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Fig. G.I Surfaces 2, and 21 172

Fig. H.I Modified Supersonic Source 180

Fig. H.2 Surface Z rZ.-t-Z, + Z, 180

XI



LIST OF SYMBOLS

a speed of sound

a M speed of sound in undisturbed air

a. . see Eq. 6.27

b span of wing (Eq. 7.2)

b. see Eq. 6.21

B = \Jn2 - 1

c chord of wing (Eq. 7.2)

c speed of surface of body at P = P* (Eq. C.25)

CQ see Eq. C.55

c pressure coefficient (Eq. 1.18)

c^ = -Ac = c . - c lifting pressure coefficient (Eq. 7.21)

c. . see Eq. 6.22

c. . see Eq. 7.9

d ,d see Eq. E.2m p

D see Eq. C.54

E domain function (Eq. 3.1 and Eq. 3.33)

F sum of nonlinear terms (Eq. 1.8)

f "good function" (see Eq. A.I and A.2)

f see Eqs. D.53 and D.55n ^

F^ see Eq. 4.9
A

F see Eqs. D.34 and D.56

F see Eqs. D.41 and D.57

G Green's function

h thickness of wing (Eq. 7.1)



H(T) Heaviside step function (Eq. 5.21)

H see Eq. C.31

H see Eq. C.54

I see Eq. 6.12

I (H) Modified Bessel function of first kind
n

of order n

I see Eq. D.2w

I see Eq. D.4

I see Eq. D.20

see Eq. D.22

I. see Eq. D.2 4

I5 see Eq. D.28

I3 see Eq. D.2 9
A
ID see Eq. E.3

Ic see Eq. E.27
o
*
I, see Eg. E.19
ft
I_ see Eq. E.30

I see Eq. E.23

1^ see Eq. C.16

j = ^ i ' y i \ z i ' Jacobian of transformation given by
3(S, . 1, » S,)

• Eq. 2.26

Jw see Eq. 6. 13

J see Eq. D.ll
VV

A

J see Eq. D.13

K lifting surface Kernel function (see Eq. 5.18)

xiv



K_ see Eq. 5.15
£t

K (x) modified Bessel function of second kind
n

of order n

K unit vector in direction Z (see Eq. C.29)

K- see Eq. C.54
A
K see Eq. D.46

L Layer function (Eq. A.4)

L, CK) Struve function (Eq. D.66)

M = U. /Q-* Mach number for undisturbed flow

"n. normal to the surface Z at P,

N = 2 . NX . NY (Eg. 7.17)

NX, NY number of boxes in direction X, Y

p pressure

p., pressure in undisturbed air

p see Eq. 5.7

p see Eq. 6.63

P s (X,Y,Z) control point

P, = CX, , YI , Z.. ) dummy point of integration on Z

(k \
P center of box Z.

PA control point on Z (see Eq. C.I)

Q see Eq. 2.12

Q normal component of perturbation velocity

(Eq. 1.13)
~j
Q see Eq. 4.1
n

Q see Eq. 4.6

xv



A
Q see Eq. 6.49

r = [tx - x^2 + (y - yx)
2 + (2 -

(x - xxr +p [( y - yx) + (z - zxr

i
o o 5 5 1 1 / 7

U - X;Lr - B ^ t ( y - yxr + (z - z 1 )^ ]J L/*

r = [ (x - X ;L)2 + (1 - M 2 ) [ ( y - y ;L)2 + (z - z1)2] j 1/2

X2 + 8 2 [ ( y - y i ) 2 + (z - z,)2]]1/2

\ -I- 1 J

r see Eq. D.5

TT = F TV — V ^ 4- ^\7 — V } + ^7 — 7 } 1ro . { o oi; iyo yoi * o oi; J

R see Eq. C.8

s = M + ico complex frequency (see Eq. 4 . 2 )

S function describing the hypersurface Z

S_ function describing the hypersurface
JD

ZB (Eq. 1.9)

Sw function describing the hypersurface

t time for x,y,z system

t see Eq. E.20

T subsonic time delay (Eq. 2.38)

T- supersonic time delays (Eq. 2.48)

TQ
 = a*pT see E<3' 6'43

17,0 velocity of undisturbed flow

w,. see Eqs. 6 .24 and 6 .25

xvi



A
w . see Eq. 7.8

W^ see Eq. 6.19

x,y,z Cartesian coordinate system in which

the undisturbed air travels at

velocity U^, in positive x direction

xQ,y0,z0 Prandtl-Glauert cartesian coordinate

(Eq. 3.35)

X,Y,Z see Eq. 7.4 and 7.5

X,Y,Z,X,,Y,, Z, see Eqs. C.6 and C.7

X,Y see Eq. 7.12

- (c) y (c) gee ?>14
m n
£ (M) - (M) - (P) - (P)
m ' n ' m ' Yn see Eq> 7'15

Z, Z1 see Eqs. C.34 and C.36

& angle of attack (Eq. 7.5)

5 see Eqs. E.I and E.5

p - \A -w2
B see Eqs. E.I and E.5

^ specific heat coefficient ratio

f = c/a. see Eq. C.39

T see Eq. 2.16

£(t) Dirac's delta function

o see Eq. E.6

5 T = 5 ( t - t + T ) see Eq. 3.21

r 3£

<5T = -— see Eq. 3.6
*• on

o^^ Kronecker delta

<$ see Eq. C.4

xvii



AX, AY see Eq. 7.13

g radius of circular surface element

I see Eq. 4.4

£ see Eq. 4.18

£ see Eq. A. 3

t" see Eq. A. 12

Vqm see Eq. E.13

9 see Eq. C.8

* see Eq. D.21

p real part of complex frequency s

v fourdimensional (space and time)

normal to hyper surf ace L

^, O ,£, Cartesian coordinate connected with

undisturbed air
A A A

^ , r\ , Z see Eq. E. 9

\ , see Eq. 7.2
A A

see Eqs. E.14 and E.16

see

/ o ,
o=(^2 + f]24^) see Eq. E.12

p^ density of undisturbed air

L surface surrounding body and wake

SB surface surrounding body

£.. surface surrounding wake

V TL subsonic deformed surface (defined by

Eq. 3.31)

xviii



TO -4

~— -4L ~ supersonic deformed surfaces (de-

fined by ST± = 0)

Z portion of upper side of plane

!k = JL + V£ -V

Z, = 0 where Ao>/ 0

£ surface of the wing

-[• time for ^ , ^ , ^ system

1 thickness ratio (Eq. 7.3)

(0 perturbation aerodynamic potential

(Eq. 1.4)

(D value of (D at P

cp see Eq. 4.8

to see Eq. 4.24

cp see Eq. 4.24
Tu
qj see Eq. 4.25

A see Eq. 6.50

tcT initial conditions contribution

(Eq. F.2)

<f> aerodynamic potential

cO imaginary part of complex frequency s

A solid angle (Eq . 6.8)

fL solid angle for strip Z (see Eq. 6.9)n r n ^

SPECIAL SYMBOLS

total time derivative (Eq. 1.2)
Dt

xix



-TT- = 5r + M» r~ linearized total time derivativeat </t »x

V gradient operator

V Laplacian operator

O f ourdimensional (space and time)

gradient operator

|V,ST| see Eq. 3.29

| V,S | T see Eq. 3.30

lD(s| see Eq. 3.5

A ( ) = ( ) upper - ( ) lower

T =[ ]tl.t-T &<*• 3-27)

[ ]T! =[ Li-T, (=q- 2.47)
- 6.42)

SUBSCRIPTS

0 Prandtl-Glauert variables (Eq. 3.35 and 6.39)

1 Dummy variables

01 Dummy Prandtl-Glauert variables

TE trailing edge

* evaluation at P = P*

xx



SECTION 1

INTRODUCTION

1.1 Definition of the Problem

The evaluation of the aerodynamic pressure is an important

tool for the design of aeronautical and space vehicles. Current

methods do not satisfy the requirements of generality, flexi-

bility and efficiency.* A general theory of potential aero-

dynamic flow around a lifting body having arbitrary shape and

motion is presented here. The theory is based upon the classical

Green theorem approach, and provides a tool for the evaluation

of the aerodynamic pressure acting on the surface of the body.

Comparison with existing results shows that the proposed method

is not only more general and flexible, but also at least as fast

and accurate as existing ones. The concept of the Green function,

is fundamental to the theory and therefore an ample discussion

of this concept is given in Section 2, where the classical ex-

pressions for the subsonic and supersonic Green function are

derived using a novel approach which, it is hoped, gives a clear

physical interpretation for these expressions. A detailed out-

line of this report is given in Subsection 1.3. In the following,

a short analysis of the method (lifting surface theory) currently

used in the design of aircraft is presented.

An excellent analysis of the state of the art is given by

25Ashley and Rodden.



The problem of the evaluation of the pressure acting on

a surface of a body immersed in a fluid stream has always

attracted the attention of the scientists. In particular,

interest in the theory of unsteady potential aerodynamics,

which is a basic tool in dynamic aeroelasticity, has been

frowing steadily in the last fifty years. ' ' Until re-

cently, the attention of the researchers has been concen-

trated on lifting-surface theories in which the body is

assumed to have zero thickness; the solution of the problem

is reduced to an integral equation relating pressure and

downwash or similar quantities. An excellent analysis of

the recent literature in this field is given in Refs. 2

and 3.

Two major objections can be raised about the lifting-

surface theories. First, the numerical solution of the

problem is rather complicated. The difficulties are re-

lated to the complicated form of the kernel function and

the numerical integration of improper integrals. An ex-

cellent analysis of the numerical problems which are en-

countered in the various lifting-surface formulations is

given in Ref. 3. Attempts to circumvent these difficulties
4

have been presented more recently, but the present situation

can be considered still unsatisfactory.

la



The second objection is that the lifting-surface

theory cannot be easily generalized to include more com-

plicated geometries and motions. Geometries which need

further exploration are for instance the effect of thickness

of the wings, and the wing-body interference. The results

shown in Ref. 5 show that the lifting-surface theory is

being used beyond the limit of its validity and that, in

some cases, the results are still unsatisfactory. Similar

is the situation for motions which do not fall into the

categories of either harmonic oscillation or impulsive start.

An attempt to circumvent the present "impasse" situation

is described in Ref. 6, where a three-dimensional body of

arbitrary geometry which executes an arbitrary motion in an

incompressible fluid is considered. The method has the

advantage of satisfying the boundary conditions on the true

location of the surface of the body. This is a considerable

improvement with respect to the lifting surface theories

since it does not involve the use of zero thickness. Thus,

complicated geometries can be easily analyzed. Furthermore,

the formulation is suitable for treating arbitrary motions.

On the other hand, the formulation still involves a singular

kernel, which implies the above-mentioned difficulty of

evaluating the integrals in the principal sense. In addition,

the method is limited to incompressible flow, since the

Green theorem for the Laplace equation is used.



1.2. Formulation of the Problem

In the following, the isentropic inviscid flow of a

perfect gas, initially irrotational, is considered. Under

this hypothesis, the flow can be described by the velocity

potential °r . The equation of the unsteady aerodynamic

potential, given by Garrick is

where a is the speed of sound, V2 is the Laplacian operator,

and

V - 1.2

is the total time derivative (the subscript "c" reminds

that V<p should be treated as a constant in order to ob-

tain the second total time derivative) . Consider a frame

of reference such that the undisturbed flow has velocity

V, in the direction of the positive x-axis. Then the

speed of sound is given by

Furthermore, it is convenient to introduce the perturbation

potential tP , such that

1.4

Note that ^ = 0 in the undisturbed flow. Combining Eqs .

1,1, 1.3 and 1.4 yields the equation for the perturbation

potential

3



[0

1.5

For the sake of simplicity, it is convenient to separate

the linear terms from the nonlinear ones; thus Eq. 1.5

is rewritten as

1.6

where

A , *. + t; « 1.7

is the linearized total time derivative and the nonlinear
terms are given by

f-

1.8



This is the equation for the unsteady potential compressible

(subsonic or supersonic) aerodynamic flow.

A very general approach is considered here by assuming

that the body immersed in this flow has arbitrary shape

and is moving with arbitrary motion. Thus, the surface of

the body is represented in the general form

where the subscript B stands for Body. The boundary con-

dition on the body is given by

<̂ fi = O , 1.10
Dt

or

= O 1.11

By using Eq. 1.4, Eq. 1.11 yields

or

Of = Q, 1.13

with

Furthermore, as mentioned above, the boundary condition at

infinity is given by

(D 5 0 1-

Finally, the pressure can be evaluated from the Bernoulli



Theorem

or the linearized Bernoulli Theorem

1.17

which yields, for the pressure coefficient

Note that no assumption was made on the Mach number

M - U. 1.19
«•-

Thus, the above equations are valid for both subsonic and

supersonic flow.

1.3. Method of Solution

The method of solution presented here is based upon

the well known Green function technique. The Green func-

tions for the linear unsteady subsonic and supersonic flow

are derived in Section 2, and used in Section 3 to derive

an integral representation of the potential (0 at any point

in the field (control point) in terms of the values of <^

and ^^ /or\ on a surface surrounding the body and the wake.

In Section 4, it is shown that the integral representation



can be simplified under the assumption of small perturbation;

and even further simplified for small vibration around a

configuration fixed with respect to the frame of reference.

Next, in Section 5, it is shown how lifting surface theories

can be obtained as limiting cases of the formulation pre-

sented here.

Finally, in Section 6, the problem of small vibration

around a fixed configuration in subsonic flow is analyzed in

detail. It is shown (Appendix C), that if the control point

is on the surface of the body, the problem reduces to an in-

tegral equation. The question of existence and uniqueness

is also discussed in Section 6 and, in particular, it is

shown that, for a zero-thickness flat wing, the integral

equation operator becomes singular.

Hence, in order to verify the limit of applicability

for low values of the thicKness ratio, the steady subsonic

flow around very thin wings is solved numerically. The re-

sults are presented in Section 7, whereas the conclusions

are discussed in Section 8.



SECTION 2

THE GREEN FUNCTION FOR SUBSONIC AND SUPERSONIC

LINEAR UNSTEADY POTENTIAL FLOW

2.1. Introduction

The Green function for the linear unsteady potential

flow for the whole space (which represents a unit-impulsive-

source) is the solution of the problem

a.
<«J

with

'= 0 dt infili'tj

In Eq. 2.1, o is the well known Dirac delta function de-

fined by

2.3

The solution of Eq. 2.1 for the subsonic case (subsonic

Green's function) is given by

2.4
4"rB

where <5 (t,-1 + T~) is the usual Dirac delta function and

1 - ^7
2.5

and

T--L- Fr.-M (*-«,)] 2'6

" a BI L r J
00 I



where

~ 2.7

8 9Although this result is well known, ' for the sake

of completeness, Eg. 2.4 is derived here (Subsection 2.3)

using a particularly instructive procedure.

9 10Similarly, the supersonic Green function is given by '

4-flr̂  ' * • ' ' 2'8

with

2.9

and

where

3 = /nd 2.11

Equation 2.8 is derived in Subsection 2.4.

2.2. Galilean Transformation

In order to obtain the Green function of the linear

unsteady potential flow, it is convenient to use a Galilean

transformation, such that the new frame of reference is

rigidly connected to the undisturbed flow. Then the differ-

ential equation reduces to the well known wave equation for

which the Green function is well known. Then, by using



the inverse transformation, the Green function for the un-

steady linear potential flow is derived.

In order to.avoid transformation of generalized func-

tions (distributions) it is convenient to consider the non-

homogeneous equation of the linear unsteady potential *

2.12

This equation reduces to the nonhomogeneous wave equation

for a coordinate system S/7/̂ '"̂  rigidly connected to the

undisturbed flow. The Galilean transformation relating

the two systems is given by

x s ^ + ^ ^ \ ~ I ~~ ̂ ^ 2.1 j

whose inverse is given by

Since

& ^& ^y ^& & ^& ^G ^o t } ̂  o l ti—^^ » • • — M— ^ -^ ~ ^^_ • — — ^ i. L/ _ ^ • J- O

Equation 2.12, in the new frame of reference, reduces to

with

2.17

*
Note that Q is a fictitious prescribed source distribution,

while F in Eq. 1.6 depends on the unknown itself.

10



The solution of Eq. 2.16 is given by

... 2.18
- •* J

where

[A. V \ «• /.. « It /-»• 7- \*-l ^

2.19

and

T P/a- / *

with

r, = t- p/aw 2.21

or

2.22

i, = t- p/aw

Equation 2.18 is equivalent to saying that the Green function

for the wave equation in the space is

-T +*.. 2.23

Finally, in order to obtain the solution of Eq. 2.12, it is

sufficient to express Eq. 2.18 in terms of the original

variables x, y, z and t. It should be noted however, that

the inverse transformation is not given by Eq. 2.14, since,

according to Eq. 2.21, one has

11



T-T, -

Thus, the inverse of the transformation

x-x , = £-£, 4 U . ( i - T ( ) . - <-$, +M

Z-2, = £-?,

fr-t, s T-T, =

has to be considered. The inverse is given by (*)

(*) Equation 2.25a yields

2 .24

2.25a

2.25b

2.25c

2.25d

2.26a

2.26b

2.26c

2.26d

By solving for ^-^, , one obtains

§-§, -_ -L. ^-<()±M?
i-nl

that is, EQ. 2.26a. Combining this equation with Eq. 2.19,

yields, in agreement with Eq. 2.26d

= ' f(x-xl)*±2Ai;(x.«I)4H
tr

(|-M')1L

12



with

r - 2.27

The interpretation of the double sign which appears in Eq.

2.26a is discussed later in this section. For clarity, it is

convenient to consider the subsonic case and the supersonic

one independently (Subsections 2.3 and 2.4, respectively).

Note that, in either case*

A

r - 2.28

and that the Jacobian of the transformation is given by

P

2.29

which shows that

Jj -. JL
P

2.30

By combining Eqs. 2.25 and 2.27 yields

13



2.3. .Subsonic Green's Function

Consider the subsonic case. For M < 1, one has r=r.

and

rtjX-X.j^ 2.31

Thus, Eq. 2.26d, by eliminating the absolute-value sign,

may be rewritten as

I
f 2-32

By substituting this equation and Eq. 2.26a into Eq. 2.25a,

one obtains

- 2.33

which is satisfied only if the lower sign is used.

Thus, by using the lower sign, the inverse trans-

formation for the subsonic case is given by

1-1, - 1--6

with

rp - f ̂  Hfe-^/) 2'35

This transformation may be used in order to express Eq.

2.18 in the frame of reference (x, y, z, t). This yields

14



2.36

where

[O]T= Q\ t r - Q(x,,«f,, a,, t-r) 2.37

with

T= _L. [rp- M(»-<,)]
 2-38

Equation 2.36 shows that the Green function for subsonic

case is

as shown in Eq . 2.4.

2.4. The Supersonic Green Function

Consider the supersonic case. For M > 1, Eq. 2.25a

yields

X-x, >0 2.40

which shows the well known property of supersonic flow

that any point can influence only the points downstream.

Equation 2.40 implies

rt(x-x.) > r ' 2>41

Thus, Eq. 2.26d may be rewritten as

2.42

15



2 2Note that B = M - 1 > 0. Finally, combining Eq. 2.25a

and 2.42 yields

2.43

which is satisfied by both signs.

The interpretation of this double sign lies in the

well known fact that a disturbance A, (Fig. 1) traveling

at supersonic speed, influences a given point B two times.

The first by "backward-traveling waves"coming from position

A , and the second by "forward- traveling waves" coming from

position A . In other words, the supersonic inverse trans-

formation is not a one-to-one but a one-to-two transformation.

Thus, for supersonic case, the inverse transformation is

given by

, -

•M. 2 . 44
-C, = 2-2,

with

r . i [p tMCi-4.}J 2 -45

This transformation may now be used in order to express

Eq. 2.18 in the frame of reference (x, y, z, t) . This

yields, in analogy to the subsonic case,

16



^r " B

where

[G]TS ' CU-r;

with

~ 2.48) rtfr-x.) ±
L

Equation 2.46 shows that the supersonic Green function is

given by

(5 = -̂ 1_ | d(t.-t+ lt) f °̂ ,-'c+ '-71 2.49

in agreement to Eq. 2.8.

17



SECTION 3

GENERALIZED HUYGENS' PRINCIPLE FOR THE NONLINEAR EQUATION OF

THE UNSTEADY AERODYNAMIC POTENTIAL

3.1. Introduction

As mentioned in the introduction, the purpose of this

analysis is to obtain a representation of the potential in

terms of its values (and the values of its derivatives) on the

surface of the body and the wake. A representation of this

type for the wave equation is called Huygens' Principle

(or Kirchhoff's formula). The corresponding formula for the

unsteady compressible (subsonic or supersonic) aerodynamic

potential will be called Generalized Huygens' Principle.

In order to obtain this principle, it is convenient to

follow a procedure similar to the one used in Ref. 11 to de-

rive the Huygens1 Principle. There are two major differences

between the two problems. The first is that Eq. 1.6 is more

complicated than the wave equation examined in Ref. 11. The

second is that the surface is assumed to be changing in time.

This assumption is necessary if enough generality is desired,

in order to include arbitrary motions, like the roll for in-

stance. In order to simplify the generalization of the pro-

cedure used in Ref. 11, it is convenient to make use of the

theory of distributions developed by Schwartz.

In order to do this, it is convenient to introduce a few

basic definitions.

18



Note first that the equation of the aerodynamic potential

given by Eq. 1.6, is not valid on the wake, where discon-

tinuities on cp exist. Thus, consider the volume V in which

Eq. 1.6 is valid. At any instant of time, this volume is

given by the whole physical space except the volume, V ,

occupied by the body and an infinitesimally thin layer, Vw,

representing the wake. Define the function E (see Fig. 2)

E(x,y,z,t) = 1 on V
3.1

= 0 otherwise

This function represents the domain of validity of the

equation of the potential and will be called "domain function".

Consider the surface of discontinuity of the function E, that

is the surface, ZJ , surrounding the volume VB + V^. Let

S(*fff2,i)sO
 3-2

be the equation of the surface Z. .

Note that the surface Z] is composed of two branches.

The first, -̂•̂ > is the surface of the body given by Eq. 1.9.

^The second is the surface, ̂ — - , of the wake

w
V VNote that this surface 2j is considered twice, since /LI is

a closed surface. In other words, the upper side and the lower

side of the wake are considered to be two independent surfaces

having the same equation (but opposite outwardly-directed

normal).

19



Finally, for later convenience, the four-dimensional

gradient of the function E is introduced. Consider first the

four-dimensional outwardly-directed* normal to the surface

Z-i defined by

v , PS

|n$| —|as| 3.4

with

OS Zt 3.5

It should be noted that, in writing Eg. 3.4, it has been assumed

implicitly that the vector U S is equidirected with the four

-̂
dimensional normal V . This condition can always be satisfied

(by a suitable change of sign in Eq. 1 if necessary).

Next, note that along the direction of the normal V ,

the function E behaves as a step-function. Thus its directional

-4

derivative in the direction of the normal v is a Dirac delta

function on the surface Z! , which will be indicated with the

symbol 5^

^ - g-*- on

It may be worth noting that t~he integrals of <5^ are equivalent

to hypersurface integrals (the surface H is on the four di-

mensional space),

*"Outwardly" is understood as "going from the body into the

fluid", that is, from the region E = 0 into the region E = 1

(see Fig. 1)
20



ffff

By using Eq. 3.6, the four-dimensional gradient of the

function E can be written immediately, since Eq. 3.6 is equi

valent to

DE = ̂ - ~t , 38
*i *- IDS) 3'8

where Eq. 3.4 has also been used.

By separating the spatial components from the time com-

ponent, Eq. 3.8 yields

VE -- c^ VS __L
IDS)

3.9

aT ^ 0T ^~
Note that

_ 3 10
d*. -

3.2. Green's Theorem for the Equation of Aerodynamic Potential

In order to obtain the generalized Huygens1 principle, it

is convenient to follow the general method that leads to the

Green theorem. Multiply the equation of the aerodynamic

potential (in the form given by Eq. 1.6) by the Green function

G and subtract Eq. 2.1 (definition of the Green formula)

multiplied by (0 :

3.11

where the arguments of cp and its derivatives are x^ ylf

z, and t,, while the arguments of G and its derivatives are

xl ~ x' yl ~ y/ 21 ~ Z'
21



Making use of the identities

and

Equation 3.11 reduces to

tf<fc,ra£~T^/ ' 3'14

Multiplying Eq. 3.14 by the domain function E, defined by

Eq. 3.1, and integrating over the whole four-dimensional

space yields

jNi!L . «*• tfU.-L - • - • j 3.15

where the subscript 1 indicates the dummy variable of in-

tegration , and

d - £ + u 2.
dJL, ' ft. " 3x, 3.16

By suitable integrations by parts, Eq. 3.15 yields

. 3.17

- (p

22



or, by using Eqs. 3.9 and 3.10

I

3.18

which is the Green theorem for the equation of the aerodynamic

(subsonic and supersonic) potential. Note the presence of the

factor o_ which shows that the integral on the left hand

side of Eq. 3.17 is a surface integral, as it is indicated by

Eq, 3.7.

Finally, making use of the definition of the Dirae delta

function (Eq. 2.3) yields
•a

EcP = /Iff £G F <Av/A

- . i i i

3.19

3.3. Generalized Subsonic Huygens' Principle

In this subsection, Eq. 3.19 is specialized to the subsonic

case for which the Green function is given by Eq. 2.4, which

may be rewritten as

G( = — S-r 3.20

"£
with

JT * $(t,-fc+T) 3<21

where T is given by Eq. 2.38. Note that

^<§T = 2£L V.T 3.22

23



and

3.23

Combining Eqs. 3.19 to 3.23 yields

3 .24

~ ' oj d±t

Note that the integrands of the integrals on the right hand

side contain products of distributions (either J£ $r or

<£j_ °̂T/3t, ). For the sake of convenience, integrals of this

type are discussed in Appendix A where it is shown that, for

any"regular" function f,

3.25
ZT

and

^C) i O^f J . 2 O
— mO *^T

TIn Eqs. 3.25 and 3.26, the symbol [ ] indicates evaluation

at time t, = t - T,

[ V -i ] 3.27

t. -. t.T

24



with T given by Eq. 2.6. In particular

3.28

Note the difference between | V| S T | and j V, S |

V,5TU
3.29

r2s_ 23
\ 0 K t ~ at, '

t-.t-T

c., - i-
3.30

2. 1 2

Finally, 21 indicates the surface defined by the equation

3.31

Note that 2 is a surface of the three-dimensional space

^xl' yl' zl^ ' wh^-ch depends parametrically upon x, y, z and

t.

V TNote that, for steady state, the surface Z. coincides

with the surface 2 . For quasi-steady state, the surface

2 r
differs very little from the surface S . Thus the

surface Z! will be called "deformed surface of the body

and wake".

25



By using Eq. 3.25 and 3.26, Eq. 3.24 reduces to

4 V" > V rft' «* «tt. «Mr»'J T IV£TI 3.32

V

Equation 3.32 is the desired generalized subsonic Huygens'

principle. The reduction of Eq. 3.32 to the classical Huygens1

principle and to other well known formulas is considered in

Appendix B. The more general case in which initial conditions

are also considered is analyzed in Appendix F.

Finally, in Appendix C, it is shown that Eq. 3.32 is

still valid when the control point is on the surface Z if

the convention is made that E = 1/2 on 2 , that is, if Eq.

3.1 is replaced by:

E . = 0 inside £

= 1/2 on 21 3.33

= 1 outside *j

3.4. Steady Subsonic Flow

By assuming the time derivatives to be equal to zero,

Eq. 3.32 reduces to the steady state case

26
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as.

,
- Ill ^i «

V P

Note that Eq. 3.34 differs from Eq. 2.6.10 of Ref. 13 in that,

in Ref. 13:

- the convention on the normal is opposite

- the function represents the volume density of

a fictitious creation of sources

- the terms which contain /^ ? — have been neglected*
0x,

(see Ref. 13, p. 33) .

The correctness of Eq. 3.34 results from the fact that, by

using the well known Prandtl-Glauert transformation

*S7= Vf E' = Z ' 3.35
Vl^M2-

Eq. 3.34 reduces (in agreement with Eq. B.8) to

V

where ~n. is the normal to Z. , and

*The analysis of the order of magnitude of these terms is

given in the next section.
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3.37

and, having used the relation

.1

ff-K
v A, I

. . -i
|V,S|

3.38

3.5. Generalized Supersonic Huygens' Principle

In this subsection, Eq. 3.19 is specialized to the super-

sonic case for which the Green function is given by Eq. 2.49

which may be rewritten as

/*""* ~ I I xT /T 3 39

with

ft ~~ ( <~ + */ 3.40

where T+ and T_ are given by Eq. 2.48.

The analysis for the supersonic case is obtained from

the subsonic one by replacing each term with two, the first

evaluated at time t, = t - T+ and the second evaluated at

time t, = t - T_. The final result is obtained by modifying

Eq. 3.32 to yield

-f
iT.

(Eq. cont 'd . )

28



T- Tto7- J 42. '
3.41

T-

at ,

It may be worth noting that ^- and ^ are, in general,

two different surfaces.

For steady state S is independent of t and Eq. 3.41

simplifies into

2 n EC

Q<3 si / i \\ i ,— irr . . . . 3.42

Note that Eq. 3.42 differs formally from Eq. 3.34 only for

the factor 2n instead of 4n on the left hand side. This

is a consequence of the well known fact that the supersonic

doublet is equal to twice the subsonic one: this is due to

the fact that, as mentioned in Subsection 2.4, the supersonic

inverse transformation is a one-to-two transformation.

It should be noted that, according to Eq. 2.40, a point

can have influence only on the points located inside the

29



"downstream Mach cone" defined by

, -, \z 3.43

Thus, it should be understood that the integration is extended

to the part of the surface for which Eq. 3.43 is satisfied.

More precisely, G must be considered as a generalized

function (or distribution according to Ref . 7) defined as

3-44

This implies that the supersonic doublet cannot be integrated

in the ordinary way, but must be integrated as the distribu-

tion theory indicates, that is, the Hadamard finite part of

the integral must be considered (see Appendix H).
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SECTION 4

SIMPLIFIED FORMULATIONS

4.1. Introduction

The formulae derived in Section 3, for subsonic flow,

Eq. 3.32, and supersonic flow, Eq. 3.48, are very general,

in that only the hypothesis of potential flow was assumed.

Usually in practical applications, it is possible (and con-

venient) to introduce more restrictive assumptions, which

allow considerable simplification of the above mentioned

formulae.

In particular, one can make the assumption of small-

perturbation flow, which is discussed in Subsection 4.2.

Furthermore, in most of the practical applications, the

surface is almost fixed in space. Thus the case of almost

fixed surface in small perturbation flow is discussed in

Subsection 4.3.

Finally, in flutter problems, the surface of the body

is vibrating with exponentially damped or growing oscillatory

motion for which the boundary condition can be written as

= Qn = Qn e 4.1

where

s r w. + UJ 4.2

is called the complex frequency. This problem is considered

in Subsection 4.4. Note that, in particular for M = 0, one
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obtains the harmonic motion.

It is important to note that the results obtained in

this section do not require the general formulation of

Section 3. In other words, using the procedure employed

in Section 3 under the restrictive hypotheses considered

here, yields the same results through a much simpler

derivation. However, it is felt that going through the

complicated general formulation and then simplifying under

restrictive hypotheses gives a better understanding of

the error introduced with the simplification.

4.2 Subsonic and Supersonic Small Perturbation Flow

As mentioned in Subsection 4.1, the results obtained

thus far can be simplified considerably if the hypothesis

of small perturbation is made. In the following, it is

assumed that M < 1 (subsonic) or M > 1 (supersonic) but

not M » 1 (hypersonic) nor |M - 1| « 1 (transonic).

Consider the boundary condition, which can be rewritten as

- _ J. __ 4.3
?>̂  L̂ j tfU: |T7S|

Assuming that _L (where L is a characteristic length of the

problem) is small, say of order £ « 1,

- 0(1) 4.4
L

is equivalent to assume that the right hand side of Eq.

4.3 is small, also of order £

4.5
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Thus Eq . 4.3 may be rewritten as

4.6s

n dt |VS) n ^

where Qn = O('J . Hence, it is convenient to find an

asymptotic solution for cP , as

• • • + 0

In particular, by limiting the analysis to N = 1, one may

write

(D = £
I 4.8

It may be noted that all the nonlinear terms are of order

of £ or higher and thus one can write

F -_ £^F + 0(1 J) 4.9

By combining Eqs . 4.6, 4.8 and 4.9 with Eq. 3.32 yields

_L lr l^^i1 di:
- r J T

4.10

Neglecting terms of order i* in Eq. 4.10 and returning to the

original variable yields
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4n£ _ L . ] T ]E£1T

rj T

4.11

T , r

Equation 4.11 represents the small-perturbation subsonic

Huvgens ' principle.

Similarly, by combining Eqs. 4.6, 4.8 and 4.9 with

Eq. 3.41, one obtains, for supersonic flow

(p(x, «f, 2,

- & \*t ^1T

V LM r. J

4 < .

£T-

- _ , > T T.

^-(Jr) cfj

_3_
9fc

(0

'

T+

T.
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It should be noted that Eqs. 4.11 and 4.12 are not the exact

solutions of the linear problem but an approximate (small

perturbation) solution of the nonlinear problem. For, not

only the nonlinear terms have been dropped, but the linear

terms containing #S have been eliminated as well. It may
dut

be noted that one of the reasons to carry the effect of the

nonlinear terms in the general analysis is to show that the

order of magnitude of the terms which contain 2—- is of the
<dc

same order of magnitude of the nonlinear terms. Thus, these

terms can be consistently eliminated if the nonlinear effects

are neglected.

It should be noted however, that once the value of <P

has been obtained by using Eqs. 4.11 and 4.12, then the effect

of the neglected terms can be obtained by studying the equa-

tion of terms of order £- in Eq. 4.10, which has ' c 2̂

as unknown (second order term of Eq. 4.7). It may be worth

mentioning that this equation contains only known nonlinear

terms and thus is linear with respect to the unknown (£

It may be expected however, that the solution obtained in

this way is not uniformly valid. Singular perturbation methods,

which yield uniformly valid solutions, are now under consider-

ation.
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4.3. Quasi-fixed Surface in Small-Perturbation Flow

In many practical applications, the surface of the body

is almost fixed with respect to the frame of reference. This

is the case, for instance, of small elastic vibration of the

wings of an airplane.* In this case, the surface may be

considered to be fixed in space, although the time derivative

cannot be neglected. Mathematically speaking, it is assumed

that

—1 T -*«

4.13

and

vs vs 4.14

although

in the boundary conditions.

Under these hypotheses, Eq. 4.11 reduces to

4-
'£ W1 J or\, - I/S/ 4>1g

r 'Sip IT i
Latj 7-

* Important exceptions are, for instance, the problems of

helicopter blades and soinning missiles.
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where 2 is the surface defined by the equation S = 0 and

2±- is given by Eq. 1.13. Similarly, for supersonic case,

Eq. 4.12 yields

4.17

T,
4

J ' -B

with 9<p/0'1, given by Eq. 1.13.

4.4. Complex-Exponential Flow

As mentioned in Subsection 4.1, in flutter problems,

the motion of the surface is exponentially damped or growing

vibration. In this case, the surface of the body can be

written as

f • - / st

2= ^,(MJ+ £ *,(MJe 4.18
or, in general

st = ° 4-19

where S0 represents the steady state geometry, whereaso ^
A

S gives the unsteady contribution. For <£" « 1, the

hypotheses assumed to derive Eqs. 4.16 and 4.17 are valid.

Hence, Eqs. 4.16 and 4.17 can be used with the surface £

described by S = 0 and boundary conditions given by Eqs.
O

, that is,1.13 and 1.14, with v'S replaced by vrSfi
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| ̂
4.20

f I7S•* I ' «. I

where

4'21
0

|VSS

with

Q c / c O ^O,, \
= — |—M,-» - 4.23

Since Eqs. 4.16 and 4.17 are linear, the steady and unsteady

problems can be studied by setting

with

"^ Si A tr
- (J) e 4.25

and separating the two problems, solving them independently

and finally, superimposing the results.

Hence, only the unsteady state component is considered

in the following. For the subsonic case, by combining Eq.

4.16, 4.22 and 4.25, one obtains
•^ -s T

r Vr 4-26ĵ f T -̂  . »̂ j •" O /-̂ ^̂

-f-c^c/'E ^ . / ' _ i \ _ < £ p c p s € _L ^X-
z. M| r^ z

 r^
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or ., „ _ , _-*r. 4.27

ZL rA £ '

It may be of interest to note the similarity between

Eq. 4.27 and the solution of Laplace's Equation given by

Eq. 3.41.

Similarly, for the supersonic case, Eq. 4.17 yields

^, -s~T+ _sT_

t (M, a) - - £
2- rRB 4.28

-slV - sT-
e

where, according to Eq. 2.10,

-ST. .si. - £ ' - / ^rft - r

e . e s e - e ^ e

or, for s = i cO (harmonic motion),

-sT -ST.
e + e , 2 e A-*1 <̂ -̂ -£2j 4>30

Finally, it should be remarked that Eqs. 4.27 and 4.28

are suitable for comparing this formulation to the lifting

surface theory (see Section 5). However, from the numerical

point of view, it is convenient to use a slightly different

procedure described in Subsection 6.6. It should be noted

that the two formulations differ only for terms of the same

order of the terms neglected in Subsection 4.2.
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SECTION 5

LIFTING SURFACE THEORIES

5.1. Introduction

As mentioned in Section 1, the methods currently available

for evaluating the pressure acting on a wing are based on the

assumption of zero-thickness-wings (lifting surface theories).

The lifting surface theories generally used for aeroelastic

14application are those given in Refs. 8, 15 and 16. In this

section, it is shown how lifting surface theories are related

to the formulation presented here. It should be noted that,

for the case considered here, all the hypotheses of Subsection

4.4 are satisfied. Thus the results obtained there will be

used in this section. The subsonic flow is considered in Sub-

section 5.2 and the supersonic in Subsection 5.3.

5.2. Oscillating Wing in Subsonic Flow

Consider an oscillating thin wing in subsonic flow. If

the thickness approaches zero, then Eq. 4.19 with s = iw re-

duces to

5.1
2-(-' "••«, \ '(j /

where r\u -. naff,tr ,

5.2
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and <^L is the upper side of the surface of the wing and

the wake. By assuming that this surface is contained in the

plane Z, = 0, Eq. 5.2 yields

x ? ft ~* -3 ft \4nd = - Ij ^^ — (-—
^ T 9E ^ > y

. (oj T

I sm v sit J

5.3

since

-9 <L
5.4

Note that /\c|J = 0 outside 2-^ ; thus it is convenient to

replace the domain of integration, 2L ̂ , with the whole

plane (in conformity with theory of distribution). Then,

differentiating with respect to z yields

-

4, f£ - - f ( ̂ £ (-S— .. 5 5^ 0a J j T ?«' V r 5-5
' OU . 00 [

This is a relation between the downwash — ̂  and A <f
"P2- '

Since the downwash is known at 2 = o , Eq. 5 . 5 as £ goes to

zero yields an integral equation relating the downwash with
r*O

^ (J) . However, for practical applications it is convenient

to have a relation between the downwash and the pressure dis-

tribution

& P - P - P, 5.6
/ "^fpf fJbnttr

According to Eqs. 1.17, 4.18 and 5.6, ^p is given by

. N̂) /-, ,~ \ (Wt -N) ('ijC

c _ f) (J tcjA f U, i.̂'f W = A? e 5>7M
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with

^P =• - p^ ̂  f iu

Equation 5.8 can be rewritten as

V 2w 3 x

e

By integrating Eq. 5.9 with the condition

- O

one obtains

cJt

; w Ji
«i * «>

5.8

5.9

5.10

5.11

Combining Eq. 5.5 with 5.11 and integrating by parts, yields

5.12

with

K = e -
X, 5.13

Note that the finite terms of the integration by parts are
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equal to zero because of Eq. 5.10 and the condition

x -- * 5.14

which is obtained from Eq. 5.13. By using the transformation

A - X - A, Eq. 5.13 yields a simpler expression for

k« e
5.15

with

r , ,r, |2 ,,-)?*
Hi + Z 5.16

Finally, as z goes to zero, Eq. 5.12 reduces to

5 17
-

2 "'-u
with

5.18

in agreement with results given by Watkins, Rynyan and
Q

Woolston . An explicit expression for K , given by Eq.

D.45 , is derived in Appendix D. Note that in Eq. 5.17,

the integration can be limited to the surface, 2V , of wing,
.\̂ >

since *Jp = 0 outside the wing.

5.3. Oscillating Wing in Supersonic Flow

For the supersonic case, it is important to note that
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the integration domain must be restricted to Mach cone defined

by

X-x, > B ^^ 5.19

Thus, the supersonic case can be handled in a way similar to

the subsonic case if a cutoff or unit function is used as a

factor:15

H = H (*-*/-& VCM-fi)2-'** J 5.20

where H (9) is the Heavyside step function

5.21

By performing the same type of operations described in

Subsection 5.2, one obtains

^
w

with

5.23

in agreement with the results given by Watkins and Berman.

However, if the wings have only supersonic edges, then the

two sides of the wing become independent and by assuming a
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"symmetric flow", one obtains

_

dU -_L ff .?£ 1 c ^
I 7l£> JJ 0a, r0a, rB B2U '. 5.24

^
in agreement with Refs. 10 and 16.
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SECTION 6

NUMERICAL FORMULATION

6.1. Introduction

In the preceding sections, a general theory of unsteady

compressible potential aerodynamics is presented. In Section

1, the problem is formulated. Section 2 deals with the Green

functions (for subsonic and supersonic linearized equations)

which are used in Section 3 to derive an equation which re-

lates the value of the potential iP at any point in the field,

the values of cP and —-t- on the surface of the body and
| ft"

the value of ^vD on the wake with an additional contri-

bution of the nonlinear terms. In Section 4, the formulation

is simplified for (1) small perturbation, (2) almost fixed

surface, (3) oscillatory motion, whereas in Section 5, it is

shown how the classical lifting surface theories can be de-

rived from the general formulation.

It is obvious that the general formulation presented

here has no closed-form solution except for a few very

special cases. Hence, in general, the use of high speed

computers will be required. Thus, the numerical solution of

the problem as formulated in Subsection 4.4 (small pertur-

bation flow around an oscillating wing) is discussed here.

It should be emphasized that this discussion is given

in order to focus a few difficulties which may arise during
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the numerical computation. Furthermore, it may be noted

that the difficulties of the unsteady flow (Eq. 4.19) are

similar to the one of the steady flow. Hence, for the

sake of simplicity, the numerical formulation is discussed

for the steady incompressible flow. However, the general-

ization to the unsteady compressible flow is indicated.

It should be mentioned that the numerical problems

arise especially on the treatment of a thin wing (see Sub-

section 6.4). Thus, in the discussion, it will be assumed

that the body under consideration is a thin wing, although

the formulation is valid for any body with sharp trailing

edges (see Subsection 6.3).

6.2. Integral Equation Formulation; Existence and Uniqueness

of the Solution.

For steady incompressible flow, Eq. 4.27 reduces to

the classical equation

In order to analyze the question of uniqueness of the solution,

the surface 2- is replaced by a smooth surface Z. sur-

rounding (at very small, but finite, distance: the boundary

layer thickness for instance) the body and the wake (Fig. 3a) .

The wake is truncated at a very large, but finite, distance

Z'______ ____ _____ .,. __ ____ ________ x ______ __ _.. ___ _______

the function E assumes the value 1/2 and equation 6.1
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reduces to

0(fi._L iIf the geometry of the wake is known and if — — is re-
drt,

placed by the value (see Eq. 1.12)

which assumes on the body and the wake, then Eq. 6.2 is an

integral equation relating the downwash integral to the

unknown value of cP on the surface. Note that Eq. 6.2

gives the solution of the exterior Neumann problem and,

in this case, the solution of the equation exists and is

unique* for any smooth (Lyapunov) surface (Ref. 17, pp.

620-621).

Next, the surface 2. (surrounding the body and the

wake) is replaced by the surface 2. , composed of two

branches, the surface 2-^ of the body and the surface

^^ of the wake (Fig. 3b) . Thus, Eq. 6.2, combined

*Note that, for the interior Neumann problem, the solution

of the equation is not unique, for any arbitrary constant

can be added to the solution. Physically speaking, one

might say that, for the exterior problem, this arbitrariness

is eliminated by the condition (D = 0 at infinity.
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with Eq. 6.3, reduces to

± £=• + $ <f -(±r \ViSi
 Ji 1 ^(r

•B <-B
6.4

W
In Eq. 6.4, 2.W> is the upper side of the surface of the

w
-*

wake and hence, the normal fl, is understood to be the

upper normal. Note that, according to Eq. 1.17, for steady

flow,

$
on the wake 6.5

for no .pressure jump is possible through the wake.

From physical considerations, the solution of Eq. 6.4

is "very close" to the one of Eq. 6.2. Thus, it will be

assumed that, if the geometry of the wake is known, the

solution of Eq. 6.4 exists and is unique. It should be

emphasized however, that this conclusion is based upon

physical reasoning. However, this reasoning is question-

able, as shown by the remarks given in Subsection 6.5.

Hence, a rigorous mathematical proof of the existence and

uniqueness of the solution of Eq. 6.4 would be highly

desirable.

However, there are still two important questions to

be considered: first, the geometry of the wake and se-

cond, the special behaviour of Eq. 6.4 when the thickness
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of the wing goes to zero. These two questions are discussed

in Subsection 6.3 and 6.5, respectively.

6.3. The Wake

As mentioned in the preceding subsection, the surface

of the wake in Eq. 6.4 is not known. Thus, Eq. 6.4, which

is satisfied on the body, must be completed by the equation

on the wake, which says that the velocity on the wake is

tangent to the surface of the wake. Thus, one obtains two

coupled integral equations, one on the body and one on the

wake, with (J) unknown on the body and .^ unknown on
1 & S}

the wake, whereas ^ is known on the body and /̂ tf : d> -(P.
O *i I I u 1 1

is constant along the x-direction on the wake. According

to the Kutta condition, this constant value is equal to

the value of A(Jf at the trailing edge. Given the velo-

city on the wake, the geometry of the wake is obtained by

the condition that the velocity is tangent to the wake.

This approach has been successfully used in Ref. 6 to study

the transient incompressible flow around a wing after a

sudden start. However, from a practical point of view,

this approach is too lengthy and a simplified treatment of

the contribution of the wake is presented in the following.

Note first that

If 2 (J)«, Ji! « ..IT n..r. a, * - f f fe -
JJ 0K|,V rl JJ r* Jl r rt. U r<

6.6
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where

^2<*,= J2 ">S<X^ 6.7

is the projected area (into the plane normal to the direction

r ) and

j n dl(-)
d^ = - - 6.8

r

is the solid angle (see Fig. 4).

Next, consider the wake integral as a sum of M strips

in the x direction (see Fig. 5). Applying the mean value

theorem, one obtains (note that ^ cP is only a function of

Iw

w «. 6*9

'- - ?, •

where AI^(LJ^) are the mean values of A(j> for each strip

Z. ̂  / and -if-^ are the solid angles of the strip Zm

Equation 6.9 shows that any changes of the wake such that

solid angles _Q. are not altered, do not have any influence

on the value of the wake integral I w .

This suggests that a "reasonable" geometry for the wake can

be assumed, provided that the values of the associated solid

angles are not excessively different from the true ones. Hence, it

is possible (and convenient) to approximate the wake by straight

vortex-lines, parallel to the direction,of the flow, emanating
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from the trailing edge of the wing. For, geometrical

considerations show that the solid angles, -̂ 2TO , are

changed only slightly. With this assumption, the wake

integral simplifies considerably and its contribution

reduces to a line integral. For if the trailing edge

is given by

X c XT,
6.10

then the equation of the surface of the wake is given by

and

fc/a -

6.11

6.12

-Vt

where b is the span of the wing and

with Z, = ?T

in the plane

w

6.13

In particular, if trailing edge is

0 (i.e. ZTE( U )S 0), Eq. 6.13 reduces to

6.14
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In conclusion, under the reasonable assumption of cylindrical

wake (straight vortex-lines) the effect of the wake sim-

plifies considerably and Eq. 6.4 reduces to

2n
J1 9x, r |vs| £

6.15
f ACP J
7 Ire

with J given bv Eq. 6.13.
\V

Finally, an important remark about bodies without

sharp trailing edge must be made. In the discussion pre-

sented in this subsection, it was assumed that the wing

had a sharp trailing edge. Note that the results can be

easily generalized to the case of general bodies with

sharp trailing edge. However, for bodies without sharp

trailing edge, the inviscid flow theory is incapable, in

general, of predicting the location of the stagnation

point from which the wake emanates. This can be easily

seen in the case of rotating cylinder of finite length.

From the experiments the location of the stagnation point

depends upon the angular velocity, u) . On the other hand,

the equation of the geometry of the cylinder does not de-

pend upon GO and thus u) does not even appear in the

equation of the inviscid flow.

In the following, it is assumed that the body under

consideration has a sharp trailing edge. However, an
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unsteady viscous theory which predicts the location of

the stagnation point from which the wake emanates is neces-

sary in order to extend this method to bodies without

sharp trailing edges. Similar consideration holds for the

case of detached flow (when this can be approximated by

a wake emanating from a point different from the sharp

trailing edge).

6.4. Numerical Solution of the Integral Equation

In order to solve Eq. 6.15, various approximate

techniques are available. For lifting surface theories,

one of the most successful ones is the collocation method.

In this method, the unknown function is approximated by

a linear combination of N prescribed functions with un-

known coefficients. The functions are generally the first

N ones of a complete set of functions, each of which satisfy

the boundary conditions of the problem. The N unknown

coefficients are determined by solving a linear system of

N equations obtained by satisfying the integral equation

at N points (collocation points). This method is being

explored for the solution of Eq. 6.15. However, it should

be noted that, for complex geometries, this approach is

not feasible, for each geometry requires a different set

of functions and the more complicated is the geometry, the

more difficult it is to guess the appropriate set of

functions.

Hence, a more flexible approach is desirable. A
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representation of the unknown function similar to the one

used in finite elements for structural problems seems to

be more convenient. In finite elements, the domain of the

equation is broken into small elements. The function in-

side the element is expressed in terms of its unknown values

(and the values of its derivation, eventually) at nodes of

the element. This general tvpe of representation is now

under examination. It should be noted that, in finite

elements, the final eauations are derived from variational

principles. Here, the same type of representation is used,

but the algebraic equations are obtained by satisfying

Eq. 6.15 at prescribed points (control points).

The most elementary form of this approach is very

close to the box method and is described in the following.

Consider the surface 2 divided into small elements Z,;

(.see Fig. 6)

ZncP(F) _-
' -

W 6.16

Zs

By the mean value theorem

{ =$ If* (J
'' JJ w, V r 6.17

2;

where CP. is an appropriate value within the element

This suggests that <|^ may be approximated by the

value, (P. , at the center of the box. This yields
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H ^- ̂  + Z
Q^t ^nr v--, * an, /K

z..
6.18

where, in the last term, the index I covers only the boxes

in contact with the trailing edge and

6.19

where the upper (lower) sign is used for the upper (lower)

side of the wing.

(k)
By satisfying this equation at the centers P of the

boxes,one obtains
H _*J

(0 = r> 4- /^ c (D + / vT. if.
' * k 1 = 1 f c < " I ' i r , " ' I ' 6.20

with

I £1 /I-A / _

6.21

6 .22
ts i • \ /• i *

Z;

where

6 .23

c
t, = ff J_ f_I_

// d n, V Z/i r

is the distance of the dummy point of integration P, from

(k)the center P of the element k. Finally,

U = W ! 6.24ta ' j
lp= P'K1
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for the boxes in contact with the trailing edge and

vTKi. = 0 6.25

otherwise. Equation 6.20 can be rewritten as

ft

Z ak. cp = ̂  6.26
i r i

with

*W - 3* -C« - vTK 6.27

where <5t. is the Kronecker delta. Eq. 6.26 is the

equation which yields the solution of the problem.

6.5. Limiting Behavior for Zero Thickness

As mentioned above, the formulation described thus

far becomes singular in the case of zero thickness. This

is shown clearly by the fact that, for lifting surface

(in the plane z , = 0). In this case, Eq. 6.1 reduces to

- - I f (t-f.'K?) 6.28
I « It 6/C y < I

Z""

and

J 6.29

•̂  ("l
where 2. is the portion of the plane z = 0 (upper side)

which contains the wing and the wake. By adding and sub-

tracting Eqs. 6.28 and 6.29, one obtains

' t -= 0
6.30
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and

6.31

Z""
This implies that (since, as well known, there exists a

nontrivial solution Af^O ) the operator shown in Eq.6.31

is singular.

Hence, one can expect that the numerical procedure

also has a singular behavior. In order to show that this

is indeed the case, consider a symmetric wing with angle

of attack tf and thickness ratio t , and let T go to

zero. In this case, Eq. 6.21 shows that

I'"" bk = ° 6.32
T-.O

In order to simplify the discussion, the numbering of the

boxes is assumed to be such that the odd (even) numbers

correspond to boxes in the upper (lower) surface and that

the box in opposite position to the upper box i, has the

number i + 1 (see Fig. 7). For simplicity, upper box i and

lower box i + 1 will be called "opposite boxes".

With this numbering, it is easy to show that, according

to Eq. 6.22,

!•« fc.l =
r-o L H

O -I 10 O ]
-I O'O O i

"o"o"'6"'T
o o'-J_0'

0 0
p_q
o o

J. L-

o o,00'
O 0 i 0 O

O-l
-I 0

6.33
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In other words, all the coefficients c^ are equal to zero

except for the ones relating opposite boxes, which assume

the value -1. Furthermore, the coefficients w, . are equal
JC-1

to zero. Hence, Eq. 6.26 in the limit, as -c goes to zero,

reduces to

O O

o o
O o

1 1

1 (

oo
0 O

; o o
! o o
' I 1
! I i

k— *

O 0 ' 0 o I
on'oo!

= 0 6.34

This equation can have nontrivial solution since the deter-

minant is equal to zero.

Note that this result implies that zero .thickness

wings (lifting surface theory) are more difficult to deal

with than finite thickness wings.

However, this shows also that, by using the method

proposed here, one may encounter numerical complication

due to the fact that, for very thin wings, the determinant

is close to zero and hence, one may encounter strong eli-

mination of significant figures. This implies that one

has to be very accurate in the evaluation of the coefficients
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cki and bk .

It may be of interest to analyze the order of magni-

tude of the different terms of Eq. 6.26: by writing Eq.

6.26 as

?. fc ?
; ] ' (_>••] I K ) 6.35

and noting that

[ c f j - 00) 6.36

= 0(rJ 6.37

one obtains

6.38

In order to establish the practical limits of the

applicability of the method, Eq. 6.26 has been solved

numerically for very small values of T . The results

are presented in Section 7.

6.6. Generalization to Unsteady Subsonic Flow

In this subsection, the formulation presented above

is generalized to cover steady and unsteady subsonic flow.

As shown in Appendix C, great simplification is obtained

if the generalized Prandtl-Glauert transformation

6 '39
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is introduced. Following the same procedure used in Sub-

section C.3.2, by using Eq . 6.39, neglecting nonlinear

terms, Eq. 3.32 reduces to

Has ^
at, ^0.

6.40

where

r^[(*.-^)%(^t)^-^a]r 6.41

and

I M U,
with

r A/I /„ „ i _ 6.43
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Next, it is assumed that the surface is almost fixed and

Eqs. 4.13 to 4.15 can be used, to yield

7"'

r°l ' 6.44

Finally, neglecting terms of the same order of the nonlinear

terms (which implies that Qp can be replaced by ̂  = On

Eq. 6.44 reduces to

'

This is the desired equation. It may be noted that M

appears only in TQ , whereas [2> does not appear at all.

For steady state, Eq. 6.45 reduces to

6.46
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This shows that the same method used for incompressible

flow can be used for steady compressible subsonic flow.

This equation is essentially the same as Eq. 2.6.10 of

Ref. 13, already discussed in Subsection 3.4.

Furthermore, for unsteady oscillating flow (as des-

cribed in Subsection 4.4), combining Eqs. 4.1, 4.18 and

6.43 and 6.45 yields

x..-M-.j 6.47

^ L f *. «•

ro
O _L e
" r.
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where

$„ = -§_ 6-48

This equation can. be simplified further by introducing the

functions

& - 0. '""" 6.49

^ - s. M x.
-_ cj) «

6.50

to yield

£ A ft -A -*.r.
(D - - I \ Q _e• /] n ~y~

Z.

_S.r. 6.51

+ u $ 2-1 ̂— } dl,
i\ I 2*0, \ r. /
2;

This equation is equivalent to Eq. 4.27: the difference

between the two equations is of the same order of the terms

which have been neglected.

Furthermore, Eq. 6.51 shows that., by using the general-

ized Prandtl-Glauert transformation (Eq. 6.39) the equation

relating <$ to (?„ is completely independent of Mach

number. Note however, that the contribution of the wake

depends explicitly upon the Mach number, M: for, using

Eq. 6.34, Eq. 5.9 reduces to

6.52
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where
C M V

6.53

which implies that, on the wake, where Ap =0,

6.54

Note also that the only terms neglected are those in

the integral which contains the boundary conditions. This

is important, because, as shown in Subsection 6.5, the

operator becomes singular when the thickness goes to zero.

Hence, even small terms may become important when the

thickness becomes small.

In conclusion, Eq. 6.5 is more suitable than Eq. 4.27

from the numerical point of view. The procedure used to

solve Eq. 6.1 can be used with minor obvious modification

to solve Eq. 6.51. The only complication arises from the

contribution of the wake, which can be treated as described

in Appendix D.
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SECTION 7

NUMERICAL RESULTS

7.1. Introduction

As shown in Subsection 6.5, in the case of very thin

wings, one may expect to encounter strong elimination of

figures. In order to establish the limits of applicability

of the proposed method, Eq. 6.26 has been solved numerically

for a simple case for which numerical results are available:

rectangular wing in steady subsonic flow. For the sake of

simplicity, the procedure is described for incompressible

flow only, since, by using the Prandtl-Glauert transformation,

the steady compressible flow reduces to the incompressible

one (Eq. 6.46 in Subsection 6.6).

7.2. The Geometry of the Wjng

Consider a rectangular symmetric wing with thickness,

h, given by

in = t c JL£L {g 0-1) J i - ^ 7.1

with

I = */e
7.2

^ = 2 Lf /b

where c is the chord and b is the span, x and y are the

cartesian coordinates of the planform at zero angle of attack

(see Fig. 8) and, finally,
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T c j.~y - 1 . i -.o- c |s=i/» 7.3
*— <]- o

is the thickness ratio.

Equations 7.1 and 7.2 can be used to give the geometry

of the wing in parametric form (parameters § and n ), at

zero angle of attack, as

x = c

= i h
2.

where the upper (lower) sign holds for the upper (lower)

surface of the wing.

If the angle of the attack, ex. , is different from

zero, the geometry of the wing is given by (See Fig. 9)

X =. X dost* -t- i Sil et

z - X. j i n < K - t i CO.SOC

For small values of r. and >: , Eq. 7.5 can be

approximated as

x = x

•1s 1
7-6
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Hence, the surface «Z can be written as ;t

which implies

05 , dl.
= ~ 2 ̂  7.7

Equations 7.6 and 7.7 fully describe the geometry of the

wing and enable one to evaluate the coefficients Ck- and

*>*.

7.3. The Numerical Procedure

The numerical procedure used to evaluate the coefficients

of the equation is briefly described in the following. First,

note that the wing is symmetric with respect to the plane

y = 0. Hence, Eq. 6.26 can be rewritten as

7.8
1= "" ' "

where N is the total number of boxes on the right hand part
A

of the wing and c is the influence of two boxes (inn
symmetric position with respect to the plane y = 0) on a

•o 'r'point i on the right hand part of the wing,

68



"= ^ I,
^

L
9-,

(*) 7.9

with

7.10

where

7.11

and all the other quantities are evaluated on the right hand
A

part of the wing; similar expressions hold for w .

Second, note that 35/2x, , and 3S/2>L|( are

infinite at the leading edge and the tip of the wing,

respectively. Hence, it is convenient to use a nonuniform

mesh for the definition of the boxes (smaller boxes in the

neighborhood of the leading edge and tip, larger boxes in
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the neighborhood of the trailing edge and root). This is

accomplished by introducing the transformation

1 = X* ( O * X 6 I )

y» '•" / »—> j I J s i \ ' • *•*•

and using boxes of constant sizes AX , AY in the plane

X, Y :

^ X = I / N X
7.13

A V = I / A^

where NX and NY are the number of boxes in direction X and

Y respectively. In other words, the center of the box

(m, n) is given by (see Fig. 10)

jr - (n-i)At „-.!,...,«

whereas, its boundaries are given by

*"
7.15

4 Y ̂  VIP)~~

with

7-16
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2

Note that, for each couple of values m and n, there are two

boxes, one on the upper and one on the lower side of the wing:

hence, the total number of .boxes on the right hand part of

the wing is

M = 2 NX-NY 7.17

Third, the coefficients b_ are evaluated as
A

= *

where 2 are the same boxes used for the evaluation of

(• . This procedure is particularly convenient because it

yields very accurate results and is very little time con-

suming, since most of the operations required are needed

anyway for the evaluation of the coefficients c

Fourth, it should be noted that the emphasis here is on

very thin wings. Hence, it is feasible to approximate each

surface element <S . with its tangent plane at the center

of the element; the boundary of the element is still given

by Eq. 7.15. In this case, the integrals can be evaluated

analytically. This is shown in Appendix E for the more

general case of trapezoidal element, which is needed, for

instance, in the case of swept or delta wings.
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Finally', since only very thin wings are considered here,

the pressure coefficient, given by Eq. 1.18, is evaluated

as

7.19

where 9(̂ /3 J is evaluated by central finite differences.

Note that 2y>/#x is finite whereas 3<p/3* is infinite

at the leading edge. This is one of the advantages of using

the transformation given by Eq. 7.12.

7.4. Numerical Results

In order to compare this method with experimental and

lifting surface results, the rectangular wing considered in

Refs. 18 and 19, for which

*= 5°

b/e*3 7'20

H = .24
is investigated here. Analysis of the thickness effect (pre-

sented in Subsection 7.4.1) shows that the solution obtained

by employing a thickness ratio z = .001 is a good repre-

sentation of the zero thickness solution. Furthermore,

analysis of the convergence (presented in Subsection 7.4.2}

shows that using NX = NY = 7 (that is N = 98) is sufficient

for the convergence. The results obtained with X = .001

and NX = NY = 7 are shown in Fig. 11 and 12 where the
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distribution of the potential (f) over the wing and the lift

distribution

C — _ ^c - c cL. 7.21

respectively, are presented in threedimensional form.

It may be noted that the diagram of ^ ̂  is flat in

the neighborhood of the root of the wing and the trailing

edge (more precisely 0Af/0y = 0 at the root and d&̂ /#/ = 0

at the trailing edge). Similarly, the diagram of c is flat

in the neighborhood of the root (more precisely ^c^ /#</ = 0

at the root). Hence, the values of A if and c^ at the

center of the boxes in contact with the root (root boxes

values) and the value of A^> at the trailing edge boxes

will be considered in the following in order to discuss

the effect of the thickness and the convergence.

7.4.1. Thickness Effect
*

In order to analyze the thickness effect, the problem

has been solved for four values of the thickness ratio,

T = . 1, .01, .001 and .0001 respectively. In all these

cases, the number of boxes in both x and y direction is

NX = NY = 4. Hence, the total number of boxes (for upper
A

and lower side of the right half of the wing) is N = 32

(i.e., Eq. 6.26 is a system of 32 equations and 32 un-

knowns). For the value T = .001, no message indicating

strong elimination of figures was given, whereas, for the

*This is not an analysis of the thickness effect on the real

solution (since that would depend upon nonlinear terms) but only

the examination of the effect of decreasing thickness on the

numerical process.
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value I = .0001, a message indicating an elimination of

significant figures higher than the prescribed tolerance at

the 19th step was obtained.*

Hence, only the cases T = .1, .01 and .001 are pre-

sented here. The values of AiP at the centers of the

trailing edges boxes and the root boxes are shown in Figs.

13 and 14, respectively, whereas, the lift distribution

C = -Ac at the root boxes, is shown in Fig. 15. The

results indicate that the solution converges to a zero-

thickness solution and that the solution for t= .001 is

a good approximation for the zero thickness solution.

Note that, according to Eq. 6.6

, _L £ J_/

since the point from which the solid angle is evaluated

is on the surface ,2 • This equation is poorly satisfied

on the leading edge and the tip where the approximation of

the surface element with its tangent plane is poorer. The

*For the solution of Eq. 6.26, the standard IBM SUBROUTINE

GELG has been used. The value of the tolerance (which is

compared to the ratio between the pivot at the n-th step and

the initial step) was chosen to be TOL = .001.
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poorest values of Sc at "tip or leading edge boxes", are

given in Table 7.1, column 1, whereas the poorer value for

the "internal boxes" (not at the leading edge nor at the tip)

are given in column 2.

TABLE 7.1

-c

.1

.01

.001

.0001

1

.76946

.96247

.99625

.99960

2

.98986

.99899

.99990

.99999

Table 7.1 indicates that the approximation of the surface

elements with its tangent plane is not satisfactory for the

"tip or leading edge boxes" for the case T= .1. A more

sophisticated analysis, which evaluates the error (difference

between integral on the tangent plane and integral on the

real surface element) by Gaussian numerical quadrature

formulae is now being analyzed.*

Note that the use of X and Y See Eq. 7.12) as variables of

integration eliminates the singularity of the integrands at

the leading edge and the tip.
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7.4.2. Convergence

In order to study the convergence of the solutions, the

case T = .001 was solved for NX = NY = 4, 5, 6 and 7, res-

pectively. The value of ^ at the root and trailing edge

boxes are shown in Fig. 16 and 17 respectively, whereas, the

values of the lift distribution c. = -Ac at the root boxes
t P

are shown in Fig. 18.

The results show that the solution is convergent very

fast and that the case 4 x 4 is sufficient for an accurate

analysis. The computer time employed on the IBM 360/50

available at the Boston University Computing Center, are

given in Table 7.2.

TABLE 7.2

Number of
Boxes

Computing Time
Sec.

4 x 4 x 2

5 x 5 x 2

6 x 6 x 2

7 x 7 x 2

22.2

60.4

129.9

259.9

7.5. Comparison with Existing Results

In order to evaluate the accuracy of the method, the

results shown in Fig. 12 are compared to the one obtained
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in Ref. 19.

For convenience, three vertical sections of the three-

dimensional diagram presented in Fig. 12, are plotted in

Fig. 19. The three sections correspond to values of f) = .5,

.7 and .9 respectively.

In order to evaluate the comparison, the following

factors should be emphasized. First, this test case was

considered in order to verify the applicability of the

method in the worst possible conditions (very thin wings

with thickness ratio T = 1/1000). Second, the numerical

procedure was chosen for its flexibility (i.e., possibility

of applying it to very general geometries) and not for its

accuracy. Furthermore, it should be noted that the com-

parison should not be made with the experiments, but rather

with the lifting surface theory, since the thickness ratio,

"C = .001 is considered here, is very small. Finally, it

may be concluded that the results obtained here are in

surprisingly excellent agreement with the ones presented

in Ref. 19.

Note that the case T = .1 (which represents a realistic

value of the thickness ratio) is only partially satisfactory,

because Eq. 7.22 is poorly satisfied. Hence, a comparison

with the experiments is not attempted here. As mentioned

above, a more accurate procedure to evaluate the coefficients

c and b (in this procedure, the surface elements are notpq p
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necessarily planar with straight boundaries) is now under

investigation. Preliminary results are in good agreement

with the ones presented here (Ref. 20).

On the opposite end of the range of the thickness

ratio (the case T = .0001) strong elimination of signi-

ficant figure was obtained (see Subsection 7.4.1). However,

note that this value of the thickness ratio is much too

small to be of any practical interest. Furthermore, despite

the elimination of figures, the results obtained were very

close to the ones for r = .001. In conclusion, there is

no limitation of the method (at least for cases of practi-

cal interest) due to the singular limiting behavior (for

zero thickness) described in Subsection 6.5. It should

be remarked again that finite thickness wings can be treated

in a simpler fashion than zero-thickness wings.

Finally, it should be emphasized that, once the values

are known, the potential cP and the pressure coefficient

c can be evaluated at any point of the field. For, by

using the same procedure applied to derive Eq. 6.18 (with

E = 1 instead of E = 1/2), Eq. 6.1 can be approximated as

_ J_ </p 0<(L 2. 4X. + J. 2. <p (( ̂  (-} d'L

z*t 7.23
+ -1 Z <* W.
2. *.. •{ l
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c

Similarly

<r= -5 _
Z 7.24

** /V *̂" /o

£ "'
Note that these expressions can be evaluated by using the

same trapezoidal elements described in Appendix E: the

coefficients to be used in Eq. 7.24 are simply the de-

rivative with respect to x of the coefficient given in

Appendix E. Furthermore, if the point is on the surface

5" , Eq. 7.23 and 7.24 are still valid if coefficients

are evaluated in the limit sense and the value of E is

maintained equal to one.

Finally, note that the lift and the moment coefficients

can be evaluated as
L/-*w*

-'"• • ° 7.25
bfc. C. *A 5

-b/2 -Wi

v/z.

o
f 7.26

Similar relations can be used for evaluating the

generalized forces.
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SECTION 8

DISCUSSION

8_.l. General Comments

As mentioned in Subsection 1.1, lifting surface

theories have two main disadvantages. First, they are

complicated from the numerical point of view (singularity

of the integrands and, especially for unsteady state,

complication of the kernel function). Second, they can-

not be easily generalized to study complex configurations

and motions. The formulation presented here is an attempt

to reduce these disadvantages. The numerical simplicity

of the proposed formulation, in comparison to the steady

and (especially) unsteady lifting surface theory, is

apparent from Sections 6 and 7. Note that a sufficiently

accurate pressure evaluation requires only 22 seconds of

computing time on an IBM 360/50 (see Subsection 7.4.2).

The second point, applicability to complex configurations

and motions, is discussed in the next subsection.

8.2. Applicability of the Method

The main advantage of the method proposed here is

the fact that it can be used to solve a large variety of

problems, for which the lifting surface theories can be

used only in a very unsatisfactory way. It should be

noted that the method, although classic, (as shown in
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Section 5, the lifting surface theories can be obtained

as a limiting case of the present formulation when the

thickness goes to zero) has never been developed to its

full generality.

Note also, that the method is valid for both subsonic

and supersonic flow. The procedure described for the sub-

sonic flow can be used for the supersonic one. However,

for supersonic trailing edges, the procedure is simpler,

since the wake has no contribution on the body.

In order to appreciate the extent of the applicability

of the method, it might be convenient to consider a few

typical examples.

A simple, but interesting application of this method

is the evaluation of the aerodynamic forces acting on wings

of finite thickness. The importance of thickness effects

in the prediction of flutter boundaries has been shown by

21Yates and Bland. It should be noted that, in the pro-

posed formulation, the nonlinear effect of the thickness might

be included in a very systematic and natural way, by using

singular perturbation methods mentioned in Section 4.

More importantly, the method can be used to solve

more complicated problems, since it is formulated for

arbitrary geometries and motions. The arbitrariness of

the geometry implies that even complete configurations

(wing, body, tail) can be studied, including wing-tail
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wake interference effects. Even more detailed configurations,

like tanks at the wing tips can be analyzed without any in-

crease of difficulty.

On the other hand, the arbitrariness of the motion

implies that problems which cannot be examined with lifting-

surface theory, can now be solved, although the solution is

rather complicated. Typical examples are: curved tra-

jectories, accelerated motion, and roll (which is particularly

important for practical applications). Other problems

like gust response (and indicial motions in general) can

be solved, in a relatively easy way, by making use of the

generalized formulation, derived in Appendix F , which in-

cludes the effects of arbitrary initial conditions. It may

be noted that damped oscillatory motion, which is important

in predicting the degree of stability of linear systems,

as well as arbitrary periodic motions do not offer more

difficulty than the simply harmonic motion.

A particularly interesting problem is the evaluation

of the aerodynamic pressure on the blades of a helicopter

in forward flight in which both geometry and motion are

extremely complicated. These examples show the appli-

cability of the proposed formulation in solving problems

involving complicated configurations having arbitrary

motions.

It is of interest to mention that, by making use of
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the method of images, described in Ref. 11, the present

formulation can easily be extended to study the motion in

the presence of an .infinite rigid planar wall which acts

like a plane of symmetry: this corresponds to the practical

problem of motion in the vicinity of the ground (ground

effect). Also, using the method of images, the problem

of flow inside a rigid circular duct can be studied, as

well as the slightly more complicated flow inside a duct

of rectangular section. These cases correspond to the

important problem of accounting for the effect of the

walls of a wind tunnel. In summary, with the method of

images, the proposed method can be extended to study the

ground effects and the effect of the wind-tunnel walls on

the experimental results.

It may be worth noting again that the formulation

reduces to appropriate formulae in the particular cases

considered in Appendix A. Also, the lifting surface

theories can be derived as a limiting case of this for-

mulation.
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SECTION 9

CONCLUDING REMARKS .

A general theory of steady and unsteady, compressible

aerodynamic flow around a lifting body having arbitrary shape

and motion has been developed. The theory is based upon the

classical Green function method. This yields an integral-differen-

tial representation of the velocity potential. For the important

practical case of small perturbation, if the control point is on

the surface of the body, the representation reduces to an in-

tegral differential equation relating the potential on the

surface to its normal derivative. In particular, for small

harmonic oscillations around a rest configuration, one obtains

a two-dimensional Fredholm integral equation of second type.

This formulation reduces properly to lifting surface theories

and other classical results. The question of uniqueness was

examined and it was found that, for thin wings, although the

operator becomes singular as the thickness approaches zero, good

numerical results can be obtained even for thickness ratio, t =

.001.

In conclusion, the formulation developed here can be used

for efficient numerical solution of a large variety of problems

for which no satisfactory methods are available. Hence, the

method should be more convenient than existing ones, even for

very simple problems, as the rectangular wing in steady subsonic

flow presented here.
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APPENDIX A

TWO FUNDAMENTAL FORMULAE

In Subsection 3.3, the formulae

0*

*t r |QS|T
- — —-

and

|D.S|T
31

were used (see Eqs. 3.25 and 3.26) to derive the generalized

Huygens1 Principle. In this Appendix, it is shown that A.I

and A.2 are valid for any "good function", as defined by

22Lighthill. The concept used in the following is very

similar to the one introduced in Ref. 22.

In order to prove Eq. A.I, it is convenient to assume

the "surface distribution", Oj , as the limiting case

of volume distribution in a thin layer of the four-

dimensional space (with constant infinitesimal thickness,

6 ) surrounding the surface S(x, y, z, t) = 0. This

is equivalent to the classical procedure of defining a

surface integral (which is connected to the distribution

S- , see Eq. 3.7) as a limiting case of a volume in-

tegral. Thus define
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A.3

where the "layer function" L (similar to the function E

defined- by Eq. 3.1 is defined by

L = 1 inside the layer

= 0 outside the layer
A.4

More precisely, the function L has the value one for the

points (x, , y, , z.. , t. ) such that

10,51 A.5

In Eq. A.5, all the derivatives of S are evaluated on
• ^ i i i i

the surface Z, - Furthermore (x.., y,, z.., t,) is a point

in the direction of the normal, V , to the surface 2 "at

the point (x,, y,, z,, t,). Note that, by definition,

Combining Eqs. A.3 and A.5 yields

£-•0

Performing the time integration yields

-» O *

A.6

A.7a

-•&
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The integrand is different from zero only for the points

of the layer of the three-dimensional space for which

TL =1. More precisely, the integrand is different from

zero for the points for which Eq. A.5 is satisfied with

t, = t - T and t. = t - T; that is, for the points for

which

A.8

Note that the thickness of the layer is infinitesimal,
•

and thus neglecting higher order terms, T - T can be

expressed as

T'-T = A.9

where the derivatives are evaluated on the surface

Combining Eqs. A.8 and A.9 yields

asps as. 31
LaT, "at, a7

i i v j f/^ ̂

L_2^ ari^;.
\> zt, a«fij

A.10

or

IV.S7
35T l A.ll
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Twhere S is given by Eq. 3.28. Thus, the layer in which

the integrand is different from zero, is a layer surrounding

ZT T
of equation S =0; the thickness of the

layer is given by

- £ A.12
|VST|

Hence, performing the integration through the thickness

and taking the limit, Eq. A.7 reduces to the desired Eq.

A.I.

Next, in order to prove Eq. A.2, consider c)6

as a limit of the incremental ratio. Then

-06

.A.13

= 4tlo ^ -J L + ' ' *'

By using Eq. A.I and performing the limit operation, Eq.

A.13 reduces to the desired Eq. A.2.
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APPENDIX B

REDUCTION TO ELEMENTARY CASES

In this Appendix, it is shown how classical results

can be obtained as particular cases of Eq. 3.32.

B.I. Huygens* Principle

The problem related to the Huygens1 principle is a

particular case of the one considered here, the differences

being that

1) The velocity of the undisturbed flow is equal to

zero

2) The surface is assumed fixed in time

3) The nonlinear terms are zero

Mathematically speaking, these differences can be ex-

pressed as

U. = & ( H . o)

= O B-1

Note that, according to Eq. B.I

°^ . _££_ + U £± = 0 n ,
tflfc ' -• - "^ B'2

Combining Eqs. 3.32, B.I and B.2 yields

B.3
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^V'U) [<fjf ~

- V 'J "'Vex,! |_2tJ |V|S|

where

r 1-f f |
B.4MM -

and
_!_

r = |(<-<,r+(«/-f,)~ + «-z'r|£ B>5

Note that

A = -ĵ j- B.6

is the outward normal,directed from the region E = 0

to the region E = 1. Thus, Eq. B.3 reduces to

d),
T J

B.7

which is the well known Kirchhoff formula which is the

mathematical expression of Huygens' principle (see Refs.

11 and 12 in which the opposite convention on the definition

of the normal is used).
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B.2. Integral Representation of Solution of Poisson's

Equation

The differences between Poisson's equation and the

case considered here are:

1) No time dependence

2) M = 0

12Then Eq. 3.32 reduces to the classical result

i, 4Jlr
j

B.8

V

In particular, for F = 0 (Laplace's equation) Eq. B.8

reduces to the well known formula

[fU,-f &,(£]"*
B.3. Poisson's Formula

In Appendix F, it is shown how Eq. 3.32 can be used

in order to derive the contribution of the initial con-

ditions. Here it is shown that for M = 0, the contribution

of the initial conditions reduces to the well known Poisson

formula, that is, the solution of the wave equation with

given initial conditions. The contribution of the ini-

tial conditions is derived in Appendix F and is given by

Eq* F.2. For U= 0, one obtains r. = r, T= — r and
•« P <v.
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Eq. F.2 reduces to

i.c. ,^ 7} vat, rL 47?* 2t rl B.IO

where 2. = t - T is the spherical surface of equation

r * «,t B.ll

By using Eq. B.ll, Eq. B.IO may be rewritten as

B.12

where d SL = d"L /r . Equation B.12 is the well known

12Poisson formula
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APPENDIX C

THE VALUE OF THE FUNCTION E ON THE SURFACE

C.I. Introduction

Consider Eq. 3.32: neglecting the nonlinear terms

(F = 0) Eq. 3.32 gives a representation of the potential

tp , anywhere in the volume, in terms of the values of

CP and &$- on the surface of the body. The values of
v ̂

0cP/£>ri on the surface of the body are given by the boundary

conditions but the values of d> are not known. In order

to solve the problem, it is thus necessary to obtain first

the values of <J> on the surface. This can be done by

letting the point P of the volume V approach a point P^

of the surface. Then Eq. 4.9, with F = 0, yields

£

-_ ii•\>y\

P-P.

**L
n7,sTi

C.I
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In this AjJpendix, it is shown that, in the limit, Eq. 4.9

is still valid if the definition of the function E is

generalized as follows

E = 1 outside £.

E = 1/2 on & C.2

E = 0 inside t->

By letting P — »P*, the integrands become singular in the

neighborhood of P# . Thus, it is convenient to separate

the contribution of a small neighborhood* of P^ , which

will be indicated as 2 . Thus, Eq. 3.32 can be re-

written as

= - ff
JJ M7.STf

-9 ff fvs .V.T- -L J*L f u L / 3 I ) ] T _ ^ L ^
- ft JJ

T T
 rt- ^'l ^' > |V'S

C.3

*The neighborhood Zfc is a small circular surface element,

with center P* and radius £ .
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where 6^ is the contribution of the neighborhood of

P*, given by

7S.WI.LJ. *i -4-(
' W «- Jt, -tt.\V

C.4

In order to simplify the discussion of the limit of Jt

as P — » P#, the steady incompressible case is considered

first. The results are then extended to the unsteady com-

pressible subsonic case. The supersonic case is now under

consideration .

C.2. Steady Incompressible Flow

For steady incompressible flow, Eq. C.3 and C.4 reduce

to

£-Z£ i'Ze

and

*,
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The analysis of d£ is highly simplified by using local

coordinate X, Y, Zrwith Z normal to the tangent plane

(directed from E = O t o E = l ) . Then, separating terms

of order £ , Eq. C.6 reduces to*

0(t)

one obtains

- 2/J

t,
r

(0 JL
T* Jaz

0(i)

*Note that X = Y = 0 , Z . = 0 and ^.
1 97,

C.7

where the subscript * indicates evaluation at P^. By

using polar coordinate

C.8

C.9

•,-°
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Noting that

J_ JL
z az c.io

Equation C.9 becomes

C.ll

Finally, by letting P go to P*, (that is, Z -*0), one

obtains

£ +

/

Z|

Z
Z,

+ Oce;

C.12
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where the upper (lower) sign holds for Z > 0 (Z < 0) , that

is, when P originates outside (inside) the surface Z, ;

correspondingly, the function E assumes the value E = 1

(E = 0) .

Finally, using this result in Eq. C.4, one obtains

4 n^ " - e n , r ; , » ; C.i3
l-Zt £-?«.

Note that, in both cases (P inside or outside Z/ ) ,

-_ o + 4- -2. 2 C.14

Furthermore, r^ is the distance between the dummy

point, P,, and the control point (on the surface Z ),

P#. Hence, by letting £ go to zero, Eq. C.I 3 yields

c-is
Z ' 2

It should be emphasized that the limit £-» 0 is now per-

formed with P on the surface Z . This implies that the

contribution of 2jfc is now of order £ . In order to

clarify this point, consider the quantity
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and note that

' z-o

C.16

C.17

whereas

Z-,o

0 = 0
C.18

The difference between these two limits is due to the fact

that, in the limit (as Z —» 0), the integrand of 1^

behaves like a Dirac delta function and hence, its con-

tribution for a domain which excludes the singular point

is zero-

It may be worth noting that, in Eq. C.12, the sequence

of limits indicated in Eq. C.17 must be performed, whereas

in Eq. C.15, the one indicated in Eq. C.18 must be used.

Finally, it is shown that the results obtained here
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are equivalent to the definition of E given by Eq. C.2:

note that for steady incompressible flow, Eq. 4.9, with

F = 0, yields

C.19

Note that Eq. C.19 must be used if P is outside or

inside the surface, whereas Eq. C.15 must be used if P is

on the surface. However, by comparing Eqs. C.15 and C.19,

it is easily seen that Eq. 19 is valid everywhere (outside,

inside and on the surface Z, ), if the convention is made

that E is given by Eq. C.2.

C.3. Unsteady Compressible Subsonic Flow

In order to simplify the analysis of unsteady sub-

sonic flow, it is convenient first to analyze Eq. C.4 with

the nonrestrictive assumption that the frame of reference

is connected with the undisturbed air; this implies that

U» = o M- o p-\ c>20

This is considered in Subsection C.3.1. The general case

is discussed in Subsection C.3.2.
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C.3.1. Frame of Reference with U» = 0

With the assumption C. 20,* Eq. C.4 reduces to

|V|Sr,

C.21

at
.V.T- _L_3S |T £ j^

4* atj IT 1̂

where, according to Eqs. 2.38 and C.20,

T = JC . C.22

«-
In order to examine Eq. C.21, it is convenient to

introduce a time shift so that t = 0. Furthermore, let P

be a point located on the surface at t = 0; then it is

convenient to consider a frame of reference with origin at

P^ and Z axis directed along the normal to the surface of

the body (Fig. C.I).

*
Note that, strictly speaking, this assumption makes Eq. 1.3

meaningless. Hence, this section should be considered as

a mathematical introduction to Subsection C.3.2. Physically

meaningful results can be obtained if <f> is replaced by $>

in this whole Subsection.
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Thus, t;he equation of the body is given by

S=z1-f(x,)v.,t,)=o

with

l£(o o o) = o
2X,V ' '

c.24v '
but, in general

2£ (0,0,0)= c /o c<25
2fc, '

By using a Taylor series expansion and neglecting higher

order terms, Eq. C.23 reduces to

-ct -- 0 C.26

where Eqs. C.24 and C.25 have been used. Eq. C.26 shows

that c is the velocity of the surface of the body at P =

and t = 0. Hence, in an infinitesimal neighborhood of

T
P*, the surface S is given by

>T = Z, - c I + ĉ
 • - - • -I • x-i '

C.27

,-z)2=o
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with

R ^ y/ X,S V,1 C.28

Next, it is important to note that, for P = P^ (i.e.,

TZ = 0 and t = 0), the surface 2 does not have a tangent

plane in P*, but rather a tangent cone. In order to see

this, consider the normal to ̂  given by V, S /|V, ST|

where, according to Eq. C.27

T
\7,5 -- k f £ V( \/£

z+Z,z c-29

where K is a unit vector in direction Z. Equation

E T = 0 has the shape of

a cone in an infinitesimal neighborhood, £. , of P*.

For, Eq. C'.29 can be rewritten as

VtS
r = K + H c.30

with

H - — ^ i/E'+Zf C.31

*-
In Eq. C.30, K is constant whereas H is directed

along the tangent to the surface Z£ . Note that K + H
_ m

is directed along the normal to 2ar . This configuration
w

is sketched in Fig. C.2 where K and H are shown at two

points, P, and P. , in the neighborhood of PA.

In order to analyze the contribution S^ it is

Z T
t ,
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defined as the plane normal to K at the point PA. Note,

however, that for Z = 0, the surface 2.T is. a hyperboloid

with axis parallel to K.

Noting that

2n
C.32

and that the first integral in Eq. C.21, as well as T,

is of order e. , Eq. C.21 reduces to

t-- o
C.33
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In order to evaluate the integrals, it is convenient to

use, as variable of integration, the variable

•"»> i
Z, .2, -ii

Note that, according to Eq. C.27

where
-O _ I
Z = Z - ct

Note that, according to Eq. C.27

By using Eqs. C.35 and C.37, Eq. C.33 reduces to*

C.34

C.35

C.36

C.37

4c

J. Z.-Z
«

Using Eq. C.32, C.35 and C.37, it is easy to show that,

as anticipated, the first integral in Eq. C.21 is indeed

of order t
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1,0,

0(t)

t-.o

J [«, , I]*"
•* *• i —

7(0)

= Z/7f(P,,OJ 11
= o C.38

- Z O(£)

t.-o

*N̂

where Z (R) is obtained by solving Eq. C.25 with respect

to Z . This yields

C.39

with r = c/a. Hence

z(0) .-- -I|V -

i- r;

C.40
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and
. rl f
i-r* L

az.(o). rl r

C.41

since, according to C.36

/̂_L l£ s - 5 = - r
a+ d t a-

Combining Eqs. C.38, C.40, C.41 and C.42 yields

C.42

: = o

C.43

Note that

r

C.44

and

c
^t'

r 5i

•ŝ

Z

C.45
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Finally, combining Eqs. C.43 to C.45 yields (note that,

for t = 0, 2". = Z. and Z = Z)

C.46

at

and, by letting Z go to zero

rtz/)z|

which is identically equal to Eq. C.12. This implies

that the results obtained in Subsection C.I (in particular

Eq. C.2), are valid also for unsteady compressible sub-

sonic flow with U= 0. The case l^f 0 is considered

next.

C.3.2. Frame of Reference with UL. ̂  0

In Subsection C.3.2, it is shown that the results

obtained in Subsection C.2 are valid also for unsteady

compressible subsonic flow with frame of reference

connected with the undisturbed air ( l/^ =0). In this

subsection, this last restriction is removed. In this

case, noting that the first integral of Eq. C.4 is of

order 6 , and T is also of order £ , Eq. C.4 can be
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rewritten as

T , -T

z.T
T «r

U 37-)"] _1
-^yj r

a*,

In order to analyze Eq. C.48, it is convenient to use the

Prandtl-Glauert transformation. By using Eqs. 3.37 and

3.40, Eq. C.20 reduces to

u as 9

_ rS.7.T-
'* ei ' » S
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with d) - iP(P,, , t ) and

T_- J_z [M(x,-x)t r J= J_ [M(x.,-jy + r.J c.50

Combining Eq. C.49 and C.50 and generalizing the Prandtl-

Glauert transformation by introducing

, c.5l

yields

^1= ft /ffe,S.̂ a). Ji 31 l_fJ.)1
€ ''/ lr-/ r'

CS2C.52

This equation can be considerably simplified by noting

that
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where i is a unit vector in x_- direction and

5. =

=. V.,r.

with

C.53

C.55

Note that Eqs. C.53 and C.54 are in full correspondance

with Eqs. C.30 and C.31. Combining Eqs. C.52 to C.55

yields

C.56

132



Equation C.56 is formally equal to Eq. C.33. Hence,

the results obtained for L/, = 0 (Subsection C.3.1),

are valid for the. general case as well.

Finally, an important remark should be made. As

shown by Eq. C.38, each of the two integrals tends to

infinity as Z goes to zero. However, their difference

tends to the finite value given by Eq. C.47. Hence,

the numerical integration of the two integrals must be

very careful.
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t-0

Fig. C.I The surface Z. in the neighborhood of
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7- 

Fig. C. 2 The surf ace C in the neighborhood of P, 



APPENDIX D

UNSTEADY WAKE AND LIFTING SURFACE THEORY KERNEL

D.I. Introduction

In this Appendix, an explicit expression for the

evaluation of the unsteady wake (Subsection D.2) is given.

Finally/ for the sake of completeness, an explicit ex-

pression for the kernel function of the integral equation

given in Ref. 8 is derived from the results obtained in

this appendix.

D.2. Unsteady Subsonic Wake

In this subsection, a treatment for the wake of an

oscillating wing in subsonic flow is derived. The same

assumption made for the steady state wake (Subsection 6.3)

is made here: the wake is approximated by straight vortex-

lines, parallel to the direction of the flow, emanating

from the trailing edge of the wing. For the sake of

simplicity, the trailing edge is assumed to lie on the

plane x, = 0.

Under this assumption, Eq. 4.19 reduces to
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with

D.2

In order to take advantage of the fact that there is no

pressure jump across the wake, it is convenient to follow

a procedure similar to the one outlined in Subsection 5.2.

By using Eq. 5.11, Eq. D.2 may be rewritten as
b/2

D.3

where

A
I.

Hi

T£

\

X

rs
D.4
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where integration by parts has been used and

•Ml D.5

Eq. D.4 can be simplified considerably by noting that

^p = 0 on the wake: this implies that the last term is

identically equal to zero. Furthermore, the upper con-

tribution of the first term is zero because the first

integral is equal to zero for x. = «J . Finally, note

that, according to Eq. 5.11

D.6

Hence, Eq. D.4 reduces to

W

D.7

where A = JC - A, , and

D.8
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Note that, according to Eq. 2.38, with x - x,

A _T , A.._i

^ D.9

Finally, combining Eqs. D.3, D.7 and D.9 yields

D.10

with (note that $/&*, = -

"Tt

9

Til

r;^-^j

rA
D.ll

Note that, according to Eq. 5.15, the Kernel function of

the lifting surface integral equation is given by

K - - D.12
r = o

D.3. An Explicit Expression For Jw
.

In order to derive an explicit expression for

consider the integral
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x-x,
i -£- (X -
' v

.'.«- (A_M,?*u.\
D.13

In order to evaluate Jw, consider the classical transformation

M-

with

Note that

- _L (fcSA*) -2 MA
12- I

^TF-MA

*1
J

1/2.

[1/2-

D.14

D.15

D.16

and

^L - _L F/l A

L ^4*
D.17
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Hence, using the transformation D.14, Eq. D.13 becomes

J * £ .
\l—1 D'18

<*,

where

.. -Q^g* -(*-*.)M, r -- - - D>19

Consider the integral in Eq. D.18

DO

A f

where

f c - - - l G ^ - D.21

A

In order to evaluate I it is convenient to make use of

the contour integration. Consider the integral

where C = C, + C- + C^ -«• C. + C is the contour indicated

in Fig. D.I. The point + i and - i are branch points:
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by connecting them by the branch line shown in Fig. D.I,

the integrand can be treated as an analytic function;

thus, the Cauchy's. Theorem yields that

11 + \ * *3 + T4 fls " ° D.23

where
-c'MU

e. ^ D.24

On the other hand, if the radius of the circle C. goes to

zero and the circle of C2 goes to infinity, one obtains

I4 — 0 D.25

and, by the Jordan lemma

lz -» 0 D.26

Furthermore,

T' ~* l = I ' - ̂  D.27

whereas

5^ * ' 7f^ D-28J i Itn
-c
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and finally (Ref. 23)

D.29

K (H;

where K0 (x.) is the modified Bessel function of second kind

of zero order.

Hence, by using Eqs. D.25 to D.29, Eq. D.23 yields,

in the limit

I =
- IKH -<•'»<«

D.30

Next, this result can be used in Eq. D.18 to yield

A A

D.31

where the relation (Ref. 23)

H
D.32

has been used, where K.. is the modified Bessel function of

second kind of first order, given by (Ref. 23)
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K,W-(j I»« ±
7 [('•*•"•* i.) -I i.lfe

D.33

where 7= .4772157 is the Euler constant.

Finally, the indefinite integral

-1KM

(u) s -i* U-| D.34

is analyzed in Subsection D.4. The results are given by

Eqs. D.41 to D.44. By combining Eq. D.ll, D.13 and D.34,

one obtains

-,'xu. D-35

where K is given by Eq. D.21 and

D.36

since, according to Eq. D.15

-= S

^

- = B2- e-gj.
\* r R

D.37
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and,-finally, according to Eqs. D.16, D.19 and D.38

Viw*

V i + u

D.38

I i \4f- R3 r

Note that, as shown in Subsection D.5 (Eq. D.63)

A

' ~ ~ Z" ' D.39

where I,(H) is the modified Bessel function of the first

kind of first order (Ref. 23).

Finally, combining Eqs. D.35 to D.39 yields
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• - *

D.40

As mentioned above, an explicit expression for F (u)

is derived in Subsection D.4, where it is shown that

D.41

where F (u) can be evaluated by using the recurrent formula

D.42

with x given by Eg. D.21 and

] (u) s . i

and

?) I

D.43

D.44

D.4. The Kernel of the Lifting Surface Theory

In this Subsection, the results obtained thus far

are used in order to derive an explicit expression for
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the Kernel function of the lifting surface theory. In

order to do this, it is convenient to rewrite Eq. D.40

as

< D.45J - -w
where

K - * L

x,-x

D.-46

According to Eq. D.12

K . i

and

I —»0

. e.

x--x

H.-H

.- o

D.47

D.48
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In order to show that this expression is equal to the

one given in Ref. 8, it is sufficient to note that
M. 0

A A

i "

_ j x f i
r

i H n 1 ( X ) - L (*)T I •z L

D.49

where Eg. D.66 has been used.

Finally, combining Eq. D.48 and D.49, yields

(flu)
ZU U

UL IV1I

Lu

11-11
u e

D.50

x-x,

in agreement with Eq. D.8 given in Ref. 8.
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D.5. Evaluation of the Integral F

Consider the indefinite integral

r =. ,• .< x H

D.51

This integral can be integrated by series as follows:

A
F -. - t M. = Z

(n-l)! D.52

with

I...U; D.53

Note that the interchange between integration and summation

signs is allowed by the uniform convergence of the series

of the exponential function.

The integral given by Eq. D.53 can be evaluated by

using the recurrent formula*

^ "*„ = w y I + M1 - (*-'H.<-i D-54

In particular, disregarding the constant of integration,

D.55

-. \
J

*Note that, for u > 1, f is divergent as n goes to infinity.

However, the ratio t/(«-0- (where f is evaluated analytically] is

convergent to zero .
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Hence, E4- 
D.52 may be written as 

f' 

where 

with 

and 



.A

Hence, F (-i) = 0 for n = odd and
n

D . 6 2

for n = even. Thus

* •« A ~ >*

D.63
- . nL Jt

, ip*i
f .*)
v 2 /

Note also that F2(0) = 0 and

(0) - -t'x D.64

Hence F (0) = 0 for n = even andn

,
n r t - i

D.65

F («) = -sL. F., (o)

for n = odd (where T is the Euler gamma function or

factorial function). Thus

/A M A 4: / \3"'*̂  i

D.66

- . in X. L, (*) - i X— -i i \ '
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where L, (i-t) is the Struve function (Ref. 23)

Combining Eqs. D.63 and D.66 yields

-l KU

ue
D.67

in agreement with the well known relation (Ref. 23)

" K

D.68
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branch
line.

!mag(u)

Real (u)

Fig. D.I The contour of integration
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APPENDIX E

SOURCES AND DOUBLETS ON A TRAPEZOIDAL ELEMENT

E.I. Trapezoidal Element

In this Appendix, the effect of the sources and

doublets distributed on a trapezoidal planar element are

obtained in analytic form. As mentioned in Section 6,

it is of interest to consider planar elements described

by the equation

l(c) E.I

where the subscript c stands for center of the element.

The boundary of the projection of this element on the

plane z = 0 are given by

E.2

Equation E.2 represents a trapezoid and the element

defined by Eqs. E.I and E.2 is called trapezoidal planar

element (see Fig. E.I).

E.2. Doublet Distribution

Consider first the integral of a doublet distribution

of unit density over a trapezoidal planar element, given
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by

I = !-! AHd

1,

E.3

where

-3$ /fa, ,
s = - = I on upper surface

E.4
=. - | on lower surface

and use has been made of the fact that, according to

Eq. E.I
S = - 2i /_££.

ax, / a a,

E.5
g 9£ / 35
f ~ acf, / 9e,

It should be noted that, for trapezoidal planar elements, ot

and p are constant and that, according to Eq. E.I,

E.6
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Thus, Eq. E.3 reduces to

I
T3

E.7

with

E.8

This integral can be simplified considerably if the new

variables are introduced:

5 =

^

(*,-*) (US')

E.9

These new variables represent coordinates in a new frame

of reference with origin in the point x, y, z and base

vectors ,

0

E.10

. w
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It should be noted that the vector k is normal to the

plane of the element. It is also immediately verified

that i, j, k are mutually orthogonal unit vectors and

thus represent a (right-hand) reference system.

Note that i, is not an independent variable: com

bining Eqs. E.I and E.9 yields

E.ll

where o is a constant given by Eq. E.6.

Using

Eq. E.I reduces to (note that dx-dy, = (1 +

and n as new variables of integration,
2 ~

fl)~T

E.12

where 0 i £2 4 "]* + 2,z and, according to Eq. E.ll
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and

O ***

^ )(«„-«)*

with

5>

Similarly

.A

*>,

0

V H-i

i ^i /

:.14

_

'

E.15

E.16
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with

Integrating Eq. E.12 yields

E.17

i-P
E.18

Consider the indefinite integral

?.
E.19

This can be integrated by standard methods of integration;

using the transformation

* £_ t - si. /loZ

t + I

and integrating yields

« _,

1 " Itl

E.20

E.21
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and, returning to the original variable,

Finally, by using Eq. E.22, Eq. E.18 reduces to

with

^ (i-r-\ v 'P
XV A.

V-

where

* -- Fi2> L^PP

** z* T
f*1 J
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E.24

1/2

E-25



with

E.26

•* -A

§,,.•)•
E.3. Source Distribution

Finally, consider the integral of a source distri-

bution of density .2JL/jy$j over a trapezoidal planar
9 "

element, given by

f( I ££ 4L.
' JJ r ^^i |T?S|

• S.*VVHJ £.27

<H,j.
ti i • • . '

Using the transformation introduced in the preceeding

subsection yields

•-
Is -. . s*(US'+p a ) J ̂  - E-2 8
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and, by integration

- s*

1-

,i
-

E.29

Consider the indefinite integral

I E.30

with ^, = £>„ *• €i "}

(note that

Integrating by parts yields

Note that

E.31

J
1+JL A + Jlr ?* j v*s

E.32
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Combining Eqs. E.31 and E.32 yields (note that

V- E.33

Note that
~ ,-'/z

Combining Eqs. E.29, E.33 and E.34 yields

-<><*

TTŝ p

E.34

"̂ Al4 £'"•
E.35

- ie
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y ss y
J

Fig. E.I The projection of the trapezoidal element in the
plane X,, Y,
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APPENDIX F

INITIAL CONDITIONS

In this Appendix, the generalized Huygens ' principle

is further generalized to cover also the case in which

the problem is formulated with initial conditions. In

this case, the function E, defined by Eq. 3.1, must be

assumed to be zero also for t - 0. Thus, a branch of

the surface Z. is given by the equation*

For this surface, VS = 0 and 3S/3t( = +1. Furthermore

ST = t - T and |VST| = |VT| . Thus, Eq. 3.32 can be

generalized by adding to the right-hand side the term

I
I«. A i

*,T,

_L n 1 a \ c
«l U d*,\rfl |VT( F.2

ZTjr.

IVT|

*
The condition that OS is directed like the four-

-*
dimensional outward normal v is satisfied (see Fig. 2).
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As shown in Appendix B, for M = 0, Eq. F.2 reduces to
0

the classical Poisson formula (Cauchy problem for the

wave equation).

Similar results can be obtained for the supersonic

flow.
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APPENDIX G

SMALL THICKNESS FORMULATION

G.I Introduction

As mentioned in Section 6, the integral equation for the

potential (D has the disadvantage that it becomes singular as

the thickness goes to zero. In this Appendix, the charac-

teristics of this equation are analyzed more in detail. In

particular, the behaviour at the trailing and the leading

edges (where one might consider that the thickness is zero)

are examined (Subsection G.2), vortex layer interpretation

is given (Subsection G.3) and an alternative approach to

solving the problem is suggested (Subsection G.4).

G.2 Leading and Trailing Edges

Consider first the trailing edge. In order to obtain

the integral equation at the trailing edge, it is convenient

to use the same procedure used in Appendix C, that is, to

obtain the integral equation as the limit (when the control

point approaches the trailing edge) of Eq. 6.1, or for simplicity,

the corresponding one for incompressible flow

47lr
B Z&+*v

For the sake of simplicity, the surface 2 is replaced by the

V 'smoothed surface i* in an infinitesimal neighborhood of the

trailing edge (see Fig. G.I).
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Next, the limit value of Eq. G.I as the control point P

goes to P* , is considered. Following the same procedure used

in Appendix C, one obtains immediately

. - - - - G - 2
Tfc'*

where (P (^ I is the upper (lower) value of d) at the trailing

edge. Similarly, if P approaches P* from the bottom, one

obtains

G-3

However, the two equations are not independent since both are

equivalent to

G.4

Note that in general for lifting bodies (D ± (/) Thus,

one has only one equation (Eq. G.4) for two unknowns (|> and

Hence, an additional condition, the Kutta condition,.

must be given in order to make the problem complete:

The implication of this on the numerical formulation described

in Section 6 are obvious. If the control points of the upper
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and lower surface are very close to the trailing edge, the two

equations are both very close to Eq . G.4 and thus, the deter-

minant is very close to zero. Hence, use of small boxes in

the neighborhood of the trailing edge yields elimination of

significant figures even for thick wings . An alternative

formulation is then required (Subsection G.3).

It may be noted that the above problem does not exist

at the leading edge since there, the upper and lower values

of the potential are equal. Incidentally, however, it may

be worth noting that, as is well known, at the leading edge

the hypothesis of small perturbation fails. For, at the

leading edge, the boundary conditions are given by

_ 95/0* . _ y. _ i G.6

W [VS\
.*

(since the normal n is almost parallel to the x-axis) , which

is in contradiction to Eqs. 4.5 and 4.6. It may be noted

however, that the boundary condition is still used in its

exact form and that the terms neglected in Section 4 are

still of the same order of the nonlinear term of the differ-

ential equation. Moreover, this yields only a local effect

which eventually can be analyzed with the method of matched

asymptotic expansions (see for instance, Ref. 24 ). in any

case, the error involved is smaller than the one obtained in

the lifting surface theory where the value of dcP /OX. is

infinitely large.
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G.3 Vortex Layer

As is well known, a discontinuity in the potential

corresponds to a vortex layer. The direction of the vortices

in the layer is given by the "direction of the line A^= constant

9 ̂ "f
and the intensity of the vortex is given by variation of

where s is the direction (in the layer) normal to the "constant

^4tP lines", that is, the direction of the perturbation

velocity component in the plane of the vortex layer. Phy-

sically speaking, the doublet integral can be interpreted as

a (zero-thickness) boundary layer (note that, with this inter-

pretation, E = 0 inside Z. should be replaced by C^= 0 inside

2u , which implies that the perturbation velocity is identi-

cally equal to zero inside 2j ). Finally, it may be noted

that this implies that this formulation does not yield any

phenomena of the type encountered in lifting-surface formu-

lations (with elements inclined to the flow) , for which "wakes

emanating from points near the body leading edge will thread

through the body surface near its trailing edge" (Ref. 25

p. 446 ). It should be noted that the tangent plane approxi-

mation (Section 7) yields a similar phenomenon. However, the

tangent plane approximation should be considered only as a

numerical approximate procedure (with controlled error) to

solve a physically well posed formulation.

G.4 Alternative Formulations

Finally, it is worth noting that alternative numerical

formulations can be used in connection with the theoretical
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formulation presented here. Again, for the sake of simplicity,

the discussion is carried out for the steady incompressible

case. Consider first the normal derivative of the basic equa-

tion

G.7

By taking the limit as the control point approaches x , one

obtains an integral equation (different from Eq. 6.2), which has

the advantage that if the thickness is equal to zero, the opera-

tor is not singular: the limit equation is the one used by

Haviland.2

Two other alternative formulations are obtained by intro-

ducing a convenient flow field inside the surface Zj (see

27Lamb ). If the value of the potential is continuous across

the surface, one obtains

G-8

where S is the intensity of the source distribution (equal to

the discontinuity in normal velocity). On the other hand,

if the normal velocity is continuous across the surface, then

one obtains

/ n ,ff\ T\ 9 / ' 1-^2
G.9

where D is the intensity of the doublet distribution (equal

to the discontinuity of U> ). By taking the normal derivative
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of Eqs. G.8 and G.9 and imposing the boundary conditions,

one obtains two integral equations for the unknowns S and D,

respectively. These methods are used, for instance, by Hess
28 6and Smith and Djojodihardjo and Widnall, respectively.

It may be noted that more complex formulations can be ob-

tained by combining two or more of these four basic methods,

Eqs. 6.2, G.7, G.8 and G.9. The advantages and disadvan-

tages of the four basic methods are briefly discussed here. '

Note first that the "source method", Eq. G.8, is limited to

nonlifting bodies: extensions to lifting configurations must

29include doublet distributions as well. On the other hand,

the other two methods, Eqs. G.7 and G.9, if applied to a

closed surface, involve a singular operator (which yields a

determinant equal to zero). For, according to Eq. 6.6, one

obtains, outside Z ,

\Al * . J. eft dSi - 0
4;1 J (G.10)

£_ 4/1

and thus its normal derivative is zero: hence, Eqs. G.7 and

G.9 have a nontrivial (constant) solution for the homogeneous

problem.* Thus, the method presented here is the only one of

the four basic methods, which can be applied to "closed-surface"

It should be noted however, that these two methods can be

2 6used for open surfaces (lifting surfaces ), or for the analysis

of the transient response.
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description of lifting configurations. On the other hand, as

mentioned above, combinations of two or more of the four basic

methods can be usefully employed. Various combinations are

now being explored.
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Fig. G.I Surfaces X and Z-
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APPENDIX H

SUPERSONIC DOUBLET

H.I Introduction

It should be noted that, as mentioned in Subsection 3.5,

the supersonic Green function (Eq. 3.44) has an infinitely

large discontinuity at the Mach cone. Hence, the normal de-

rivative 3 < ^ i O , (supersonic doublet) has meaning only in

the theory of distributions.

The scope of this Appendix is to obtain the correct

definition of the supersonic doublet within the theory of

functions (as distinct from distributions) . In order to
22

obtain this, the Lighthill definition of distribution, or

generalized functions (as limit of regular functions) will be

employed. For simplicity, the steady case is considered.

The potential steady supersonic flow around a body of arbitrary

shape is described by the equation

cP = &T y.
ti-

where C/> is the perturbation potential, Z> is a surface surroun-

ding the body and the wake and (see Eq. 3.44)

H.2
1 / i-i / 11 I 2.

: O X-X,

is the steady supersonic source or Green's function. In Eq,
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B.2, it is assumed for simplicity that B = yM2-) - \ , since

by using the supersonic Prandtl-Glauert transformation, ex-

pressions formally equal to Eqs. H.I and H.2 can be obtained.

For the sake of simplicity, an element of planar surface

210 , parallel to the x-axis is considered. By suitable

change of coordinates, this element can be reduced to be

lying in the plane z, = 0. In this case

Q - © - _ f H.3
On, ^i " 2l

Furthermore, the origin will be assumed to be moved to the

point (x,y,0), so that Eq. H.2 reduces to

( H-4

-. o *. > -IV-'*']"1

In conclusion, the supersonic doublet integral reduces to

H.5

with G given by Eq. H.4. This integral is analyzed in the

following.

H.2 Modified Supersonic Doublet Integral

As mentioned before, following the Lighthill approach,

the Eq. H.4 will be considered as the limit of a more manage-

able function. A suitable choice is (see Fig. H.I)

<\
G - - - — •; * £ H-6

in rs
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Furthermore,
•A i
G - o x, > - Of,*+21]* H>7

Hence, the function, has no discontinuity for all the values

of x(and yr In conclusion, the modified supersonic source G

is given by

-•o £ * < -(u*-f-a'-f-6*^

a O -. , 00 H.8

Consider the modified supersonic doublet integral

I , Jf
JJ H.9

where Z, , ̂-2. and Z3 are shown in Fig. H.2. For the sake

of simplicity, two edges of 20 have been assumed to be

parallel to the x-axis. Hence,

H.10
•*• £.11 f

where

' r- _ H.llv
*it

0 -XtoJ

and

^ - i I
^

H-12
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Using the transformation

X, - - H.13

one obtains

H.14

and

1, = 22

-. I 4 2s f Ve*4'{.t4g*_
£ o W/^Z*-

- I

H.15

where

H.16

is the contribution from the edge x = X(y).
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On the other hand, combining Eqs. H.12 to H.14 yields

V - <f*ttt* V ?

I. -. -_2J_ | cUf, I J- A -- - Si I -H

ii-

-

*)4 , '
?- y £v£T'

H.17

Finally, combining Eq. H.15 and H.17, one obtains

/ eVo+ 2 2

fif

- J

H.18
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Bv expanding in power of t one obtains

= It 2

00)

Finally, combining Eq. H.10 and H.19, one obtains

f r - -1 I 1- O & )
^ 27Z

H.3 The Supersonic Doublet Integral

By letting £ go to zero, one obtains

H.19

H.20

v lp = 1 H.21

where I, given by Eq. H.15, is the contribution of the boundary

x = X(y^X. Hence, the rule is that the contribution of the

boundary r_ = 0 (which is infinity if the theory of function
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is applied carelessly) is zero.

Note in particular that if X = const.

I
t> 21 v n Uli/x^yT?1 H - 2 2

Finally, note that

- H.23

which is the same result used in subsonic flow to prove that
—i

E = 1/2 on the surface 2j .
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Fig. H.I Modified Supersonic Source

-X(y)

Fig. H.2 Surface Z0 , +- +
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