0.286 1.2777476 0.78262718 
.287 1.2801376 .78116602 
.288 1.2825638 .77968831 
.289 1.2850276 .77819340 
.290 1.2875299 .77668099 

0.291 1.2900725 0.77515023 
.292 1.2926566 .77360066 
.293 1.2952840 .77203146 
.294 1.29 79563 .77044196 
.295 1.3006755 .76883127 

0.296 1.3034429 0.76719893 
.297 1.3062609 .76554385 
.298 1.3091314 .76386526 
.299 1.3120571 .76216195 
.300 1.3150400 .76043314 

0.301 1.3180832 0.75867745 
.302 1.3211890 .75689398 
.303 1.3243612 .75508102 
.304 1.3276021 .75323774 
.305 1.3309163 .75136205 

0.306 1.3343067 0.74945288 
.307 1.3377787 .74750779 
.308 1.3413356 .74552558 
.309 1.3449840 .74350327 
.310 1.3487277 .74143951 

0.311 1.3525748 0.73933065 
.312 1.3565299 .73717505 
.313 1.3606032 .73496814 
.314 1.3648001 .73270804 
.315 1.3691338 .73038880 

0.316 1.3736105 0.72800841 
.317 1.3782479 .72555888 
.318 1.3830531 .72303804 
.319 1.3880508 .72043473 
.320 1.3932489 .71774684 

0.321 1.3986833 0.71495813 
.322 1.4043617 .71206727 
.323 1.4103403 .70904873 
.324 1.4166227 .70590426 
.325 1.4233067 .70258926 

0.326 1.4303770 0.69911639 
.327 1.4380371 .69539235 
.328 1.4461815 .69147614 
.329 1.4554567 .68706956 
.330 1.4650468 .68257205 
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TABLE I - GENERAL DENSITY TABLE - Continued 

(b) r = 4/3 

zz = 
Zz) 

1  I 

6cp 1 
I Z 

0.001 1.0005006 0.99949965 
.002 1.0010026 .99899840 
.003 1.0015060 .99849626 
.004 1.0020107 .99799333 
.005 1.0025168 '.99748952 

0.006 1.0030242 0.99698492 
.007 1.0035330 .99647944 
.008 1.0040432 .99597308 
.009 1.0045548 .99546585 
.010 1.0050678 .99495775 

0.011 1.0055822 0.99444879 
.012 1.0060980 .99393896 
.013 1.0066152 .99342827 
.014 1.0071339 .99291663 
.015 1.0076541 .99240404 

0.016 1.0081756 0.99189070 
.017 1.0086985 .99137651 
.018 1.0092230 .99086129 
..019 1.0097490 .99034513 
.020 1.0102764 .98982813 

0.021 1.0108053 0.98931021 
.022 1.0113357 .98879136 
.023 1.0118676 • .98827159 
.024 1.0124010 .98775090 
.025 1.0129359 .98722930 

0.026 1.0134723 0.98670679 
.027 1.0140104 .98618318 
.028 1.0145499 .98565876 
.029 1.0150910 .98513335 
.030 1.0156336 .98460705 

0.031 1.0161778 .98407975 
.032 1.0167236 .98355148 
.033 1.0172710 .98302222 
.034 1.0178200 .98249199 
.035 1.0183707 .98196069 

0.036 1.0189229 0.98142853 
.037 1.0194767 .98089539 
.038 1.0200322 .98036121 
.039 1.0205894 .9 7982597 
.040 1.0211482 .97928978 

0.041 1.0217087 0.97875255 
.042 1.0222708 .97821438 
.043 1.0228346 .97767518 
.044 1.0234001 . .97713494 
.045 1.0239673 .97659369 

0.046 1.0245363 0.97605131 
.047 1.0251070 .97550792 
.048 1.0256794 .97496352 
.049 1.0262536 .97441802 
.050 1.0268295 .97387151 

0.051 1.0274072 0.97332392 
.052 1.0279867 .97277523 
.053 1.0285679 .97222556 
.054 1.0291510 .97167471 
.055 .1.0297359 .97112279 

6tp 1 
z Z 

0.056 1.0303226 0.97056980 
.057 1.0309112 .97001565 
.058 1.0315016 .96946044 
.059 1.0320939 .96890409 
.060 1.0326880 .96834668 

0.061 1.0332840 0.96778814 
.062 1.0338819 .96722846 
.063 1.0344817 .96666766 
.064 1.0350835 .96610563 
.065 1.0356872 .96554249 

0.066 1.0362928 0.96497824 
.067 1.0369003 .96441288 
.068 1.0375099 .96384622 
.069 1.0381215 .96327838 
.070 1.0387350 .96270945 

0.071 J.. 0393506 0.96213924 
.072 1.0399681 .96156796 
.073 1.0405876 .96099550 
.074 1.0412093 .96042169 
.075 1.0418331 .95984664 

0.076 1.0424589 0.95927043 
.077 1.0430867 .95869308 
.078 1.0437167 .95811440 
.079 1.0443488 .95753449 
.080 1.0449830 .95695337 

0.081 1.0456194 0.95637093 
.082 1.0462580 .95578720 
.083 1.0468987 .95520226 
.084 1.0475416 .95461603 
.085 1.0481868 .95402842 

0.086 1.0488341 0.95343963 
.087 1.0494837 .95284948 
.088 1.0501355 .95225807 
.089 1.0507896 .95166530 
.090 1.0514460 .95107119 

0.091 1.0521047 0.95047575 
.092 1.0527657 .94987897 
.093 1.0534290 .94928087 
.094 1.0540947 .94868137 
.095 1.0547628 .94808046 

0.096 1.0554332 0.94747825 
.097 1.0561061 .94687456 
.098 1.0567813 .94626958 
.099 1.0574590 .94566314 
.100 1.0581391 .94505533 

0.101 1.0588217 0.94444608 
.102 1.0595068 .94383538 
.103 1.0601944 .94322324 
.104 1.0608846 .94260959 
.105 1.0615773 .94199452 

0.106 1.0622726 0.94137795 
.107 1.0629704 .94075997 
.108 1.0636709 .94014041 
.109 1.0643740 .93951938 
.110 1.0650797 .93889687 

6tp 1 
Z 

z 

0.111 
..112 
.113 
.114 
.115 

1.0657881 
1.0664991 
1.0672128 
1.0679293 
1.0686486 

0.93827281 
.93764730 
.93702025 
.93639158 
.93576130 

0.116 
.117 
.118 
.119 
.120 

1.0693706 
1.0700954 
1.0708230 
1.0715534 
1.0722867 

0.93512951 
.93449612 
.93386115 
.93322461 
.93258641 

0.121 
.122 
.123 
.124 
.125 

1.0730229 
1.0737620 
1.0745040 
1.0752489 
1.0759968 

0.93194656 
.93130508 
.93066196 
.93001723 
.92937079 

0.126 
.127 
.128 
.129 
.130 

1.0767477 
1.0775017 
1.0782587 
1.0790187 
1.0797818 

0.92872267 
.92807278 
.92742122 
.92676800 
.92611304 

0.131 
.132 
.133 
.134 
.135 

1.0805481 
1.0813175 
1.0820901 
1.0828659 
1.0836449 

0.92545626 
.92479776 
.92413746 
.92347538 
.92281152 

0.136 
.137 
.138 
.139 
.140 

1.0844271 
1.0852126 
1.0860015 
1.0867937 
1.0875893 

0.92214590 
.92147843 
.92080904 
.92013783 
.91946473 

0.141 
.142 
.143 
.144 
.145 

1.0883882 
1.0891906 
1.0899965 
1.0908058 
1.0916187 

0.91878982 
.91811295 
.91743414 
.91675347 
.91607079 

0.146 
.147 
.148 
.149 
.150 

1.0924351 
1.0932551 
1.0940787 
1.0949059 
1.0957368 

0.91538619 
.91469960 
.91401103 
.91332050 
.91262792 

0.151 
.152 
.153 
.154 
.155 

1.0965714 
1.0974098 
1.0982520 
1.0990979 
1.0999477 

0.91193332 
.91123662 
.91053784 
.90983706 
.90913413 

0.156 
.157 
.158 
.159 
.160 

1.1008014 
1.1016591 
1.1025207 
1.1033863 
1.1042559 

0.90842908 
.90772182 
.90701245 
.90630090 
.90558719 

0.161 
.162 
.163 
.164 
.165 

1.1051296 
1.1060074 
1.1068894 
1.1077756 
1.1086660 

0.90487125 
.90415308 
.90343263 
.90270990 
.90198491 
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TABLE I - GEHERAL DENSITY TABLE - Concluded 

(b) r  = 4/3 

z2- 

- Concluded 

2 

_2_\ r-i 

Z2 

in 
in o w 

6<p 1 
Z 

Z 

0.166 1.1095607 0.90125759 
,167 1.1104597 .90052795 
.168 1.1113630 .89979602 
.169 1.1122708 .89906163 
.170 1.1131830 .89832489 

0.171 1.1140997 0.89758574 
.172 1.1150210 .89684410 
.173 1.1159468 .89610006 
.174 1.1168773 .89535350 
.175 1.1178125 .89460442 

0.176 1.1187524 0.89385283 
.177 1.1196971 .89309868 
.178 1.1206466 .89234197 
.179 1.1216010 .89158266 
.180 1.1225603 .89082074 

0.181 1.1235246 0.89005617 
.182 1.1244940 .88928887 
.183 1.1254685 ■.88851887 
.184 1.1264481 .88774618 
.185 1.1274329 .88697075 

0.186 1.1284230 0.88619250 
.187 1.1294184 .88541146 
.188 1.1304192 .88462758 
.189 1.1314255 .88384078 
.190 1.1324372 .88305117 

0.191 1.1334545 0.88225862 
.192 1.1344774 .88146313 
.193 1.1355061 .88066458 
.194 1.1365405 .87986306 
.195 1.1375807 .87905851 

0.196 1.1386269 0.87825081 
.197 1.1396790 .87744005 
.198 1.1407372 .87662610 
.199 1.1418015 .87580897 
.200 1.1428719 .87498870 

0.201 1.1439486 0.87416515 
.202 1.1450317 .87333827 

. .203 1.1461212 .87250807 
.204 1.1472172 .87167452 
.205 1.1483197 .87083762 

0.206 1.1494289 0.86999727 
.207 1.1505449 .86915339 
.208 1.1516677 .86830602 
.209 1.15279 75 .86745504 
.210 1.1539342 .86660054 

0.211 1.1550780 0.86574240 
.212 1.1562290 .86488057 
.213 1.1573873 .86401501 
.214 1.1585530 .86314567 
.215 1.1597262 .86227249 

0.216 1.1609069 0.86139552 
.217 1.1620953 .86051462 
.218 1.1632916 .85962969 
.219 1.1644958 .85874075 
.220 1.1657080 .85784776 

6cp 1 
Z 

Z 

0.221 1.1669283 0.85695068 
.222 1.1681568 .85604946 
.223 1.1693937 .85514399 
.224 1.1706391 .85423424 
.225 1.1718931 .85332015 

0.226 1.1731558 0.85240170 
.227 1.1744273 .85147884 
.228 1.1757079 .85055140 
.229 1.1769977 .84961933 
.230 1.1782966 .84868275 

0.231 1.1796049 084774148 
.232 1.1809228 .846 79540 
.233 1.1822504 .84584450 
.234 1.1835879 .84488866 
.235 1.1849354 .84392786 

0.236 1.1862930 0.84296207 
.237 1.1876610 .84199111 
.238 1.1890394 .84101502 
.239 1.1904285 .84003365 
.240 1.1918285 .83904689 

0.241 1.1932395 0.83805472 
.242 1.1946617 .83705705 
.243 1.1960954 .83605371 
.244 1.1975406 .83504476 
.245 1.1989976 .83403003 

0.246 1.2004666 0.83300943 
.247 1.2019479 .83198282 
.248 1.2034416 .83095017 
.249 1.2049480 .82991133 
.250 1.2064673 .82886623 

0.251 1.2079997 0.82781478 
.252 1.2095455 .82675683 
.253 1.2111050 .82569224 
.254 1.2126783 .82462101 
.255 1.2142658 .82354292 

0.256 1.2158677 0.82245790 
.257 1.2174844 .82136576 
.258 1.2191161 .82026642 
.259 1.2207632 .81915969 
.260 1.2224259 .81804549 

0.261 1.2241045 0.81692372 
.262 1.2257994 .81579417 

- .263 1.2275110 .81465665 
.264 1.2292396 .81351105 
.265 1.2309855 .81235725 

0.266 1.2327492 0.81119501 
.267 1.2345310 .81002421 
.268 1.2363314 .80884462 
.269 1.2381508 .80765606 
.270 1.2399896 .80645838 

0.271 1.2418483 0.80525133 
.272 1.2437273 .80403478 
.273 1.2456273 .80280835 
.274 1.2475485 .80157204 
.275 1.2494916 '.80032551 

6cp 1 
Z 

Z 

0.276 1.2514571 0.79906854 
.277 1.2534457 .79780081 
.278 1.2554579 .79652213 
.279 1.2574944 .79523217 
.280 1.2595556 ,79393081 

0.281 1.2616424 0.79261762 
.282 1.2637555 .79129230 
.283 1.2658957 .78995450 
.284 1.2680636 .78860398 
.285 1.2702602 .78724028 

0.286 1.2724861 0.78586320 
.287 1.2747424 .78447222 
.288 1.2770299 .78306702 
.289 1.2793498 .78164705 
.290 1.2817028 .78021207 

0.291 1.2840902 0.77876149 
.292 1.2865130 .77729490 
.293 1.2889726 .77581168 
.294 1.2914700 .77431144 
.295 1.2940068 .77279347 

0.296 1.2965843 0.77125722 
.297 1.2992041 .76970200 
.298 1.3018675 i76812732 
.299 1.3045765 .76653228 
.300 1.3073325 .76491635 

0.301 1.3101379 0.76327843 
.302 1.3129943 .76161793 
.303 1.3159043 .75993368 
.304 1.3188697 .75822502 
.305 1.3218935 .75649059 

0.306 1.3249779 0.75472957 
.307 1.3281263 .75294044 
.308 1.3313412 .75112225 
.309 1.3346266 .74927324 
.310 1.3379854 .74739231 

0.311 1.3414224 0.74547734 
.312 1.3449408 .74352715 
.313 1.3485465 .74153913 
.314 1.3522432 .73951195 
.315 1.3560384 .73744224 

0.316 1.3599361 0.73532867 
.317 1.3639457 .73316702 
.318 1.3680720 .73095568 
.319 1.3723269 .72868935 
.320 1.3767161 .72636617 

0.321 1.3812551 0.72397923 
.322 1.3859506 .72152644 
.323 1.3908236 .71899844 
.324 1.3958818 .71639304 
.325 1.4011550 .71369691 

0.326 1.4066513 0.71090824 
.327 1.4124156 .70800691 
.328 1.4184546 .70499260 
.329 1.4248420 .70183220 
.330 1.4315749 .69853139 
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Figure 1.   - Relative stream surface S-^. 
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Figure 3.  - Intersecting S^ and Sg surfaces in a blade re K 
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Figure 4. - Mean stream surfaces for axial-flow gas turbine. 
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Figure 5. - Mean stream surfaces for inlet stage of axial-flow compressor. 
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(a) Single-stage    (b) Two-stage turbine, 
turbine. 

(c) Seven-stage axial-flow compressor. 

(d) Axial-discharge 
mixed-flow impeller. 

(e) Radial-discharge 
mixed-flow impeller. 

(f) Centrlfuga] 
compressor. 

Figure 6. - Axial-, radial-, and mixed-flow turbomachines. 
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r+ —^-dm 

8qT^ 

a(pWr) 
pWr +      ar    

to 

,i        3(pWu), 
PWU +      3z    dcp 

(a)  Sj_    surface with   cp    and    z    as 
Independent variables. 

(b) S.^    surface with    r   and   cp   as 
independent variables. 

+ |Icir+
3I<iz 

r        3z 

a(pw
z) 

pW7 + 5-dz 
3z 

|     I    Pwr    | 

1     '    dzKl '    az'    i 
K '   T= r(Aq>) 

(c) S2 surface with r and z as 
independent variables. 

Figure 7. - Elements of stream sheet. 
y 
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Figure 8. - Orthogonal coordinates for surface of revolution. 
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Figure 9. - Eelation between mean stream surface and 
blade surfaces. 
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Figure 10.  - Grid system and 'boundary conditions for general    S-,   surface 
(elliptic case). 
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Figure 12. - Characteristic system for hyperbolic case. 

NACA-Längley - 1-17-52 - 1000 
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