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Abstract

Most existing approaches to hashing apply a single form

of hash function, and an optimization process which is typ-

ically deeply coupled to this specific form. This tight cou-

pling restricts the flexibility of the method to respond to the

data, and can result in complex optimization problems that

are difficult to solve. Here we propose a flexible yet simple

framework that is able to accommodate different types of

loss functions and hash functions. This framework allows

a number of existing approaches to hashing to be placed

in context, and simplifies the development of new problem-

specific hashing methods. Our framework decomposes the

hashing learning problem into two steps: hash bit learning

and hash function learning based on the learned bits. The

first step can typically be formulated as binary quadratic

problems, and the second step can be accomplished by

training standard binary classifiers. Both problems have

been extensively studied in the literature. Our extensive ex-

periments demonstrate that the proposed framework is ef-

fective, flexible and outperforms the state-of-the-art.

1. Introduction

Recently hashing methods have been widely used for a

variety of applications, but have been particularly success-

ful when applied to approximate nearest neighbor search.

Hashing methods construct a set of hash functions that map

the original high-dimensional data into a compact binary

space. The resulting binary codes enable fast similarity

search on the basis of the Hamming distance between codes.

Moreover, compact binary codes are extremely efficient for

large-scale data storage. Applications in computer vision

include content-based image retrieval, object recognition

[12], image matching, etc. In general, hash functions are

generated with the aim of preserving some notion of simi-

larity between data points. One of the seminal approaches

in this vein is locality-sensitive hashing (LSH) [2], which

randomly generates hash functions to approximate cosine

similarity. Compared to this data-independent method, re-

cent work has focused on data-dependent approaches for
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generating more effective hash functions. In this category, a

number of methods have been proposed, for example: spec-

tral hashing (SPH) [15], multi-dimension spectral hashing

(MDSH) [14], iterative quantization (ITQ) [3] and inductive

manifold hashing [11]. These methods do not rely on la-

beled data and are thus categorized as unsupervised hashing

methods. Another category is the supervised hashing meth-

ods. Recent works include supervised hashing with ker-

nels (KSH) [8], minimal loss hashing (MLH) [10], super-

vised binary reconstructive embeddings (BRE) [5], semi-

supervised sequential projection learning hashing (SPLH)

[13] and column generation hashing [7], etc.

Loss functions for hashing are typically defined on the

basis of the Hamming distance or Hamming affinity of sim-

ilar and dissimilar data pairs. Hamming affinity is calcu-

lated by the inner product of two binary codes (a binary

code takes a value of {−1, 1}). Existing methods thus tend

to optimize a single form of hash functions, the parame-

ters of which are directly optimized against the overall loss

function. The common forms of hash functions are lin-

ear perceptron functions (MLH, SPLH, LSH), kernel func-

tions (KSH), eigenfunctions (SPH, MDSH). The optimiza-

tion procedure is then coupled with the selected family of

hash function. Different types of hash functions offer a

trade-off between testing time and ranking accuracy. For

example, compared with kernel functions, the simple lin-

ear perceptron function is usually much more efficient for

evaluation but can have a relatively low accuracy for near-

est neighbor search. Moreover, this coupling often results

in a highly non-convex problem which can be very difficult

to optimize.

As an example, the loss functions in MDSH, KSH and

BRE all take a similar form that aims to minimize the dif-

ference between the Hamming affinity (or distance) and the

ground truth of data pairs. However, the optimization pro-

cedures used in these methods are coupled with the form of

hash functions (eigenfunctions, kernel functions) and thus

different optimization techniques are needed.

Self-Taught Hashing (STH) [16] is a method which de-

composes the learning procedure into two steps: binary

code generating and hash function learning. We extend this

idea and propose a general two-step approach to hashing of

which STH can be seen as a specific example. Note that
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STH optimizes the Laplacian affinity loss, which only tries

to pull together those similar data pairs but does not push

away those dissimilar data pairs and that, as has been shown

in manifold learning, this may lead to inferior performance.

Our framework, however, is able to accommodate many

different loss functions defined on the Hamming affinity of

data pairs, such as the loss function used in KSH, BRE or

MLH. This more general family of loss functions may con-

sider both similar and dissimilar data pairs. In order to pro-

duce effective binary codes in this first step, we develop a

new technique based on coordinate descent. We show that

at each iteration of coordinate descent, we can formulate

the optimization problem of any Hamming affinity loss as

a binary quadratic problem. This formulation unifies differ-

ent types of objective functions into the same optimization

problem, which significantly simplifies the optimization ef-

fort. Our main contributions are as follows.

(1) We propose a flexible hashing framework that decom-

poses the learning procedure into two steps: binary codes

inference step and hash function learning step. This decom-

position simplifies the problem and enables the use of dif-

ferent types of loss functions and simplifies the hash func-

tion learning problem into a standard binary classification

problem. An arbitrary classifier, such as linear or kernel

support vector machines (SVM), boosting, neural networks,

may thus be adopted to train the hash functions.

(2) For binary code inference, we show that optimization

using different types of loss functions (e.g., loss functions

in KSH, BRE, MLH) can be solved as a series of binary

quadratic problems. We show that any type of loss func-

tion (e.g., the �2 loss, exponential loss, hinge loss) defined

on Hamming affinity of data pairs can be equivalently con-

verted into a standard quadratic function. Based on this key

observation, we propose a general block coordinate decent

method that is able to incorporate many different types of

loss functions in a unified manner.

(3) The proposed method is simple and easy to imple-

ment. We carry out extensive experiments on nearest neigh-

bor search for image retrieval. To show the flexibility, we

evaluate our method using different types of loss functions

and different formats of hash functions (linear SVM, kernel

SVM, Adaboost with decision stumps, etc). Experiments

show that our method outperforms the state-of-the-art.

2. Two-Step Hashing

Given a set of training points X = {x1,x2, ...xn} ⊂ R
d,

the goal of hashing is to learn a set of hash functions that

are able to preserve some notion of similarity between data

points. A ground truth affinity (or distance) matrix, Y, is

provided (or calculated by a pre-defined rule) for training,

which defines the (dis-)similarity relations between data

pairs. In this case yij is the (i, j)-th element of the ma-

trix Y, which is an affinity value of the data pair (xi,xj).

As a simple example, if the data labels are available, yij
can be defined as 1 for similar data pairs to t and −1 for

dissimilar data pairs. In the case of unsupervised learning,

yij can be defined as the Euclidean distance or Gaussian

affinity on data points. Φ(·) is a set of m hash functions:

Φ(·) = [h1(·), h2(·), . . . , hm(·)]. The output of the hash

functions are m-bit binary codes: Φ(x) ∈ {−1, 1}m. In

general, the optimization can be written as:

min
Φ(·)

n∑
i=1

n∑
j=1

δijL(Φ(xi),Φ(xj); yij). (1)

Here δij ∈ {0, 1} indicates whether the relation between

two data points is defined, and L(Φ(xi),Φ(xj); yij) is a

loss function that measures the how well the binary codes

match the expected affinity (or distance) yij . Many different

types of loss functions L(·) have been devised, and will be

discussed in detail in the next section.

Most existing methods try to directly optimize objec-

tive (1) in order to learn the parameters of hash functions

[5, 8, 10, 14]. This inevitably means that the optimization

process is tightly coupled to the form of hash functions

used, which makes it non-trivial to extend a method to use

another different format of hash functions. Moreover, this

coupling usually results in highly non-convex problems.

Following the idea of STH [16], we decompose the learning

procedure into two steps: the first step for binary code in-

ference and the second step for hash function learning. The

first step is to solve the optimization:

min
Z

n∑
i=1

n∑
j=1

δijL(zi, zj ; yij), s.t.: Z ∈ {−1, 1}m×n, (2)

where Z is the matrix of m-bit binary codes for all data

points, and zi is the binary code vector corresponding to

i-th data point.

The second step is to learn hash functions based on the

binary codes obtained in the first step, which is achieved by

solving the optimization problem:

min
Φ(·)

n∑
i=1

F (zi,Φ(xi)). (3)

Here F (·, ·) is a loss function. We solve the above optimiza-

tion independently for each of the m bits. To learn the k-th

hash function hk(·), the optimization can be written:

min
hk(·)

n∑
i=1

F ′(zi,k, hk(xi)). (4)

Here F ′(·, ·) is an loss function defined on two codes; zi,k
is the binary code corresponding to the i-th data point and

the k-th bit. Clearly, the above optimization is a binary clas-

sification problem which is to minimize a kind of loss given

the binary labels. For example, the loss function F ′(·) can

be an zero-one loss function returning 0 if two inputs have

the same value, and 1 otherwise. As in classification, one
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Algorithm 1 Block coordinate decent for learning binary

codes (Step-1)

1: Input: affinity matrix Y, bit length m, number of cyclic iteration r.

2: Initialize the binary code matrix Z.

3: Repeat

4: For t = 1, 2, . . . ,m

5: Solve the binary quadratic problem (BQP) in (13)

to obtain the binary codes of t-th bit.

6: Update the codes of the t-th bit in the code matrix Z.

7: End For

8: Until the maximum cyclic iteration r is reached.

9: Output: the matrix of binary codes Z

can also use a convex surrogate to replace the zero-one loss.

Typical surrogate loss functions are hinge loss, logistic loss,

etc. The resulting classifier is the hash function that we aim

to learn. Therefore, we are able to use any form of classi-

fier. For example, we can learn perceptron hash functions

by training a linear SVM. The linear perceptron hash func-

tion has the form:

h(x) = sign (w�x+ b). (5)

We could also train, for example, an RBF-kernel SVM,

or Adaboost as hash functions. Here we describe a ker-

nel hash function that is learned using a linear SVM on

kernel-transferred features (referred to as SVM-KF). The

hash function learned by SVM-KF has a form as follows:

h(x) = sign
[∑Q

j=q wqκ(x
′
q,x) + b

]
, (6)

in which X
′ = {x′1, . . . ,x

′
Q} are Q data points generated

from the training set by random or uniform sampling.

We evaluate variety of different kinds of hash function

in the Experiments Section below. These tests show that

Kernel hash functions often offer better ranking precision

but require much more evaluation time than linear percep-

tron hash functions. The hash functions learned by SVM-

KF represents a trade-off between kernel SVM and linear

SVM.

The method proposed here is labeled Two-Step Hashing

(TSH), the steps are as follows:

• Step-1: Solving the optimization problem in (2) using

block coordinate decent (Algorithm 1) to obtain binary

codes for each training data point.

• Step-2: Solving the binary classification problem in

(4) for each bit based on the binary codes obtained at

Step-1.

3. Solving binary quadratic problems

Optimizing (2) in Step-1 for the entire binary code ma-

trix can be difficult. Instead, we develop a bit-wise block

coordinate descent method so that the problem at each iter-

ation can be solved easily. Moreover, we show that at each

iteration, any pairwise Hamming affinity (or distance) based

loss can be equivalently formulated as a binary quadratic

problem. Thus we are able to easily work with different

loss functions.

Block coordinate decent (BCD) is a technique that iter-

atively optimizes a subset of variables at a time. For each

iteration, we pick one bit for optimization in a cyclic fash-

ion. The optimization for the k-th bit can be written as:

min
z(k)

n∑
i=1

n∑
j=1

δij lk(zi,k, zj,k), s.t. z(k) ∈ {−1, 1}
n, (7)

where lk is the loss function defined on the k-th bit:

lk(zi,k, zj,k) = L(zi,k, zj,k, z̄i, z̄j ; yij). Here z(k) contains

the binary codes of the k-th bit. zi,k is the binary code of

the i-th data point and the k-th bit. z̄i is the binary codes of

the i-th data point excluding the k-th bit.

Thus far, we have not described the form of the loss func-

tion L(·). Our optimization method is not restricted to op-

timizing a specified form of the loss function. Based on the

following proposition, we are able to rewrite any Hamming

affinity (or distance) based loss function L(·) into a standard

quadratic problem.

Proposition 1. For any loss function l(z1, z2) that is de-

fined on a pair of binary input variables z1, z2 ∈ {−1, 1}
and l(1, 1) = l(−1,−1), l(1,−1) = l(1,−1), we can de-

fine a quadratic function g(z1, z2) that is equal to l(z1, z2).
We have following equation:

l(z1, z2) =
1

2

[
z1z2(l

(11) − l(−11)) + l(11) + l(−11)

]
, (8)

=
1

2
z1z2(l

(11) − l(−11)) + const. (9)

= g(z1, z2). (10)

Here l(11), l(−11) are constants, l(11) is the loss output on

identical input pair: l(11) = l(1, 1), and l(−11) is the loss

output on distinct input pair: l(−11) = l(−1, 1).

Proof. This proposition can be easily proved by exhaus-

tively checking all possible inputs of the loss function. No-

tice that there are only two possible output values of the loss

function. For the input (z1 = 1, z2 = 1):

g(1, 1) =
1

2

[
1× 1× (l(11) − l(−11)) + l(11) + l(−11)

]

= l(1, 1),

For the input (z1 = −1, z2 = 1):

g(−1, 1) =
1

2

[
− 1× 1× (l(11) − l(−11)) + l(11) + l(−11)

]

= l(−1, 1),

The input (z1 = −1, z2 = −1) is the same as (z1 = 1, z2 =
1) and the input (z1 = 1, z2 = −1) is the same as (z1 =
−1, z2 = 1). In conclusion, the function l and g have the

same output for any possible inputs.

Any hash loss function l(·, ·) which is defined on the

Hamming affinity between, or Hamming distance of, data
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pairs is able to meet the requirement that: l(1, 1) =
l(−1,−1), l(1,−1) = l(1,−1). Applying this proposition,

the optimization of (7) can be equivalently reformulated as:

min
z(k)∈{−1,1}n

n∑
i=1

n∑
j=1

δij(l
(11)
k,i,j − l

(−11)
k,i,j )zi,kzj,k, (11)

The above optimization is an unconstrained binary

quadratic problem. Let ai,j denote the (i, j)-th element of

matrix A, which we define as:

ai,j = δij(l
(11)
k,i,j − l

(−11)
k,i,j ). (12)

The above optimization (11) can be written in matrix form:

min
z(k)

z
�
(k)Az(k), s.t. z(k) ∈ {−1, 1}

n. (13)

We have shown that at each iteration, the original optimiza-

tion in (7) can be equivalently reformulated as a binary

quadratic problem (BQP) in (13). BQP has been extensively

studied. To solve (13), we first apply the spectral relaxation

to get an initial solution. Spectral relaxation drops the bi-

nary constraints. The optimization becomes

min
z(k)

z
�
(k)Az(k), s.t. ‖z(k)‖

2
2 = n. (14)

The solution (denoted z
0
(k)) of the above optimization is

simply the eigenvector that corresponds to the minimum

eigenvalue of the matrix A. To achieve a better solution,

here we take a step further. We solve the following relaxed

problem of (13) as follows

min
z(k)

z
�
(k)Az(k), s.t. z(k) ∈= [−1, 1]n. (15)

This relaxation is tighter than the spectral relaxation and

provides a solution of better quality. To solve the above

problem, we use the solution z
0
(k) of spectral relaxation in

(14) as initialization and solve it using the efficient LBFGS-

B solver [17]. The algorithm for binary code inference in

Step-1 is summarized in Algorithm 1.

The approach proposed above is applicable to many dif-

ferent types of loss functions, which are defined on Ham-

ming distance or Hamming affinity, such as the �2 loss, ex-

ponential loss, hinge loss. Here we describe a selection of

such loss functions, most of which arise from recently pro-

posed hashing methods. We evaluate these loss functions

in the Experiments Section below. Note that m is the num-

ber of bits, and dh(·, ·) is the Hamming distance on data

pairs. If not specified, yij = 1 if the data pair is similar, and

yij = −1 if the data pair is dissimilar. δ(·) ∈ {0, 1} is an

indicator function.

TSH-KSH The KSH loss function is based on Hamming

affinity using �2 loss function. MDSH also uses a similar

form of loss function (weighted Hamming affinity instead):

LKSH(zi, zj) = (z�i zj −myij)
2. (16)

TSH-BRE The BRE loss function is based on Hamming

distance using the �2 loss function:

LBRE(zi, zj) = (dh(zi, zj)/m− δ(yij < 0))2. (17)

Table 2: Training time (in seconds) for TSH using different loss functions,

and several other supervised methods on 3 datasets. The value inside a

brackets is the time used in the first step for inferring the binary codes.

The results show that our method is efficient. Note that the second step of

learning the hash functions can be easily parallelised.

LABELME MNIST CIFAR10

TSH-KSH 198 (107) 341 (294) 326 (262)

TSH-BRE 133 (33) 309 (264) 234 (175)

TSH-EE 124 (29) 302 (249) 287 (225)

TSH-ExpH 128 (43) 334 (281) 344 (256)

STHs-RBF 133 99 95

KSH 326 355 379

BREs 216 615 231

MLH 670 805 658

TSH-SPLH It uses an exponential loss outside the loss

function proposed in SPLH which is based on the Hamming

affinity of data pairs:

LSPLH(zi, zj) = exp

[
−yijz

�
i zj

m

]
. (18)

TSH-EE Elastic Embedding (EE) is a dimension reduc-

tion method proposed in [1]. Here we use their loss func-

tion with some modifications, which is a exponential based

on distance. Here λ is a trade-off parameter:

LEE(zi, zj) = δ(yij > 0)dh(zi, zj)

+ λδ(yij < 0) exp[−dh(zi, zj)/m]. (19)

TSH-ExpH Here ExpH is an exponential loss function

using the Hamming distance:

LExpH(zi, zj) = exp

[
yijdh(zi, zj) +mδ(yij < 0)

m

]
.

(20)

4. Experiments

We compare with a few state-of-the-art hashing methods,

including 6 (semi-)supervised methods: Supervised Hash-

ing with Kernels (KSH) [8], Iterative Quantization with su-

pervised embedding (ITQ-CCA) [3], Minimal Loss Hash-

ing (MLH) [10], Supervised Binary Reconstructive Embed-

dings (BREs) [5] and its unsupervised version BRE, Su-

pervised Self-Taught Hashing (STHs) [16] and its unsuper-

vised version STH, Semi-supervised sequential Projection

Learning Hashing(SPLH) [13], and 7 unsupervised meth-

ods: Locality-Sensitive Hashing (LSH) [2], Iterative Quan-

tization (ITQ) [3], Anchor Graph Hashing (AGH) [9], Spec-

tral Hashing (SPH [15]), Spherical Hashing (SPHER) [4],

Multi-dimension Spectral Hashing (MDSH) [14], Kernel-

ized Locality-Sensitive Hashing KLSH [6]. For compari-

son methods, we follow the original papers for parameter

setting. For SPLH, the regularization trade-off parameter is

picked from 0.01 to 1. We use the hierarchical variant of

AGH. For each dataset, the bandwidth parameters of Gaus-

sian affinity in MDSH and RBF kernel in KLSH, KSH and

our method TSH is set as σ = td̄. Here d̄ is the average

Euclidean distance of top 100 nearing neighbours and t is
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Table 1: Results (using hash codes of 32 bits) of TSH using different loss functions, and a selection of other supervised and unsupervised methods on 3

datasets. The upper part relates the results on training data and the lower on testing data. The results show that Step-1 of our method is able to generate

effective binary codes that outperforms those of competing methods on the training data. On the testing data our method also outperforms others by a large

margin in most cases.

Precision-Recall MAP Precision at K (K=300)

Datasets LABELME MNIST CIFAR10 LABELME MNIST CIFAR10 LABELME MNIST CIFAR10

Results on training data

TSH-KSH 0.501 1.000 1.000 0.570 1.000 1.000 0.229 0.667 0.667

TSH-BRE 0.527 1.000 1.000 0.600 1.000 1.000 0.230 0.667 0.667

TSH-SPLH 0.504 1.000 1.000 0.524 1.000 1.000 0.230 0.667 0.667

TSH-EE 0.485 1.000 1.000 0.524 1.000 1.000 0.224 0.667 0.667

TSH-ExpH 0.475 1.000 1.000 0.541 1.000 1.000 0.225 0.667 0.667

STHs 0.335 0.800 0.629 0.387 0.882 0.774 0.176 0.575 0.433

KSH 0.283 0.892 0.585 0.316 0.967 0.652 0.168 0.647 0.481

BREs 0.161 0.445 0.220 0.153 0.504 0.190 0.097 0.376 0.171

SPLH 0.166 0.500 0.292 0.153 0.588 0.302 0.092 0.422 0.260

MLH 0.120 0.547 0.190 0.142 0.685 0.235 0.100 0.478 0.200

Results on testing data

TSH-KSH 0.175 0.843 0.282 0.296 0.893 0.440 0.293 0.889 0.410

TSH-BRE 0.169 0.844 0.283 0.293 0.896 0.439 0.293 0.890 0.409

TSH-SPLH 0.174 0.840 0.284 0.291 0.895 0.444 0.288 0.891 0.416

TSH-EE 0.169 0.843 0.280 0.288 0.896 0.438 0.286 0.892 0.410

TSH-ExpH 0.172 0.844 0.282 0.287 0.892 0.441 0.286 0.887 0.410

STHs 0.094 0.385 0.144 0.162 0.639 0.229 0.156 0.634 0.218

STHs-RBF 0.151 0.674 0.178 0.274 0.897 0.354 0.271 0.893 0.352

KSH 0.165 0.781 0.249 0.279 0.884 0.407 0.158 0.881 0.398

BREs 0.106 0.409 0.151 0.178 0.703 0.226 0.171 0.702 0.210

MLH 0.100 0.470 0.150 0.181 0.648 0.264 0.174 0.623 0.215

SPLH 0.093 0.452 0.191 0.168 0.714 0.321 0.158 0.708 0.315

ITQ-CCA 0.077 0.619 0.206 0.143 0.792 0.333 0.133 0.784 0.325

MDSH 0.100 0.298 0.150 0.178 0.691 0.288 0.155 0.685 0.228

SHPER 0.102 0.296 0.152 0.185 0.624 0.244 0.176 0.623 0.233

ITQ 0.116 0.386 0.161 0.206 0.750 0.264 0.197 0.751 0.252

AGH 0.096 0.404 0.144 0.194 0.743 0.252 0.187 0.744 0.244

STH 0.077 0.361 0.135 0.135 0.593 0.216 0.125 0.644 0.204

BRE 0.091 0.323 0.137 0.160 0.651 0.238 0.147 0.582 0.185

LSH 0.069 0.211 0.123 0.116 0.459 0.188 0.103 0.448 0.162

picked from 0.01 to 50. For STHs and our method TSH, the

trade-off parameter in SVM is picked from 10/n to 105/n,

n is the number of data points. For our TSH-EE using EE

lost function, we simply set the trade-off parameter λ to

100. If not specified, our method TSH use SVM with RBF

kernel as hash functions. The cyclic iteration number r in

Algorithm 1 is simply set to 1.

We use 2 large scale image datasets and another 3

datasets for evaluation. 2 large image datasets are 580, 000
tiny image dataset (Tiny-580K) [3], and Flickr 1 Million im-

age dataset. Another 3 datasets include CIFAR10, MNIST

and LabelMe [10].

For the LabelMe dataset, the ground truth pairwise affin-

ity matrix is provided. For other datasets, we use the multi-

class labels to define the ground truth affinity by label agree-

ment. Tiny-580K is used in [3]. Flickr-1M dataset consists

of 1 million thumbnail images of the MIRFlickr-1M We

generate 320-dimension GIST features. For these 2 large

datasets, there is no semantic ground truth affinity provided.

Following the same setting as other hash methods [8, 13],

we generate pseudo-labels for supervised methods accord-

ing to the �2 distance. In detail, a data point is labelled as

a relevant neighbour to the query if it lies in the top 2 per-

centile points of the whole database. For all datasets, fol-

lowing a common setting in many supervised hashing meth-

ods [5, 8, 10], we randomly select 2000 examples as testing

queries, and the rest is served as database. We train meth-

ods using a subset of the database: 5000 examples for large

datasets (Tiny-580K and Flickr-1M) and 2000 examples for

the rest. We use 4 types of evaluation measures: precision

of top-K retrieved examples (Precision-at-K), Mean Aver-

age Precision (MAP), the area under the Precision-Recall

curve, precision of retrieved examples within the Hamming

distance 2.

4.1. Using different loss functions

We evaluate the performance of our method TSH using

different loss functions on 3 datasets: LabelMe, MNIST,

CIFAR10. 3 types of evaluation measures are used here:

Precision-at-K, Mean Average Precision (MAP) and the

area under the Precision-Recall curve. The loss function

is defined in Section 3. In particular, our method TSH-KSH

uses the KSH [8] loss function, TSH-BRE uses the BRE [5]

function. STHs-RBF is the STHs method using RBF ker-

nel hash functions. Our method also uses SVM with RBF

kernel as hash functions.
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Figure 1: Some retrieval examples of our method TSH on CIFAR10. The

first column shows query images, and the rest are top 30 retrieved images

in the database. False predictions are marked by red boxes.

First, we evaluate the effectiveness of the Step-1 in our

method. We compare the quality of the generated binary

codes on the training data points. The results are shown in

the upper part of the table in Table. 1. The results show that

our methods generate high-quality binary codes and outper-

form others by a large margin. In CIFAR10 and MNIST,

we are able to generate perfect codes that match the ground

truth similarity. This demonstrates the effectiveness of co-

ordinate descent based hashing codes learning procedure

(Step 1 of our framework).

Compared to STHs-RBF, even though we are using the

same formate of hash function, our overall objective func-

tion and the bit-wise binary code inference algorithm may

be more effective. Thus our method achieves better perfor-

mance than STH.

The second part of the result in Table. 1 shows the testing

performance. Our method also outperforms others in most

cases. Note that MNIST is an ‘easy’ dataset and not as chal-

lenging as CIFAR10 and LabelMe. Thus many methods

manage to achieve good performance. In the challenging

dataset CIFAR10 and LabelMe, our method significantly

outperforms others by a large margin.

Overall, for preserving the semantic similarity, super-

vised methods usually perform much better than those unsu-

pervised methods, which is expected. Our method performs

the best, and the running-up methods are STHs-RBF, KSH,

and ITQ-CCA.

We show further results of using different numbers of

bits in Fig. 2 for supervised methods and Fig. 3 for unsuper-

vised methods on the dataset CIFAR10 and LabelMe. In the

figures, TSH denotes our method using BRE loss function.

Our method still performs the best in most cases. Some

search examples are shown in Fig. 1.

Training time In Table 2, we compare the training time

of different methods. It shows that our method is fast com-

pared to the state-of-the-art. We also present the binary

code learning time in the table. Notice that in the second

step, learning hash functions by binary classification can be

easily paralleled which would make our method even more

efficient.
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Figure 5: Code compression time using different hash functions. Results

show that using kernel transferred feature (TSH-KF) is much faster then

SVM with RBF kernel (TSH-RBF). Linear SVM is the fastest one.

4.2. Using different hash functions

We evaluate our method using different hash functions.

The hash functions are SVM with RBF kernel (TSH-RBF),

linear SVM with kernel transferred feature (TSH-KF), lin-

ear SVM (TSH-LSVM), Adaboost with decision-stump

(TSH-Stump, 2000 iterations). Results on 3 datasets are

shown in Fig. 4. The testing time for different hash func-

tions are shown in Fig. 5.

It shows that the kernel hash functions (TSH-RBF and

TSH-KF) achieve best performance in similarity search.

However, the testing of linear hash functions is much faster

than kernel hash functions. We also find that the testing time

of TSH-KF is much faster then TSH-RBF. The TSH-KF is

a trade-off between testing time and search performance.

4.3. Large datasets

We carry out experiments on 2 large scale datasets:

Flickr 1 million image dataset (Flickr1M) and 580, 000 Tiny

image dataset (Tiny580k). Results are shown in Fig. 6. Our

method TSH achieve on par results with KSH. KSH and

our TSH significantly outperform other supervised or unsu-

pervised methods. Notice that there is no semantic similar-

ity ground truth provided on these two datasets. We gener-

ate the similarity ground truth using the Euclidean distance.

Some unsupervised methods are also able to perform well

in this setting (e.g., MDSH, SPHER and ITQ).

5. Conclusion

We have shown that it is possible to place a wide vari-

ety of learning-based hashing methods into a unified frame-

work, and that doing so provides insights into the strengths,

weaknesses, and commonality between various competing

methods. One of the key insights is the fact that the code

generation and hash function learning processes may be

seen as separate steps, and that the latter may accurately

be formulated as a classification problem. This insight en-

ables the development of new approaches to hashing, one of

which is detailed above. Experimental testing has validated

this approach, and shown that this new approach outper-

forms the state-of-the-art.

25572557



10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
LABLEME

Number of bits

P
re

ci
si

on
 (

H
am

m
. d

is
t. 

<
=

 2
)

 

 

SPLH
STHs−RBF
ITQ−CCA
MLH
BREs
KSH
TSH

8 16 24 32
0.1

0.15

0.2

0.25

0.3

0.35
LABLEME

Number of bits

P
re

ci
si

on
 @

 3
00

 

 

SPLH
STHs−RBF
ITQ−CCA
MLH
BREs
KSH
TSH

100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
LABLEME

Number of retrieved samples (32 bits)

P
re

ci
si

on

 

 

SPLH
STHs−RBF
ITQ−CCA
MLH
BREs
KSH
TSH

10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
CIFAR10

Number of bits

P
re

ci
si

on
 (

H
am

m
. d

is
t. 

<
=

 2
)

 

 

SPLH
STHs−RBF
ITQ−CCA
MLH
BREs
KSH
TSH

8 16 24 32
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
CIFAR10

Number of bits

P
re

ci
si

on
 @

 3
00

 

 

SPLH
STHs−RBF
ITQ−CCA
MLH
BREs
KSH
TSH

100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
CIFAR10

Number of retrieved samples (32 bits)

P
re

ci
si

on

 

 

SPLH
STHs−RBF
ITQ−CCA
MLH
BREs
KSH
TSH

Figure 2: Results on 2 datasets of supervised methods. Results show that TSH outperforms others usually by a large margin. The running up methods are

STHs-RBF and KSH.
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Figure 3: Results on 2 datasets for comparing unsupervised methods. Results show that TSH outperforms others usually by a large margin.
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Figure 4: Results on 2 datasets of our method using different hash functions. Results show that using kernel hash function (TSH-RBF and TSH-KF)

achieves best performances.
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Figure 6: Results on 2 large scale datasets: Flickr1M and Tiny580k. The first row shows the results of supervised methods and the second row for

unsupervised methods. Our method TSH achieves on par result with KSH. TSH and KSH significantly outperform other methods.
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