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ABSTRACT a) bj
buck power stage:

A method fon modelling switching convertens in L L N
the discontinuous conduction mode 48 developed, whose v
starnting point is the unified state-space hepresen- 'S<
tation, and whose end nesult is a complete Linear Vg
cineuit model which conrectly represents all essential €3
featuwres, namely, the input, output, and transfer T
properties (static de as well as dynamic ac small
s4gnal). While the method is genua.lﬁz applicable to
any switching converter operating in the discontinuous boost power stage:
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three common power stages (buck, boost, and buck-boost). . v v
The nesults fon these conveaters are then easify tabu- S
Lated owing to the fixed equivalent cincuit topology Vg 1 Vg L
0f theirn canonical cireuit modelf. T l Cr R ']' X C‘I’ R
The outlined method Lends itself easily to invesiti-

gation of the discontinuous conduction mode in more

complex structures [cascade connection of buck and boost
conventens, for example), in which more than one inducton S
cwvient may become discontinuous. -V -V

buck — boost power stage:

As opposed to other modelling fechniques, the Y \g
new method considens the discontinuous conduction mode 9 L C== R .[ 72 L
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as a special case of the continuous conduction mode.

1 INTRODUCTION Fig. 1. Thaee common switching de-to-de conventers:

a) topological congiguration independent of
Switching-mode dc-to-dc converters afford an switch neatization; b) bipolar thansisior
efficient means of transforming power at one dc voltage Amplementation of the switch S.
to another. There are many circuit configurations
capable of performing dc-to-dc conversion, of which

the most common are the buck, boost, and buck-boost Consider, for example, the buck-boost converter of Fig. 1.
converters shown in Fig. 1. In each converter, the 1f the energy stored in the imductor during the first
basic dc-to-dc conversion function is achieved by con- interval DT = D, T  1is completely released to the out-
trol of the switch fractional closed-time (transistor put load befone e switching cycle T  has ended, the
on-time), or duty ratio, D (0 < D < 1) with constant inductor current becomes zero for the last portion
switching frequency fs é l/Ts’ where Ts is the switching D3Ts’ as seen in Fig. 2b.
period.

a) é)

Two modes of switching converter operation may be inductor < nt it )
distinguished: the continuous conduction mode (inductor N VU L sl Urr\e//L i inductor current iit)
current never falls to zero, as in Fig. 2a), and the 9/l slope ! T
discontinuous conduction mode (inductor current becomes Ai\{
zero for a portion of switching period, as in Fig. 2b). I %
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Thus the transition from continuous to discontin-
uous conduction mode is obtained by either {ncrease of
load R (hence by lowering of the average dc current I)
or by decrease of inductance L or switching frequency £,-
In any case, however, the operation in the discontin-
uous conduction mode results in thiree different switched
networks, as illustrated in Fig. 3 for the buck-boost
converter (as opposed to two switched networks for con-
tinuous conduction operation). An analogous situation
exists for the other two converters of Fig. 1 as well
as for a number of other switching converters.

a)intervat DTs:

b}interval Dils:
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c) interval
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Three switched networks for the buck-boost
conventen operating in the discontinuous con-
duction mode: a) transistor on, diode off;
b} trnansiston off, diode on; c) transiston
0f4, diode of{.

Dils:

\Y v

Fig. 3.

In Section 2 an extensive overview of the complete
structure of modelling of switching converters and regu-
lators in the discontinuous conduction mode by use of
the new method is provided. Im particular, the steps
leading to the equivalent circuit models that describe
both steady-state (dc) and dynamic (ac small signal)
behaviour are briefly explained. The subsequent sections
then give a detailed and thorough account of the new
method outlined in Section 2.

First, in Section 3, the procedure for modelling
in discontinuous conduction mode is viewed as a special
case of that for continuous conduction mode [1,2,3]
(provided the state-space averaging step of [2] is
properly generalized to include three or more structural
changes within each switching period as shown in Appendix)
and additional constraints imposed to model special
inductor current behaviour. Though the results obtained
are in terms of linear equations, the useful circuit
realizations may be obtained as in Section 4. The
straightforward perturbation and linearization steps
in Section 5 lead to dc and ac cireuif models. They
result for three common converters of Fig. 1 in the
fixed topology, canonical circuif modef and are easily
tabulated. Because of the need for complete presen-
tation of the theoretical background of the new method,
and lack of space, only cursory experimental verifi-
cation is included at the end of Section 6. Finally,
in Section 7 the compfeteneds of the obtained converter
circuit models is reemphasized by their direct incor-
poration in suwitching regulator models.

Since the method presented here is essentially a
consistent extension of the technique for continuous
conduction mode [2], the exposition will closely fol-
low the format given in [2], such that the common steps
to both methods become immediately transparent, and
those that are different clearly distinguished.

2 REVIEW OF THE NEW STATE-SPACE MODELLING TECHNIQUE
IN THE DISCONTINUOUS CONDUCTION MODE
2.1 Brief review of existing modelling techniques

Owing to the relatively more complicated nature of
the converter operation in the discontinuous conduction
mode, dynamic (ac small signal) models have been lacking
(even though valid models for continuous conduction
mode have already been obtained) until recently several

approaches ([4]-[10]) have been proposed. However,
while all these techniques ([4]-E10 ) provide through
various linearization procedures the proper linearized
transfer functions (duty ratio modulation d to output
voltage v and line voltage v_ to output voltage v trans-
fer functions), they are incgpable of representing the
input properties of the converter, and hence fall to
arrive at the complete linearized converter model. This
is an entirely analogous situation to that for contin-
uous conduction mode [2,3], where these methods could
not model the input properties (open- and closed-loop
input impedance, for example) of the converters and
regulators in continuous conduction mode of operation.
In addition, they stay throughout modelling in the do-
main of equation manipulations only, and thus the use-
ful insight which can be gained from £Linean circuit
models (as demonstrated in [1,2,3] 1is lost. Hence the
primary objective of the development here becomes to
overcome all these difficulties by extending the power-
ful state-space averaging technique of [2], together
with its circuit model realizations, to the discontin-
uous conduction mode of converter operation and finally
to arrive at the complete Linearn circwit model of various
converters (like, for example, those of Fig. 1).

2.2 New state-space and circuit averaging methods for
switching converters in the discontinuous conduction
mode

The state-space and circuit averaging methods pre-
sented in [2] are now to be suitably modified to account
for the discontinuous conduction mode of operation, and
the results are summarized in the Flowchart of Fig. 4.

As before for the continuous conduction mode, the star-
ting model for the switching converter (block 1 in the
Flowchart of Fig. 4) is either in terms of the &state-
space description of the switched networks (as in block
la), or in terms of Linear cincuit models of the switched
networks (as in block 1b).

The difference, however, from the previous descrip-
tion is not only that now there are fhiee different
structural configurations within each switching period,
but also in the fact that instantaneous inductor cur-
rent is nestricted in its behavior: 1t starts at zero
at the beginning of a switching period and falls to
zero current "again even before the switching period
has expired (see the instantaneous inductor current
waveform in block 1 of Fig. 4).

It is actually this second difference which clearly
distinguishes the discontinuous conduction mode of
operation, while the first difference, that of having
three different structural configurations, appears in
a way to be merely incidental. That is, in Appendix A
it is shown that the state-space averaging step of [2]
can be directly extended to include "three-state" con-
verters (converters with three structural changes within
each switching period), provided such converters are
operated in the continuous conduction mode, and any
restrictions on state-space variables (inductor currents
and capacitor voltages) are avoided. Therefore, our
objective in modelling converters operating in the dis-
continuous conduction mode (and exhibiting '"three-state'
configuzation behavior) becomes that of supplementing
this generalized state-space averaging step for "three-
state"” converters by additional constraints which re-
flect the special behavior of one of the state variables,
the inductor current. Hence the switching-mode cop-
verter operating in the discontinuous conduction mode
(and having three structural changes) may be viewed as
a 4pecial case of the ordimary "three-state” converters
which are free from any restrictions on state variables.
Thus the primary goal is properly to determine these
additional constraints and to find how they propagate
through various paths of the modelling (such as paths

a and b on the Flowchart of Fig. 4).
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From the Flowchart of Fig. 4 it is immediately clear along path a the general equations (through general

that path a follows a development strictly in terms of matrices A A , A, and vectors b , and b_) are
state-space equations, the state-space averaged model- retained to emphas;ze the fact that tge outlined pro-
ling technique, while the other path b proceeds in cedure is applicable to any "three-state" converter
terms of circuit models, circuit averaged modelling. operating in the discontinuous conduction mode, while

Moreover, as before for the continuous

r— — -

conduction mode, along path b a particular example of the boost con-
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verter is followed, owing to the requirement for the
specific converter topology along that path. Speci-
fically, for the boost power stage, Al = A, % A are
2 x 2 matrices, and b. = b, ¥ 0, b, =" 0 ar2 vecfors.
This example will later be pursued in detail along
both paths.

We now follow path 4 more closely. The crucial
step is made in going from block la to 2a in that the
original description through three state-space equations
(block la) is substituted by a single state-space
averaged model (block 2a). This i1s justified as fol-
lows. The fundamental performance requirement of
switching converters (negligible switching ripple)
results in natural frequencies w_ and fC much lower
than the switching frequency f_. This, in turn, leads
as shown in Appendix A to the generalized state-space
averaging step. So far this would be the same aver-
aging step as applied to any ordinary "three-state"
switching converter. However, as indicated before,
the inductor current i does not behave as a true state-
space variable in the discontinuous conduction mode
since it does not have free boundary conditions (but
fixed at zero) which is shown to lead to the following
constraint:

at . 1
dt‘o 1)

This immediately reduces by one the order of the basic
state-space averaged model (block 2a), since one of
the dynamic equations (that for inductor current)
reduces to a static equation. In addition to this,

an expression describing the average inductor cur-
rent i can be found directly from the converter it-
self (block 1) and becomes the second constraint,
termed perturbation equation I, which is

i= i(vg »v, d, L, T)) (2)

Thus, the two additional comstraints (1) and (2),
together with the generalized state-space averaging
step, completely determine the converter model in the
discontinuous conduction mode. It remains only to
apply the standard perturbation techniques (block 3a)
and (on the basis of the small-signal assumption) the
linearization techniques to both state-space averaged
equations and the perturbation equation of block 2a
in order to arrive at the final state-space averaged
model (block 4a). This model gives separately both
dc and ac small-signal descriptions through general
matrices Al’ A, A, and vectors b, b2, b, of the
starting switclhied godels (block 13) and cgnstraints
corresponding to those of (1) and (2).

Naturally, we can now proceed from the basic state-
space averaged model (block 2a) via hybrid modelling and

circuit recognition (block 2¢) to arrive at the very use-

ful circudit realization (block 2b). Note, however, that
now the constraint (1) effectively leads tu shorting the

inductance L in the circuit model since v, - L di/dt = 0,

This, for the particular boost circuit example, reduces
the circuit to first order. The other comstraint (2)
is also easily specified (see additional constraint in
block 2b) with the help of the inductor current wave-

form (block 1). The same circuit model (block 2b) could,

however, be obtained directly from the switched circuit
models (block 1b), by following the circuit averaging
path, provided the circuit averaging step for "three-
state" converters is supplemented by the aforementioned
equivalents of the comstraints (1) and (2). Again, the
remaining circuit perturbation (block 3b) and circuit
linearization steps are straightforward and result in
the final circuit averaged models (block 4b) separately
for d¢ and ac small-signal. . As seen from block 4b, the

de part of the perturbation equation, current I, together

with the de circuit model, completely determines the dc
conditions, while its ac part i contributes to the
final ac circuit averaged model.

Finally, both models (block 4a or 4b) can be used
to determine the transfer functions of interest: line
voltage variation v_ and duty ratio modulation d to
output voltage v (bfocks 6a and 6b respectively).

2.3 New canonical circuit model for discontinuous
conduction mode

As for the continuous conduction mode, the cul-
mination of the modelling is again a canonical circuit
model (block 5 of Fig. 4), whose fixed topology (though
different from the one for continuous conduction mode)
has all the features necessary to present a complete
cincuit model. However, this fixed topology of the
model for discontinuous conduction mode came merely
as a by-product, since for the three converters of
Fig. 1 (buck, boost, and buck-boost) the ac small-sig-
nal models all resulted in the fixed topological struc-—
ture of the model in block 4b of Fig. 4 without any
need for equivalent circuit or other transformations.
It does not appear that this canonical circuit topology
could be directly extended to some arbitrary converter.
Even though this canonical circuit model is not so
general as that for two-state converters [2], a use-
ful comparison between the two canonical circuit topo-
logies can be made (at least for the common converters
of Fig. 1 in both operating modes).

While in the continuous conduction mode the effect
of duty ratio modulation d was represented by voltage
and cunrent duty ratio dependent generators at the
input port (hence properly representing negative closed-
loop input impedance at low frequencies as shown in [2],
here in discontinuous conduction mode there are Awo
duty ratio dependent cwuient generators, one in the in-
put circuit (again, properly to model converter input
properties as shown later in Section 7), and the other
in the output circuit to generate the duty ratio d to
output transfer function.

The salient feature of the canonical circuit model
in block 5 of the Flowchart in Fig. 4 is that both trans-
fer functions are obtained using only the output port of
the complete canonical circuit model, unlike the situ-
ation for continuous conduction mode where the complete
circuit model was necessary to determine them. This is
also why other methods which properly represent the trans-
fer function in discontinuous conduction mode ([4]-[10])
have completely omitted modelling of the converter in-
put properties.

2.4 Extension to complete regulator treatment

It will be shown in Section 7 how the linear model
of the modulator stage can be obtained. It remains
simple to incorporate the canonical circuit model (block
5 in the Flowchart of Fig. 4) to arrive at the linear
circuit model of a closed-loop switching regulator oper-
ating in the discontinuous conduction mode.

A word of caution, however, is appropriate here.
Namely, since the very nature of operation in the dis-
continuous conduction mode is that the order of the sys-
tem is reduced at least by one, this would definitely
change the dynamics and possible compensation networks
necessary for stable operation of the closed-loop regu-
lator. Furthermore, if both conduction modes are expected
to take place for the particular application, the com—
pensation network should be designed to ensure stability
of the closed-loop and acceptable transient performance
for either of the two modes. Hence canonical circuit
models for both continuous and discontinuous conduction
mode become an invaluable tool in the proper design of
switching regulators. In addition, comparison of the
advantages and/or disadvantages between the two modes
of operation become feasible, and possible trade-offs
between regulator performance and choice of parameters
and operating conditions is clearly displayed.
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In summary, the new method is generally applicable
to any "three-state" converter operating in the discon—
tinuous conduction mode (block 4a), even though for an
arbitrary converter the final circuit model (block 4b)
may have different (more complicated) topology than the
canonical circuit model for the three common converters
(block 5). We also emphasize the fact that the methods
for finding dc and ac small-signal models are condistent
with each other. Namely, for both models we need only
the standard state-space or circuit averaging step (de-
pending on whether path a or b is chosen) applicable to
any converter with thiee switched network configurations.
Then to distinguish that the converter is operating in
the discontinuous conduction mode, additional restric-
tions (1) and (2) are imposed. Now, the dc part of per-
turbation equation (2) together with the dc state-space
or circuit averaged model completely determines the
final dc model, while the ac part i of (2) helps in com~
plete definition of the final ac small-signal state-space
or circuit averaged model.

It may seem that the method outlined holds only for
"three-state" converters in discontinuous conduction mode.
This is not so, since it can easily be generalized to
include more complicated schemes of discontinuous con-
duction mode of operation. As an illustration of this
generality, consider the new class of switching conver-
ters of Appendix A, the cascade connection of ordinary
buck and boost converters, which could also be classified
as two-inductor converters ( as opposed, for example, to
the converters of Fig. 1 which are one-inductor conver-
ters). Suppose also that the two switches are driven
synchronously with the same switch duty ratio D, thus
resulting in a two-state converter for continuous con-
duction operation. If, however, one of the two inductor
currents becomes discontinuous, a three-state converter
operating in the discontinuocus conduction mode is obtained
But now the matrices A,, A,, A, and A would be of 4th
order (as opposed to 2nd ofder for the converters of
Fig. 1) and the final state-space or circuit averaged
model would be of the 3rd order (reduction of order by
one due to discontinuity of one of the two inductor
currents). Moreover, there is also the possibility that
both inductor currents could become discontinuous under
certain operating conditions in which case four-state
converters are generated. Therefore, the generalized
State-space averaging step (Appendix A) applicable to
four-state converters is supplemented with additional
constraints: for each discontinuous current there will

‘be two constraints imposed analogous to (1) and (2).
The immediate consequence of these constraints is that
the fourth-order original converter model becomes only
a second-order final state~space or circuit averaged
model (with two inductances effectively disappearing
from the final circult averaged model).

Despite this demonstration of the generality of the
method, we will restrict ourselves in the remaining
Sections to the "three-state" converters in the discon~
tinuous conduction mode since all the essential features
of the method are present there.

3 STATE-SPACE AVERAGING IN DISCONTINUOUS CONDUCTION
MODE

Various paths on the Flowchart of Fig. 4 will now
be followed in detail, first with general derivation and
then illustrated by examples.

3.1 State-space averaging

In this section, the final state-space averaged
model (block 4a of Fig. 4) is derived, first in general
for any three-state switching converter in discontin-
uous conduction mode, and then demonstrated on the
idealized boost circuit example (parasitic effects not
included). Steady state (dc) conditions are obtained
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for this particular example and discussed in depth,
including determination of the boundary between the two
modes of converter operation.. From the dynamic (ac small-
signal) model, the two transfer functions of interest
(v(s)/v_(8) and v(s)/d(s)) are also determined to enable
compariBon with the corresponding transfer functions
derived from the final circuit averaged model for the
boost converter presented in Section 3.3.

Basic state-space averaged model

We first define the time-domain description of an
arbitrary three-state switching converter operating in
the discontinuous conduction mode with the help of Fig. 5,
which displays the switch drive (Fig. 5a) and instantan-~
eous inductor current (Fig. 5b) which becomes discontin-
uous. The definition of the three intervals Tsdl’ Tst’ and
Tsd3 (or corrasponding steady-state quantities T Dl’
TsDZ’ and TsD3) is also clearly visible on Fig. 5.
ditl
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Definition of the time intervals and pertun-
bation quantities: a) transiston switch duive;
b) instantaneous inductor cuwnent.

As seen from Fig, 5, the "off" interval [t ,T ]
is now subdivided into two intervals T d, and T d, (or
T D, and T D,). While the first "on" in%erval is
dicgated b? %he switch drive and is a known quantity
(at least in open-loop converter usage), the second inter-
val Tsd (or TsDZ)’ which will be termed the '"decay"
intervai, is as yet unknown and depends in genmeral on
both the length of the first interval and some circuit
parameters, and describes how deep in the discontinuous
conduction mode the converter is operating. Nevertheless
we assume that the decay interval T D, exists (hence the
discontinuous conduction mode) and ieave it to the model-
ling procedure itself to reveal how it 1s actually
determined.

Fig. 5.

For each of the three intervals in Fig, 5, there
exists in general a different switched network (compare
with Fig. 3 for the buck-boost converter example), which
can be described by a corresponding state-space equation
as follows:

x = Alx + blvg for interval les’ 0-t- tl)

. < <

X = Azx + b2vg for interval dZTs’ (tl -t - t2) 3)
. < <

x = A3x + b3vg for interval dBTs’ (t2 -t - Ts)

While for the continuous conduction mode a similar
expression is sufficient to describe the converter, here
in discontinuous conduction mode, (3) does not describe
the switching converter completely. Namely, the instan-
taneous inductor current 1is restricted in its evolution
since from Fig. 5

i(0) = 1[(41 + dz)Ts] =0 and 1(t) = 0 for t e[tz,Ts] )]



Therefore (3) together with (4) completely determine the
behavior of the switching converter. However, directly
from this description, even the determination of the
steady-state (dc) conditions on an exact basis might be
a very difficult (if not insurmountable) task, and more-
over the tremendous complexity of the result may be un-
necessary. In addition, the direct perturbation of (3)
and (4) to obtain the dynamic response of the converter
would become by an order of magnitude more difficult if
not virtually impossible. Our objective then becomes,
as it was in [2] for the continuous conduction mode, to
replace the original converter description through three

state-space equations (3) by a single state-space descrip-

tion which will accuratley represent the evolution of the
state-vector at the switching instants.
able that the additional constraint (4) be appropriately
accounted for to modify this averaging equivalent, but

in such a way as to interfere the least possible with its
orderly procedure.

The first task is accomplished by application of the
generalized state-space averaging step for three-state
converters (Appendix A) to (3), which results in a single
state-space description

x = (d A, + +

X (dl 1 d2A2 d3A3)x +(dlb1 + d2b2 + d3b3)vg (5)
Note, however, that this continuous description is a
continuous equivalent to the originally derived approx-
imate discrete system [l]. Hence the definition of a
discrete derivative [1] transforms the constraint (4)
into

i(TS) - 1(0) .

7 0 (6)
8

di
dt(nTs)

It follows that the inductor current in the equi-
valent continuous system (5) ceases Lo be a true state-
4space variable, since according to (6) it has lost its
dynamic properties. Nevertheless, despite the zero con-
straints i(nT_ ) = 0 and di/dt(nT ) = 0 for n = 0,1,...,
a line voltage perturbation v (gs seen in Fig. 5b) does
cause a perturbation of the iftstantaneous inductor cur-
rent (shown in dotted lines on Fig. 5b) from its steady-
state waveform (heavy line in Fig. 5b), which in turn
results in a corresponding perturbation ¥ of the output
steady-state voltage. Note that there is also pertur-
bation of the average inductor current i (defined in Fig.
5b for interval (d, + d2)T when instantaneous inductor
current i(t) is di%ferent $rom zero) from its steady-
state average current I. This is in sharp contrast to
the situation in the continuous conduction mode where the
average inductor current does not change under any small-
signal perturbation, but rather initial and final con-
ditions 1(0) and i(Ts) change accordingly to accommodate
perturbation. Here, 1(0) and 1i(T_ ) are fixed at zero.
and the average inductor current is the quantity which
reflects the effect of introduced perturbacion.

Since the objective in modelling the dynamic per-
formance of the converter is faithfully to represent
departure from the steady-state, we introduce the average
inductor current as a substitute for the "lost" state-
variable (the instantaneous inductor current). But,
rather than change the symbol, we assign to the same
designation i this new meaning. Then from Fig. 5b we
obtain

max

i= 2 = i(vg, v, d, L, Ts)

€))

and designate it peatwurbation equation 1, for reasons
which will become apparent later. Naturally, the other
constraint (6) for this average inductor current i is
maintained (as seen also from Fig. 5b) and we finally
obtain the basic state-space averaged model for discon-
tinuous conduction mode:

It is also desir-

X = (dlAl + d2A2 + d3A3)x + (dlb1 + d2b2 + d3b3/vg (8)

with additional constraints

a g

dt ®

i= i(vg,v, d;s L, Ts) (10)
The two additional constraints (9) and (10) modify the
ordinary averaged model (8) to account for the discon-
tinuity of the inductor current. This model (block 2a
in the Flowchart of Fig. 4) is the starting point for all
other derivations (both state-space and circuit-oriented)
and represents an averaged model over a single period Ts.

Note, also from (7)
average inductor current
tion of the linearity of
(triangular waveshape in

that the caluclation of the

i is actually based on the assump-
the inductor current waveform

Fig. 5). However, this does

not pose any limitations at all, since the linearity of

the inductor waveform is again a consequence of the small
switching ripple requirement and therefore consistent

with the same basic assumption made in the continuous
conduction mode.

We now consider first the simplest possible case,
determination of the basic dc conditions in the steady
state regime. In the steady state all quantities become
dc quantities and are denoted by capital letters, that
i, d, =D =D, d, =D, d, =D, v =V, x=X. The
avera%e inductor clirrent 1 Becomds the sthady state
average inductor current I (see Fig. 5b, for example) and
the steady-state vector X =(I V ...). Since then

dX/dt = 0, the state-space equation (8) reduces to the
linear algebraic system
AX + bVg =0 (11)
where
A= DlAl + D2A2 + D3A3
(12)
b = lel + D2b2 + D3b3

while the first constraint (9) is automatically satisfied
and the second constraint becomes

L, T )

1= 1(vg, v, D, s (13)

It is now interesting to compare these results for
dc conditions (11),(12) and (13) with those for the con-
tinuous conduction mode [2]. For easier correlation of
these results, the notation d. = d and D. = D henceforth
will be used interchangeably.” The steady state vector
X is the solution of the linear system (11) as it was
before in [2]. Hence storage elements (L's and C's) are
proportionality constants in the linear system (11) and
it appears as though solution X of (11) is independent
of them and dependent on dc duty ratios and resistances
in the original model. However, since D, + D2 +D, =1
or D, = 1 - (D+D,) from (11) and (12) it'folldws tRat the
steaay state vecfor X 1s now dependent on fWwo duty ratios
D (given) and D, (as yet undetermined) as opposed to only
D in [2]. The additional comstraint (13) which expresses
the average steady state inductor current I in terms of
circuit parameter values can now be used together with
(11) to solve for the unknown duty ratic D,, and hence to
determine the length of the second intervai D,T . In
general, then, D, is dependent on circuit parameters (such
as L and T, for“example) and hence dc conditions are also
substantiaily dependent on switching frequency £ and
inductance L. This is in sharp contrast to the contin-
uous conduction mode [2], where dc conditions are depen-
dent on duty ratioc D and resistances only.
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In summary, expressions (11) and (13) completely
determine the dc conditions in the discontinuous con-
duction mode, and at the same time help to determine
the length of the second interval D T, which was unknown
at the beginning of this analysis.

We now undertake to obtain the dynamic model by per-
turbation of the basic model (8-10).
Peatunbation

Suppose that the switch drive duty ratio d changes
from cycle to cycle, in addition to the line voltage

variation. Hence, the general perturbation equations
d=D+a d, =D, +d,, d, = D, + dg,
X 2 2 2 3 3 3 (14)
v =V +v, x=X+ x, and 1 =1+ 1 -
g 3 g

introduced into the basic-state space averaged model
given by (8), (9), and (10) result in

x = [(D+d)Al + (Dytd,)A, + (D3—d—d2)A3](X+x) +

(15)
+ [(n+d)b1 + (D,+d)b, + (D3—d—d2)b3](vg+vg)
with additional constraints
di
3t 0 (16)
I1+1-= 1(vg+2,g, Vtv, D, L, T.) an

From d + d, + d

43 = 1, .when perturbed by (14), we got

D+d+ D, +d,™+ D3 + d3 = 1 or, since also D + D2 +
D3 = 1, wé finally arriveé at
d3 = - (d+d2) (18)

which was then used in (15).
The perturbed model given by (15), (16), and (17)
is nonlinear owing to the presence of at least second-

order terms.

Linearnization and §inal state-space averaged model
fon discontinuous conduction mode

We now make the small-signal approximation, namely

that the departures from the steady-state values are small

compared to the steady-state values themselves:

4y

2

ol e
Ml %>

<< 1, << 1, << 1, << 1 (19)

0°<L°<>
o

Using approximations (19) we neglect all second (or
higher) order terms, and obtain once again a linear sys-
tem but including duty-ratio modulation d. After sepa-
rating the steady-state (dc) and dynamic (ac) parts of
both state-space equations (15) and constraints (16) and
(17) we arrive at the following results for the final
state-space averaged model.

Steady state (de} model:

X = -A‘lbvg (20)

Subject to constraint

1= 1(vg, Vv, D, L, Ts) 1)
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Dynamic |ac small-signal) model:

x = Ax+bvg+d[(Al—AB)X+(b1—b3)Vg]+d2[(A2—A3)X+(b2-b3)vg]

(22)
subject to constraints
di 0 (23)
dt
~ 3L o~ ij;. 3_1»
i= avg vg + av v + ad d (24)

where A and b are as given before by (12).

From (24) it also becomes obvious why (7) was ori-
ginally called "perturbatio& equation I." In additiom,
since % = [di/dt dv/dt ...] the introduction of con-
straint (23) into (22) reduces the first dynamic equa-
tion to a static one, from which the unknown modulation
d, can be determined in terms of v_and 1 modulations
and circuit parameters. g

The dynamic state-space equation which, because of
(23), became a static one, can now be designated "pertur-
bation equation II," since it helps to determine the
other unknown perturbation quantity d,. Together with
(24) this uniquely defines the line tTansfer function
v(s)/v _(8) and duty ratio modulation transfer function
v(s)/des). However, owing to the presence of constraints
(23) and (24) no closed-form expression is available for
the transfer functions, unlike the case for the contin-
uous conduction mode.

We conclude this section with illustration of these
general results on the boost converter. Both dc and ac
small-signal models are then analyzed in detail and some
unique insights into the operation of the boost converter
in the discontinuous conduction mode are obtained. Dc
conditions and the determination of the boundary of the

two modes of operation are particularly thoroughly analyzed.

Example: ideal boost power stage in discontinuous

conduction mode

For the ideal boost power stage of Fig. 1 the three
switched networks in the discontinuous conduction mode
of operation are shown in Fig, 6.

|n1erval dls: b)ln?erval dpls: «¢) |nTervaI dyTs:

m I}m LT :

Three switched netwonks of the ideal boost
conventen of Fig. 1 operating in the discon-
Linuous conduction mode. .

Fig. 6.

For the choice of state-space vector x = (i v)T
the state-space equations of the three linear switched
networks in Fig. 6 become:

x=Ax+bv for interval dT
1 1lg s
X = Azx + b?_v.g for interval d2T2 (25)
X = A3x + b3vg for interval d3Ts
where



- ) )
0 0 (0 -1 (0 0
A]_ = A2 = A3 =
1 i _1 L
19 & C RC | © RC
(26)
[ T B T r T
1 1 ]
== = = = 0 0
STt 0] b, | T (El by i

In addition to this, perturbation equation I (7) 1s needed.

However, it can easily be found from Fig. 6a as

i v
= max = B =
1= R =gRar =i, 4, L, T) (27)

The same result could have been concluded also from Fig. 5b,

which actually represents instantaneous inductor current
for the boost converter (or buck-boost converter since
both have the same slope during interval dTJ.

Equations (26) and (27) contain now all that is needed

to determine both dec and ac small-signal models by appli-
cation of the general result, equations (20) through (24).
We first analyze in greater depth the steady-state (dc)
model.

Steady state (dc) model anafysis

By use of (26) in (20) the following linear algebraic
system results

A X b
EZ . D+D,
0 L L
+ vV =0 (28)

D g
2 1
e 0
c RC v

in which the quantities A, X and b are clearly identified
and obtained by use of their definition (12). The general
remark made previously about the solution of this linear
algebraic system (28) becomes clearly visible. Storage
elements (L's and C's) are indeed proporticnality con-
stants, and the solution of (28) is

v D

I -14+2 (29)

Vg D2

1=D—"R (30)
2

Hence, the dc conditions depend only on duty ratios D
and D, and resistance R. From (29) we conclude also that
the boost converter has even in the discontinuocus_con-—
duction mode the boosting property (dc gain V/V_ =~ 1),
since D, D, are by definition positive quantiti®s. How-
ever, the gc conditions are not quite determined since

D, is as yet unknown. But, by use of the additional
constraint (21), as further specified in (27) as
V DT

2 8

=%

(31}

together with (29) and (30), dc conditions (and also DZ)
are completely determined. For example, substitution
of (31) into (30) results in

=R S I (32)

where the important dimensionless quantity K is defined
as

(33)

This dimensionless parameter K plays a key role in the
discontinuous conduction mode since it combines uniquely
all the parameters responsible for such behavior. Ano-
ther quantity which will frequently appear is the dc
voltage gain V/V_, so we define also another dimension-
less parameter M“as
Ay
M= v
g

(34)

Finally, by use of (32) and (34) in yet unused dc¢ rela-
tion (29), the quadratic equation for dc gain M is ob-
tained

2

M - M- DK =0 (35)

Since from (29) the dc gain M is positive, only the
positive solution of (35) is meaningful and we obtain

1+/ 1+ 4D2/K

5 (36)

Finally, the substitution of (36) in (32) determines
the previously unknown duty ratio D2 as

1+ v 1+ 4D2/K

: (37)

M=

- K
=D

Hence, we have succeeded in expressing, through (36)
and (37), two important quantities, the dc gain M and
duty ratio D,, in terms of the driving condition (duty
ratio D of the transistor switch), and the 4ingle
dimensionless quantity K which solely reflects the effect
of circuit parameter values (L and R) and the other oper-
ating condition, the switching frequency f_, upon the
dc conditions in the discontinuous conduction mode. If
desired, the remaining dc quantity, the steady-state
average inductor current I, may be found in terms of
D and K by use of (37) in (30).

All these expressions (36), (37), and (30) are very
useful in predicting the dc conditions when the switching
converter 1s used alone, that is in an open-foop fashion,
since the duty ratio D is given (independently generated)
and the constant K may be calculated from element values
with use of (33). However, if the converter is used 1in
a closed-loop switching regulator the output dc voltage
V is predetermined by the choice of the reference vol-
tage and kept constant regardless of any varlation of
input dc voltage V_, by appropriate self-adjustment
of the dc duty rat¥o D (internally generated) in a
negative feedback manner. Hence in closed-Loop opera-
tion , D and D, become dependent on the external dc gain
M and the dimefisionless parameter K. These dependences
can easlly be found from (36) and (37) to get, for
closed-loop consideration:

D = /RMM-1) (38)
KM
Dy, = /W1 (39)

Hence, (36) and (37) conveniently determine dc quantities
for open-loop considerations, while (38) and (39) are
likewise useful for closed-loop considerations.

It is now interesting to compare the open-loop dc
gain in the discontinuous conduction mode given by (36)
with the corresponding dc gain in the continuous con-
duction mode, which, for the ideal boost converter is

1

M=%

(40)
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Hence, the ideal dc gain (40) is dependent on duty ratio
D only and not on circuit parameters (such as L, R) or
switching frequency f . In sharp contrast to this, the
dc gain M in the discéntinuous conduction mode (36) is
dependent also on K in addition to D and hence is a
strong function of switching frequency f , inductance L,
and load R. Nevertheless, when the convérter is used

in this mode in a closed-loop regulator, the self-
correcting feature of the duty ratio D would compensate
any possible changes of load R or switching frequency £
and still keep the output voltage relatively constant.

Another question naturally arises in comparison of
the two dc gains: when do we calculate dc gain from one
(36) or the other formula (40), or, what is the criterion
to determine in which of the two modes (continuous or
discontinuous) the converter is operating? The answer
is provided easily with reference to Fig. 5. When the
second interval D,T_ is smaller than interval (1-D)T ,
the converter is operating in the discontinuous con-
duction mode, and in continuous mode otherwise, so the
criterion becomes

continuous conduction mode

discontinuous econduction mode
D, <1-D (42)

To obtain a convenient quantitative measure we find,
first, what happens exactly on the boundary between the
two modes of converter operation, or
boundany between two conduction modes

D,=1-D (43)

By use of (37) in (43), the equation to determine the

critical value of parameter K, that is, K for which
this happens, is crit
K2 + 4K D2 = 2DD' K
crit crit T Cerit (44)
from which
K . =opp? 45
crit (43)

The solution (45) is the proper solution of (44) since
2pDY - Kcr = 2DD' - DD'" = 2DD'(2~D') = 2DD'(14D) 1is
always posiEive regardless of D, resulting in a proper
positive right-hand side of (44). With this, the cri-

terla (41) and (42) for determination of the operating
mode become

continuous conduction mode K > Ko it (46)
discontinuous conduction mode

K< Kcrit 47
boundary between two conduction modes

K =K (48)

crit

where K, as given before by (33), 1s a function of
parameters L, R, and £ , while K is a function of
the duty ratio D only. crit
We now investigate how these criteria, (46) through
(48), behave throughout the duty ratio range D ¢[0,1].
To facllitate this insight, K
of duty ratio D in Fig. 7. Agrégen in Fig. 7a, Kcrit(D}
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is plotted as a function:

has a maximum of 4/27 at D = 1/3. This now enables an
important conclusion about operating mode to be drawn.
Namely, if the parameters L, R, and f_are such that the
computed parameter K is greater than 2/27, expression (46)
is satisfied negardless of duty ratio D, - Hence for
K > 4/27 the converter afways operates in the continuous
conduction mode, no matter what the operating condition
(duty ratio D) is. However, if parameters L, R, and f
are such that X < 4/27 ~ 0.15 the situation becomes as
shown in Fig. 7a, where the particular example of K =
0.08 < 0.15 is chosen. For a certain range of duty ratio
D, that 18 D <D<D (as shown by the shaded area
X
in Fig. 7a),m%ge conditTah (47) 1is satisfied’and the con-
verter operates in the discontinuous conduction mode,
while for the remaining portions of the operating range
(0 <D<D and D < D < 1.0) it again operates in
the continiious condugtion mode, since then inequality
(46) holds.

consideration

a) open loop consideration b} closed loop
Kerit(D) Kerit(M)
discontinyous )
conduction >
4 D{I-Df 4 M;g
27 27 A
K=0.08 K=0.08
Dmin Dmax 0D Mmin 15 Mmax M

7. Deteamination of the operating mode {contin-
uous on discontinuous) for the ideal boost

conventern of Fig. 1.

Fig.

This discussion has been in terms of open-loop con-
siderations, when duty ratio D is given and externally
controlled. However, as before for dc conditions, it is
desirable to have the boundary condition (45) in terms
of the dc gain M, which is a more suitable quantity for
closed-loop considerations. This can easily be done
since the dc gain M is conlinuous across the boundary
(as seen by use of (43) in (29) resulting in (40)), and
thus substitution D = (M-1)/M in (45) gives

M-1

Kcrit = M3

(49)

This function K ric(M) is plotted in Fig. 7b, and a
similar discussi&n applies. However, now the maximum
of K (M) of 4/27 is obtained for gain M = 1.5.

As bgfore, for K < 4/27, the converter is in the dis-
continuous conduction mode, but now for dc gain M in
the range Mmi <M<M as shown by the shaded area
in Fig. 7b. Bhis revedls a potentially serious problem
if the boost regulator were designed (and compensated)
to operate in the discontinuous conduction mode only.
Namely, during the initial turn-on process, the out-
put voltage starts from zero, and the converter would
have to pass through the continuous conduction region
$inst (for 1 <M < M n)’ before ¢oming to the dis-
continuous conduction region (shaded area in Fig. 7b).
This would suggest possible stability problems, if the
closed-loop were not compensated to assure sifabfe
operation in the continuous conduction mode as well.

From the standpoint of the dc gains (as a function
of duty ratio D), the situation corresponding to that
of Fig. 7 is shown in Fig. 8 for some K < 4/27.

From the dc gains for both conduction modes shown
in Fig. 8, 1t becomes obvious that the actual dc gain
will follow the fargen of the two gains, thus the mode
of operation will change accordingly as the duty ratio
changes from 0<to 1. Also in the close vicinity of
gain M=1 (1 -M-M in)’ the converter is always
operating in the cont¥htious conduction mode. Thus, the



problem of having, for example, D, infinite when M>1
from (39) is only a fictitious one, since (39) is for
the discontinuous conduction mode and hence not appli-
cable in the vicinity of and at gain M = 1.

dc gain M=VI\g /
A 1t
-D / \\
/
Mmax Al 1 Vie anf/x
I~ // 4127
<
Mrmn o e K
1.0
1 1 -
0.0 Ormin Dmax 1.0 D
Fig. §&. Boost converter de voltage gains in continuous

and discontinuous conduction modes as a function
of duty ratio D.

We conclude this dc analysis with some numerical
examples and related quantitative and qualitative signi-
ficance of the dimensionless parameter K. For example,
for the set of parameters L = 880uH, R = 220Q and f
20kHz, we compute K = 2Lf /R = 0.16. Therefore, sifice
K = 0.16 > 4/27, the converter will with this set of
parameters always operate in the continuous conduction
mode. However if, for example, the switching frequency
is reduced to f_ = 10kHz, this results in K = 0.08 < 4/27
and some range of discontinuous conduction operation
should be expected (see Figs. 7 and 8). Therefore, the
reduction of parameter K below 4/27 causes this transi-
tion. From the definition of K in (33) this reduction
and change to the discontinuous conduction mode is
qualitatively achieved by three means: increase of
load R, decrease of the inductance L or switching fre-
quency f_ . There is also a fourth way to enter the dis-
continuous conduction mode, and that is to change the
operating condition, the duty ratio D, as illustrated

in Fig. 7 and Fig. 8, but only if the condition K < 4/27
is met.

Very often, however, out of all these four pos-
sibilities, one is mostly interested in how the change
of load R affects the operating mode. HNamely, the
parameters L and fs are usually design parameters whose
‘choice may depend on the size and efficiency require-
ments of thé converter or regulator. On the other hand,
the range of variation of duty ratio D, or equivalently
of gain M, is a design requirement in a closed-loop
implementation since the output voltage V 18 maintained
constant against the range of variation of input voltage
V_ (hence range of M = V/V_) by the action of negative
féedback. The load R also®can have a wide range of
change depending on the user of the regulator, and is
often out of the designer's control. Hence, determi~
nation of the converter operating mode with respect to
changes of load R becomes important. This can be easily
accomplished by finding an equivalent of (45) and (49)
respectively, as

1
R = —— R (50)
crit DD'2 nom
3
_ M
Rcrit T M-1 Rnom G
where Rnom is a design parameter defined by
A
R = 2Lf (52)
nom s

The criteria for determination of the operating mode,
(46), (47), and (48), then become

continuous conduction mode

R < Rcrit 63
discontinuous conduction mode
4
R> Rcrit (54
boundary between two modes
= 55
R Rcrit 3)
Let us now illustrate this on a numerical example. Fof
L = 880uF, £ = 20kHz we calculate R = 35.2Q. By the

same argument as before (see Figs. 7 S98d 8, for example),
the converter will afways operate in the continuous con-
duction mode if

(56)

or for the given numerical example for R < 2382. When
R > 238Q there will be a range of gain M (see Fig. 8)
for which the converter operates in the discontinuous
conduction mode.

This concludes the extensive dc analysis and we now
turn to the dynamic (ac small-signal) model analysis of
this ideal boost converter example.

Dynamic (ac small-signal) model analysis

Before we apply the general result to this ideal
boost converter example, let us first put the con-
straint (27) into a more suitable form by using the
steady-state average inductor current I of (31) to get

v de ZSE
i== = VD I 6D

By use of perturbation equation (57), model description
(26) and definition (12) in the general result given by
(22) through (24), we obtain

dynamic (ac small-signal) model

a o -2t bl X Vg
dt L L L
- + st d
av e S I 0 0
dt C RC
vV -v
&
L .
+ d2 (58)
I
<
with additional constraints
a1
a - 5
dt 0 (59)
~ I -~ I»\
i=?s-vg+Dd (60)

As opposed to the general result, we can now for
this specific example enter the constraints (59) and (60)
into dynamic model description (58). The introduction of
(59) reduces the first dynamic equation in (58) to a
static one, and after proportionality constant L is re-
moved the dynamic model becomes
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= - y + ) + VvV d + (V -V & 61)
0 DZV (D+D2)V d ( ) 2 (
__d: = jA - v R + 1 dA 62

with additional constraint (60). Note, however, that now
the first static equation (61) actually determines the
wnknown modulation quantity d, (modulation of the second
interval d,T as shown in Fig: 5, for example) in terms
of the oth&r®dc and ac quantities. In the remaining
dynamic equation (62), besides this modulation d, which
we can now express from (61), current modulation i also
appears. Buyt, from the perturbation equation I (60) it
is also determined in terms of the known ac quantities
(forced modulations v_ and d). In general, both equa-
tions (60) and (61) c8uld have both modulation quanti-
ties i and &2 for some arbitrary converter. But, they

are linear algebraic equations and could be solved for
1 and d, in terms of other ac quantities and then sub-
stitutea

be,
higher than the first order model given by (62)).

Another general feature, which is hidden in this
model, is that (61) can be considered as a consequence
of the equation

oV (63)
which after usual perturbation and linearization steps
and subtraction of dc terms reduces to (61). Hence,

in analogy to (57), equation (63) can now be designated
perturbation equation II. The appearance of (63) in
the modelling will become more apparent later in the
hybrid modelling and circuit averaging techniques. But
in any case, the unknown modulation quantities i and d
come as the solution of two linear algebraic equations|
which are essentially linearized versions of pertur-
bation equations I and II, (57) and (63) respectively.

(d+d2)vg =4d

To complete the dynamic model description we simply
substitute (60) and the solution of d, from (61) in (62)

2
to get
dv /D, I 1 D, D+D D, V
N e S PN o Midier Y IO b ) _a.)
C T v + R) v +(V + v )Ivg + (D + v Id
8 g
(64)

Since this dynamic model has significance only for the
closed-loop regulator, it 1s convenient to express all
dc quantities in terms of M, K, R and output voltage V,

as was explained before in the dc analysis. Hence by
use of (38), (39) and (30) we obtain
dv 2M-11~, M 241~ 2V -
&y - £ T AR 6
Ca wi RVVw1 R Vg TR 7moend ¥

In (65) all proportionality constants would become infi-
nite and meaningless when M = 1. However, it was ex-
plained in the dc analysis that in the vicinity of and at
gain M = 1, the boost converter always operates in the
continuous conduction mode, hence a different dynamic
model applies.

Is is now easy to obtain from (65) two transfer
functions of interest

¢ = V() _ 1 (66)
ve Gg(s) %8 3 + s/w

G . = v(s) - 1

vd a(s) od 1+ s/wp
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where

2M-1 1
Wy M-I RC 67)
and
- -2V /KM
Gog =M, God 2M-1 M-1 (68)

As seen from (66) both transfer functions have a
single pole w_and no zeros. This is qualitatively com-
pletely diffePent dynamic behavior than in the contin-
uous conduction mode where two poles and even a right
half-plane zero are obtained [2] (for the G_, transfer
function only). This in turn suggests easier compen-
sation (even no compensation at all) and reduced sta-
bility problems if the converter as a part of a swit-
ching regulator is operating consistently in the dis-
continuous conduction mode. But, a potential danger
exists there: any significant transient changes (such

in the remaining dynamic description (which could as sudden change of input voltage or temporary substan-
for some converter with more than two storage elements, tial change of load R) could move the operating point

to the continuous conduction region (see Fig. 8) and
cause instability. Another problem is inherent to the
discontinuous conduction mode. In addition to the out-
put current, now the input current becomes pulsating
as well (as shown in Fig. 5) which increases elect-
romagnetic interference problems. Hence, a decision
on the choice of operating mode becomes a complex one,
depending on the particular design requirements. To
facilitate that decision, we now undertake the task of
developing useful circuit models of the switching con-—
verter operating in the discontinuous conduction mode.

4 HYBRID MODELLING IN DISCONTINUOUS CONDUCTION MODE

We demonstrate in this section how for any specific
converter a useful circuit model of the basic state-
space averaged model (8) can be found, appropriately
modified by inclusion of the constraint (9), and sup-
plemented by the additional comstraint (10). In terms
of the Flowchart of Fig. 4 we will proceed from block
2a through 2c¢ to arrive at the circuit model in block 2b.
Again this 1s illustrated on the same ideal boost con-
verter example as in the previous section.

When the boost converter description (26) and (27)
is applied to (8), (9) and (10) the following basic
state-space averaged model results:

i 0o ; i}
dat L L
= + 69
e (69)
dv 92 1 o
de C RC v
with additional constraints
di _
FralY (70)
v dTS
i= —EEE— (71)

It now becomes clear that introduction of (70) into (69)
reduces the first dynamic equation to perturbation equa-
tion II as given before by (63). But, instead of intro-~
ducing this substitution, let us first find the circuit
realization of the state-space equations (69) as shown
in Fig. 9.



The constraint (70) leads, in the circuit model of
Fig. 9, to effective disappearance of the inductance L,
since v, = Ldi/dt = 0. The resulting equality of the
two volkage generators produces again the perturbation
equation II given by (63). At the same time shorting
of the inductance causes reduction of system order by
one, and effectively a single pole transfer function
result becomes apparent.

v.=Ldiildt=0

c

e

T

Cineuwit nealization of the state-space model
(69), with constrnaint (70) also included.

Let us now put the circuit of Fig. 9 into more
elegant form, by introducing a dc and ac transformer
in place of the two dependent generators in Fig. 9.
it is desirable to have source voltage v_ effectively
at the input of the converter, rather thin as some
modified quantity as (d+d,)v_in Fig. 9. However, this
is easily accomplished by inBroduction of another dc
and ac transformer at the input of the converter. In
addition, the true input current into the converter
becomes properly exposed as seen in the basic circuit-
averaged model of Fig., 10. 1In addition to the circuit
model in Fig. 10 we need the remaining constraint (71)
to complete the description of the converter in dis-
continuous conduction mode (as also displayed in Fig. 10).
As before, the circuit model and the additional pertur-
bation equation are valid for both dc and ac conditioms.
Hence the two transformers in Fig. 10 are operating
both at ac and dc and the appropriate symbol is introduced.

9.

Also

iouf v

Vg

| :(d+dp)

da 1

Fig. 10. Basic cincuit averaged model for the ideak
boost conventer in the discontinuous con-

duction mode.

A word about the new transformer symbol introduced
in Fig. 10 is appropriate here. In the modelling of
dc-to-dc converters a need naturally arises to have as
a convenient modelling tool special types of transfor-
mers: a transformer which operates for both ac and dc
signals, as for example that in Fig. 1@, and also a trans-
former which only works at dc (for which the need will
arise later in Section 5.1). Even though these trans-
formers are not physically realizable they are, never-
theless, useful in modelling the basic converter function:
dc~to-dc conversion. Hence, as an indicator of their
specific functions, the symbols of Fig. 11 are intro-

a) dc and ac transformer b)dc fransformer c)ac transformer

LS InS 3

1t.

Deginition of various transfonmer symbols used
in modelling switching dec-to-de convenrtens.

Fig.

duced. For consistency, the conventional, physically

realizable, ac transformer only, is pictorially repre-~
sented as in Fig. llc. Later in Section 5.2, for si-

milar purposes, the same overprint glyphs will be used
with resistance symbols.

this section
clircuit models
1. These

are summarized

Following the procedure outlined in
one can easily obtain the basic averaged
of the three common power stages of Fig.
models for discontinuous conduction mode

in Fig. 12.
a) buck power stage:
L i=lvg—v)dT512L
v
Vg _[ Vg
]—C R
1:d (dedy):l
b] boost power stage: .
i=vqdls/2L
L i Vg 'S v
g
]-C
I:(dsdy) dptl
buck - b t 1
¢) buck-boost power s:lage —— )
Vg l Vg
L .|,c R =C 3R
Fig. 12. Summary of the basic cinrcuit averaged modefs
for three common powen stages in discontinuous
conduction mode.
5 CIRCUIT AVERAGING IN DISCONTINUOUS CONDUCTION MODE

In this section the alternative path b in the Flow-
chart of Fig. 4 is followed and the perturbation and
linearization steps corresponding to those in state-
space averaging path a are applied to the circuit model
to arrive at the final circuit averaged models, separ-
ately for steady-state (dc) and dynamic (ac) response.

We continue with the same ideal boost converter
example and hence use as a starting model the circuit
model of Fig. 10. Even though that circuit model was
obtained by following hybrid modelling, we emphasize
also the other possibility. Namely, it could have been
obtained directly by averaging the three switched cin-
cudt models of Fig. 6 using the standard circuit aver-
aging technique and supplementing it by the appropriate
constraints (70) and (71).

Perturnbation

If the averaged circuit model of Fig. 10 is per-

turbed together with its perturbation equation I ac-
cording to

vy = v +v , 1=1I+#, 4qs= D4, = D.+d = vy

d 2

2 2

9
4

(72)
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the nonlinear model of Fig. 13 results.

1+?

(Dprdpl( VO] (DprdplI ] V¥

{ D“Dg'a'gle"‘i\ )

14
1T
o

AN
P

Fig. 13. Pentwibation of the basic averaged circuit
model in Fig. 10 nesults in this nonlineanr
clneuit model.

Lineanization

With the small-signal assumption on perturbation,
that is

<< D i<<1, vV, v

d << D, d s e

(73)

2 << vg

the second-order terms in Fig. 13 can be neglected and
the linearized model of Fig. 14 obtained.

(D+DNgr(drdyl\g  DpVedV

D§¢3g

() (DD) | Vo

Vool L\

D0l

[+1=VgDTsj2L + 13/D +1%g1Vg

Fig. 14. Model of Fig. 13 Linearized to include dec and
ac small-signal models.

The circuit model in Fig. 14 together with the
dc and ac part of the perturbation equation I (also
shown in Fig. 14) completely determines both models.
At this point, we continue to develop separately the
two circuit models -- the steady-state (dc) circuit model
and the dynamic (ac small-signal) model.

'5.1 Steady-state (dc) circuit model

With all ac quantities set to zero, the dc clrcuit
model is obtained directly from Fig. 14, and upon sub-
stitution of dc dependent generators by the dc trans-
former symbols, the circuit model in Fig. 15 results.

1 =Vg D Ts/ZL 1 \

Vg

1 :{D+Da) Dz |
Final de cireuit model §or the boost converter

15.
in the discontinuous conduction mode.

Fig.

This circuit model is also supplemented by the dc
part of the perturbation equation I, which is, of course,
the same as (31). From the circult model in Fig. 15
the other two dc relations (29) and (30) are obtained.
Hence the dc circuit model leads to the 4ame dc con-
ditions and results discussed at length in Section 3.1
on state-space averaging.

We now turn to the development of the dynamic (ac)
circuit model.
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5.2 Dynamic (ag) circuit model

After the steady-state (dc) quantities are sub-
tracted from the circuit model in Fig. 14 (and per-
turbation equation as well) the ac circuit model in Fig.
16 is obtained.

(D+Dy)i+(ded,) 1 ToDvrdN  Dyivdl
N\ (D*Dzﬁgﬂdvaz)vg

tVi

T=1dID +1%/Vg
16. Dynamic (ac smafl-signal) circudit model fon
the boosz cgnventer with the consiraint on
modulation 4 {perturbation equation I) not
yet included in the cinewif model.

Fig.

From Fig. 16 it is obvious that the two dependent
current generators are functions of two yet undeter-
mined modulation quantities d, and 1, since the other
quantities are either already determined from the dc
circuit model (such as D,, I) or are known driving
quantities (as D and d).€ While the current modulation
is already available through the linearized pertur-
bation equation I (see Fig. 16), the other modulation
quantity d., can easily be obtained from the inside loop
of Fig. 16, Namely, since the two voltage generators
in Fig. 16 must be equal, we get

(D+D2)vg + (d+d2)Vg = D2v + d2V (74)
Note that this is the same equation as the first (static)
equation (61) of the state-space averaged model. Now
it is easy to see that (74) and (61) came out actually
as a consequence of the perturbation and linearization
steps applied to the perturbation equation II (63), since
the voltage generators in Fig. 16 resulted from the
perturbation and linearization of the voltage gener-
ators in Fig. 9, which have been shown to be equal for
discontinuous conduction mode (owing to di/dt = 0 con-
stratint).

The equation (74) can now be solved for the unknown
modulation 4 and, together with the perturbation equa-
tion defining i, determines the two current generators
in terms of the known modulation quantities as follows:

A L . VIV (DI | DI
= 4+ + B ——— pu— -
ji (a dz)I (D+D2)i v d+ g 3% Ve~ Y v (75)
I3 g g g
i 2V 1 voo2v-v 1 v o1
= f e B J 4 I o
Jo = I+ D =gy d+g w5 R Yy vw rV U0
g g g 4

Since the converter dynamic model is usually used in
closed-loop regulator applications, we conveniently ex~
press all dc quantities in terms of M, K, R and output
regulated voltage V (as explained before) to arrive at

3
R A - o M 1~
B rdreeD YT R Y TWIRY an
- 2V 1 - M(2M - -
o= — d + ( 1)—];v - A %v(78)
R VEMM-1) M-1 R &8 M1

By use of (77) and (78) in the circuit model of
Fig. 16, the circuit model iIn Fig. 17 is generated.



2l d M Ug - MI2M-1% _2vd Mo
RVKIM-1] (M-R~ (M- |) M—I Rg RVKMIM=1) (M
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Ei} <# C? #D i R
___J.____A_

Dynamic (ac small-signal) cincult model of the
boost converter with perturbation equation 1
(gon modulation 1) and perturbation equation 11
(equality of the voltage generatons v; and Yo )
included in the cireuit model.

Fig. 17,

The two voltage generators v, and v, in Fig. 17
are purposely shown in dotted lines to emphasize the
fact that they are no Longer essential, since the in-
formation provided by them (74) has already been used
to find modulation d, and substituted elsewhere in the
circuit model, Therefore they can now be omitted from
the circuit model. Finally, by modelling the current
generators in Fig. 17 which are proportional to vol-
tages across them as ac resistors only, the final cir-
cuit model of Fig. 18 is obtained.

r_'___“l
. {91 'f@|
Vg Jid r | Jg
! !
L]

Fig. 18. Final ac small-signal cirewit model for boost

converten in the discontinuous conduction mode.

The element values in Fig., 18 are defined as

g2 [ H ¥l oM 1

1°F KD * T1 LB BTwl R (9
2V 1 M-1 -

= B ——— o, oLy, g - MEED L,
R JRUM-D M M-1 R

Also since r, and r, are ac resistances only, the ap-
propriate sy%bol consistent with that adopted for the
ideal transformer designation (see Fig. 11, for example)
is used in Fig. 18. The two current generators inside
the dotted-line box in Fig. 18 are used with square
symbols to emphasize the fact that they are dependent
current generators (on some other quantities in the
circuit).

From the circuit model in Fig. 18 and by use of
element definitions (79) and (80), the two transfer
functions G_, and G__ can be derived. It can easily be
verified thag they IBree exactly with those obtained
before, ((66), (67) and (68», using state-space averaging.
An interesting observation with regard to the topology
of the circuit model in Fig. 18 can be made. Namely,
to arrive at these two transfer functions, only the
elements in the output port j,, r, and g, have been
used, without any need for infut port de%cription. How~
ever, the input port description becomes mandatory if
the determination of the compfete circuit model is de-
sired, since it properly models the important imput
properties (both open- and closed-loop input impedances,
for example), as will be illustrated in Section /2.
Moreover, the output port model now does affect the in-
put properties through the dependent current generator
8V in Fig. 18.

An interesting comparison with the circuit model
topologies for the continuous conduction mode [1,2] seems
appropriate here. While in the continuous conduction
mode the effect of duty ratio modulation d was expressed
through duty ratio dependent voltage and current gener-
ators, here two duty ratio dependent current generators
(one at the input and the other at the output port)
appropriately account for both input and transfer pro-
perties (and output properties, as well). Another dis-
tinction and unique feature of the circult model of
Fig. 18 is the presence of ac resistances only (which
are in general dependent on an operating condition,
the gain M), a characteristic not present in the con-
tinuous conduction mode. But despite these topological
and qualitative differences, the circuit models for con-
tinuous conduction mode [1,2] and discontinuous con-
duction mode (Fig. 18) have something very important
in common: they both represent a compfete linearized
circuit model which accurately represents not only
transfer properties but input and output properties
as well,

The method outlined
for the boost converter,
converters of Fig. 1 and
tabular forms (including
Section 6 on a canonical

in this section, and illustrated
is applied to the other two
results are presented in various
the boost circuit example) in
circuit model.

6 CANONICAL CIRCUIT MODEL FOR DISCONTINUOUS
CONDUCTION MODE

In this section the canonical circult model for
discontinuous conduction mode (block 5 in the Flowchart
of Fig. 4 or Fig. 18) 'is obtalned for the three common
switching converters of Fig. 1, and thanks to its fixed
circuit topology, the results are conveniently summarized
in the form of various tables, separately for dc and for
ac small-signal circuit models.

From the dc conditions and by following the deri-
vations presented in Section 3.1, the simple formulas
for determination of the boundary between the two con-
duction modes may also be found for the buck and buck-
boost converters. These results, analogous to (45) and
(49) through (51) for the boost converter, are again
tabulated for all three common converters of Fig., 1.
This then ultimately determines which of the circuit
models (those of [25 or those of Sections 5.1 and 5.2)
should be chosen for given parameter values and oper-
ating conditions of a closed-loop switching regulator.
An interesting pictorial interpretation facilitating
this decision is given in terms of the frequency scale
and position of another "inherent'"frequency w, (fre-
quency defined by converter element values, lgke w
and fc before) with respect to switching frequencyafs.

Finally, both dc and ac transfer properties are
experimentally verified on a particular buck-boost con-
verter breadboard and excellent agreement with the pre-
dictions is observed, thus confirming the high accuracy
of the circuit models for the discontinuous conduction
mode.

6.1 Derivation of the canonical circuit models for
discontinuous conduction mode

In this section the canonical circuit models (both
dc and ac small-signal circuit models) for the two re-
maining converters of Fig. 1 are derived from the basic
circuit averaged models in Fig. 12.

Buck conventen in discontinuous conduction mode
With regard to the dc circuit model derivation, a
ceheral observation seems appropriate here. Namely, the

dc circult model of the boost converter (Fig. 15) could
have been obtained dinectly from the unperturbed cir-
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cuit model in Fig. 12b by simply taking all quantities
to be dc quantities and as usual considering the capa-
citance C to be open for dc signals. Hence, as should
have been expected, the circuit models in Fig. 12 to-
gether with the additional expressions for the average
inductor current i are valid dc models. But this is
exactly why it was previously emphasized that the pre-
sented methods for finding dc and ac models are con-
sistent with each other. After all, ac small-signal
models really represent the linearized perturbation
around some steady-state (dc) conditions. Hence, by
perturbation and linearization of the circuit models

in Fig. 12, the ac circuit models consistent with the
superimposed dc circuit models result. Therefore, the
dc circuit model for the buck converter is as in Fig. 12a
with dc quantities d = D, d2 = D2’ i=1I,v =V ,v=YV
and dc transformers only. & 8

After usual perturbation and linearization steps
are applied to the circult model of Fig. 12a, the dynamic
(ac) circuit model in Fig. 19 1is obtained.

Di+dl  DigedVg (DiDN+drdV  (D+Dpi+(d+dil |

P DhL
G(H) S v %lz] [ e 3R
[
s 1

3 { 1
vg—\Tg:v T)-a

~
vV +

| =

\g-V

Dynamic (ac small-signal) circuit modef for the
buck converter in discontinuous conduction mode
with conesponding perturbation equation I for
modulation <.

Fig. 19.

The perturbation equation I is different from that
for the boost converter and is

(vg-v)de (vg-v)d

i= - I
2L v -V)D
(S

(81)
-After perturbation and linearization of (8l) we get

1emgv +

v (82)

When the unknown modulation quantity 32 is found from
equality of the two voltage generators in Fig. 19, and
by use of (82), the two current generators in Fig. 19,
after expression of dc quantities in terms of closed-
loop parameters M, K, R, and V, become

(R EA NI A 1,8+ 80, - ¥ir, (@)
where
e %;/% . m R, gy =B L @)

Hence the same topofogy of the dynamic (ac) model for
the boost converter shown in Fig. 18 is also obtained
for the buck converter .in the discontinuous conduction
mode, but with the model efement values defined by (84)
and (85).
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Buck-boost converten in the discontinuous
conduction mode

The dc circuit model for the buck-boost converter
is obtained directly from the circuit model in Fig. 12c.
After perturbation and linearization of the model, the
dynamic (ac) circuit model in Fig. 20 is obtained.

Di+dl  Di+dVg —(020+212V) ~(Dyi+d,l) 5

ang j‘ +\7| Oo Gﬂfo L¢ 3R

A
|

1

%+%3

S

Dynamic (ac small-signal} cincuit model gon
¢ buck-boost converter in discontinuous
conduction mode with penturbation equation 1

(§or 1) shown explicitly.

Fig. 20.

The perturbation equation I is now the same as for
the boost converter (71), and the two current generators
3% and § in Fig. 20 are as defined in (83) but with

the follgwing element values for the buck-boost converter:

jl-%@l_z_l_’ rl-RF’ 81'0 (86)
12-2%':—1) rZ-R’ Sz'i-n (87)

Again the same circuit topology of Fig. 18 results, but
with element values (86) and (87). However, there is a
small distinction from the previous two models since
now, as seen in (86), g. = 0. Therefore there is no
feedback effect from theé output port to the input cir-
cuit model as in the other two converters, and the open-
loop input impedance is just r,. But, this is rea-
sonable to expect for the buck~boost converter, since

it is the only converter in which the energy trans-
ferring inductance is present either solely in the in-
put circuit (interval DTs) or solely in the output cir-
cuit (interval D,T.). In the other two converters (buck
and boost), on tﬁesother hand, the output circuit
(including C and R) is at least for a portion of period
T conunected to the input and represents a loading
effect on it. Hence the feedback action through cur-
rent generator 8V is to be expected in these two
converters.

The results for all three converters (buck, boost
and buck-boost) are summarized in the next section.

6.2 Summary of the canonical circuit model results
for three common converters

In this section the results for both dc and dynamic
(ac) canonical circuit models for buck, boost, and buck-
boost converter are summarized and, owing to the fixed
circuit model topology, conveniently listed in several
tables.

In Fig. 21 the polarity of the gecond transformer
1: is inverting for the buck-boost converter and
othSrwise as shown. The parameters in the dc circuit
model of Fig. 21 are dedined in the first three columms
of Table I, while the remaining two columns tabulate the
dc relations derived from this circuit model. Note,
however, that this circuit model can be used to deter-
mine other dc quantities as well, such as the dc input
durrent Iin in terms of the defining parameters.



as well as gon closed-Loop considerations.

With use now of the last three columns of Table I
and the procedures outlined in Section 3, the very use-
ful Table II can be generated, in which the dimensionless

parameter K is defined as before with K = 2L/RT‘5 = 2Lfs/R.

The element values of the dynamic (ac) circuit
model in Fig. 22 for the three converters are shown
in Table III.

Again, as Table II was generated from Table I and
only input-output dc transfer properties obtained, we
can similarly generate  from.Table III another, Table IV,
in which only input-output ac transfer properties
(transfer functions Gvg and Gvd) are listed for the three
converters.

STEADY STATE (DC) CIRCUIT MODEL DYNAMIC {AC SMALL SISNAL) CIRCUIT MODEL
Iin ] Iou‘f Y {— _____ 11 v
ol lo ol Jo % %, |
Ve R v ' d | ) l e
9T 9 Jid N3 ﬂ ﬂ | Q2 \J JdC SR
[ I
f }
[ M‘ |: M2 Co ]

Fig. 21. Steady-sitate (dc) circwit model fon the con- Fig. 7. Final ac small-signal cirewit model for con-
vertens of Fig. 1 in the discontinuous con- verters of Fig. 1 4n the discontinuous con-
duction mode. duction mode.

co:ver?er definition ¢f dc model derived quantities type J, r, g, Jo r 9,
ype M, M, [{averagdl 1=M,VIR| M=M M, oy 2 R
"M | I-M MS | [2V HI-M M({2-M} |
buck ==/ [ [ZM ML ey yEME i -m Mic ¥l
buck D l (Vg-VIDBf v D R K we R R (Rl | MR TR
D+Dp 2L {D+Da)R | D+Dy
2V M M-I M 2V M-I M{2M-1
boost |=— 2R Mty c¥ M7l p M{2M-1) |
boost D+D € YgDTs | V_ D+Dp RM;(M‘I) M3 M-1 R [RVKMMT] M M-l R
2 D» 2L DR D,
buck-| 2|Vl R 2lvl 2M
buck - b 1 VgDTs \ D boost | Rk M? 0 RVK M R R
boost Dy 2L DoR Dz
TABLE II1. UDeginition o4 the elements in the canonical
TABLE 1. Deginition of the de cineuit model in Fig. 21 eireuct model of Fig. 22 fon the thnee common
forn the thace common convertenrs of Fig. 1 open- converters of Fig. 1 operating in the dis-
ating in the discontinuous conduction mode. continuous conduction mode.
converter| °Pen-loop consideration| closed-loop consideration type Gog God wp
type M(D,K) D,K Z
D, ( D,K} D{M,K)| Dy{M,K]) o ) 2VH—M?M 2M 1
5 (KM K M(2-M (-M RC
buck | —Te—=t__C \}KM K{1-M] VM2
[+V1+4KID? D 1Vl+ 4K/ D2 i-M
_\/ Dz \[ boost M ——2\/ -“\ —-—KM —2M~l —l-
+V1+4DPK (K 11+ DPIK] KM, 2M-1 M-I M-l RC
boost 5 B3 IR e -
buck- M \ 2
buck - D —~ boost KM RC
boost 3 VK MVK i3 /
LY ! . v !
Cvg” g~ Cog 75, 5 Owa™y God 13575
TABLE 11. Summary of dec transfen propenties of the three
common convertens of Fig. 1 in the discontin- ’
uous conduction mode expressed fon open-Loop TABLE 1V, Summany of the ac transfern properties of the

thiee common convertens of Fig. 1 operating
Ain the discontinuous conduction mode.

All the results presented in this section are appli-
cable only to the discontinuous conduction mode of oper-
ation of these three switching converters. To determine
when these results ought to be applied and when those
for continuous conduction mode [25, the boundary between
the two modes of operation is determined for these three
converters and tabulated in the next section.

6.3 Determination of the boundary between two

conduction modes

As explained in detail in Section 3.1 the criteria
for determination of the converter conduction mode are
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boundany between the two conduction modes

K=

Kcrit

or

R =

continuous conduction mode

K >

Kcrit

or

R <R

Rcrit

crit

discontinuous conduction mode

K <

where K is as defined before K = 2L/RT

Kcrit

or

R>R

crit

(88)

(89)

(90)

= 2Lf /R.

Following the same procedure outlined fn section 3.1 for

the boost converter example, the parameters K

R

and

can easlly be found for the other two cohvérters

i
afid &1l resutls are shown tabulated in Table V.

converter open-locp consideration closed - loop consideration
type Kerit (D) [Rerit{D,Ror] Kerit (M) [Rerit{MRnom!
buck l-D Room (=M Rnom
1-D I-M
R - 3
boest Dli-p P _Room _ M-l M
D(1-D)? M3 M-] nom
buck ~ 2 R |
boost | [1-D] o | Tanp M+ 1 Rpom
TABLE V. Determination of the boundary between the Bwo

conduction modes, expressed for open-Loop ab
well as for closed-Loop considerations.

In Table V nominal resistance
meter defined by

R

nom

= 2Lf
8

Rnom is a design para-

(91)

It has already been demonstrated in Section 3.1 for
the boost converter that parameter K can be chosen
(X > 4/27), such that the converter is always operating
in the continucus conduction mode regardless of the
operating point, that is dc duty ratio D, while the

discontinuous conduction mode can occur only for K < 4/27,

and then only for a portion of the dynamic range of duty
The same holds true for the other two conver-
ters, and the following criteria can be set:

ratio D.

a) when K > the converter is always in con-
tinuous conduction mode regardless of D.
b) when K < discontinuous conduction mode
can occur, but only for a limited range of
duty ratio D.
Parameter is actually the maximum of the duty

ratio D dependen

function of first column in Table V,

and is for comparison purposes listed in Table VI.

TABLE VI.

puck

Km

| A
27

Summary of the parameten K
negion of unconditional co

roost

buck-
boos?

o

deteamining the
inuous conduction

{on three common conventens of Fig. 1.

From Table VI it is obvious that when K > 1 any of
the three converters listed will afways operate in the
continuous conduction mode, and when K < 4/27 each of

52-PESC 77 RECORD

them will operate in the discoutinuous conduction mode
for a portion of the duty ratio range. With this, and
the first column in Table II, the dc voltage gain as a
function of duty ratio can be shown as in Fig. 23b for
K < 4/27, while the corresponding result for continuous
conduction mode is illustrated for comparison purposes
in Fig. 23a for K > 1.

a) continyous conduction b) discontinuous conduction

< Y (DKl
Ve
K> 1 K<ater 2
2
boost 7
boost % buck-boost
2r 2r l slope
buck-boost - ﬁ( P
| | p=
buck | N buck .
00 05 .0 D 00 0.5 10 D
Fig. 3. Comparison of the dc voltage gain charactenr-

istics in the two conduction modes for the
common convertens of Fig. 1.

In Fig. 23b heavy lines designate the region of
actual discontinuous conduction operation, whereas
dotted lines signify that the continuous conduction
mode takes over and the dc gain characteristics begin
to follow those for the continuous conduction mode
(see for comparison Fig. 8). From Fig. 23b it is also
evident that in the buck and the buck-boost converter,
the transition between the two conduction modes occurs
only once at higher duty ratio D, and not also at the
lower end as it does in the boost converter. There-
fore during initial start-up of the converter, when the
duty ratio changes from zero to the value required by
the steady-state gain M, the two converters (buck and
buck-boost) can be designed to stay in the discontinuous
conduction mode only, even in this transitional period.

We now present another viewpoint, which in an inter-
esting pictorial way and a unique frequency interpretation,
i{lluminates the determination of the converter operating
mode and the basic small switching ripple requirement.
Namely, from Fig. 1 it is apparent that the three common
converters essentially consist of the single switch S
positioned differently among the source voltage V_  and
three elements, inductance L, capacitance C, and $0ad R.
With only these three elements three different “inherent"
frequencies can be defined regardless of the converter

type. Two of them, w_and w_, termed natural frequencies,
a c
are defined as
1 1
W o=ss ., W = (92)
a 2RC c ic

However, yet another "inherent" frequency wy can be
defined by these three elements as

- R
8 2L
The dimensionless parameter K, which plays a crucial role

in the determination of the conduction mode, can now be
expressed as

w

(93)

fs
K = ;— (94)
B
Therefore, the position of this new frequency w_ with

respect ot the switching frequency £ determineg the
conduction mode. Hence for K > 1 or w, « £ , each of

the three converters will always be inBcontinuous con-
duction mode regardless of D. On the other hand,

w << f and w_<< f_ are requirements for small switching
r%pple. The information contained in the position of
these three "inherent'" frequencies w , w, 2 and f with
respect to the switching frequency f_ 1is concisgly sum-
marized in Fig. 24. The diagram in ﬁig. 24, with the



S . R . -4
WerJTE » “k"ZRC 0 WL Ll
e fo | high switching ripple
small ripple I
I | 1 1 11l % freﬁuen?g‘sﬁif
tkHz 10kHz 100kHz
s |discon*inuous
conduction
we = 2V -— -

continuous
conduction

Fig. 24, Frequency <interpretation of the conduction

mode type and small switching nipple nequirement. 1

help of definitions (92) and (93), displays in a con-

vincing manner the interplay between conduction mode types,

switching ripple requirement and choice of parameter
values L, C, Ryand f_. For example, increase of load R
can cause change to ﬁiscontinuous conduction mode with-
out deterioration in switching ripple. However, if in-
ductance L or switching frequency is reduced, change to
discontinuous conduction mode can occur, but at the

price of higher switching ripple since separation be-
tween w_and £_ 1is also reduced. One would have to in-
crease Capacitance C to remain at an acceptable switching

ripple level. Thus the frequency diagram of Fig. 24 gives

valuable insight, both qualitative and quantitative,
into the basic relationships inherent to switching con-
verters. It 18 interesting that from (92) and (93) a
very simple relationship follows

w, = ZVNQNB (95)

which may further facilitate quantitative analysis.

6.4 Experimental verification of the transfer properties

Both dc and ac transfer properties have been exper-
imentally verified on a circuit breadboard of the buck-
boost converter shown in Fig. 12¢. Because of lack of
space, only cursory experimental verification is included
here.

The buck-boost converter was chosen because of several

unique features which clearly distinguish it form the
other two converters, and which are easy to check. A
quick look at Table II, for example, reveals that it is
the only converter whose second interval D2T is inde-
pendent of the operating conditions (duty ragio D or
gain M), but rather is fixed determined by the parameter
K only.

Likewise, a look at Table III shows that the ac
resistance r, 1s also independent of steady-state oper-
ating condition (gain M). Therefore, the single pole
of the two transfer funcitons G__ and G does not move
with change of operating conditYfn (gainM) as it does
in the other two converters.

Finally, the open—loopzinput impedance of the buck-
boost converter 1s R, = R/M° since there is no internal
feedback (g, = 0). ﬁence the input impedance is purely
resistive, %hich is not the case for the other two
converters.

The transfer properties have been verified on the
test buck-boost converter with the following switching
components: transistor 2N2880 and diode TRW SVD 100-6.

De gain measurements

For the choice of element values L = 890uH, C = 12uF,

R = 2209, £, = 10kHz and V_ = 6V we compute K = ZLfs/R =
0.81 and D2 = /K = 0.28. %herefore, the buck-boost™ con-

verter operates in the discontinuous conduction mode
from D = 0 until D = 1-D, = 0.72, and the experimental
dc gain characteristic i§ shown in this duty ratio range
on Fig. 25.

YV
dc gain ——‘
[} Vg
(]
2l ¢ ® measurement
data b
(]
.
(]
(]
(4 duty ratio D
| I | 1 Lo
0.0 0.2 04 0.6 0.8 1.0

Fig. 25. Dc voltage gain measurements fon the buck-boost
conventen in the discontinuous conduction mode.

As seen in Fig. 25, the experimental points follow
very closely the theoretical straight line characteristic.
The experimental data, however, are slightly lower than
the theoretical curve since the transistor saturation vol-
tage and diode drop have not been accounted for in the
theoretical model, although this could easily be accom-
plished. The inductor current waveform was monitored,
and confirmed discontinuous conduction operation for
D ¢[0,0.72] while D, measured was constant as predicted
at D2 = 0.28.

Ac transfer function measurements

The duty ratio modulation d to output voltage v
transfer function G_. 1s now measured using the des-
cribing function me3Surement technique [llﬁ and results
are shown in Fig. 26.

[£[tab)
0 £

fs=10kHz

~20f~ e e measurement
data

L gl I e | 1 P U T T

100Hz .tkHz frequency

Fig. 26. Experimental magnitude-grequency redponse of
G,q = v/d transfer function for buck-boost
coﬁvmu Ain the discontinuous conduction mode.

The element values used are the same as for the
dc measurements, except that the inductance was in-
creased four times to L = 3.5mH to reduce the superimposed
switching ripple and to reduce the ringing effect in the
D3Ts interval. Hence for L = 3.5mH, ¢ = 12uF, R = 220Q,
f° = 10kHz, V_ = 6V we calculate K = 1.62 and D, = 0.56.
The range of Qiscontinuous conduction operation”is then
reduced to D ¢ [0,0.44]. The single pole of the transfer
functions G._ and G (see Table IV) becomes f = 1/%RC =
1204z, whicl®is in d%cellent agreement with thd exper~
imental data shown in Fig. 26,
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The measurements were repeated for several operating The inclusion of the canonical circuit model (Fig.
points in the discontinuous conduction region, namely, for 22) and an appropriate model for the modulator stage (96)
D = 0.1, 0.2, 0.3, and 0.4 but the single pole at f, a8  ynto the switching regulator (Fig. 27) results in a com-
predicted, did not move. plete circuit model of a switching regulator in the dis-

continuous conduction mode, as shown in Fig. 28.
The experimental measurements therefore have con-

firmed the high degree of accuracy of the canonical cir-
cuit model (Fig. 22) for the discontinuous conduction

-
| L
mode of operation. 7 S X Zo
£> 5 PN 926 % <=
The question of input properties of switching v * | | C R
g . ! ~ A
| k
t
L

————— ! v

converters and regulators, and particularly of open-

L i | |

and closed-loop input impedances, is thoroughly analyzed J,d ! : g Jod y
in the next section on modelling of a switching mode i 3 |
negubator in the discontinuous conduction mode. I|— T LT

I A

| d fmls) % Als)

Vm

7 MODELLING OF SWITCHING REGULATOR IN

DISCONTINUOUS CONDUCTION MODE

Fig. 28. General ac smallf-signal circuit modef for the
switching negulaton of Fig. 25 operating in the
discontinuous conduction mode.

This section demonstrates how the canonical circuit
model for a switching converter operating in the discon-
tinuous conduction mode can easily be incorporated into
the complete switching-mode regulator model. Consider

now a switching-mode regulator as shown in Fig. 27, an The generator symbol for the current generators
illustrative example since the discussion applies to any J;(8)d and j,(s)d at the input and output ports, respec-
converter. tively, has geen changed from a circle to a square to

emphasize that in the closed~loop regulator they have
. become dependent generators (on output voltage variation
| 1 lat tput ~
[Unregu ated inpu regulated outpy v in particular). A closer look at the circuit model in

switching mode converter Fig. 28 reveals some unique properties of this negative
IR N ] v feedback circuit. Namely, it has been previously shown
L ) J— in Section 3 that only the output port network (con-
sisting of current generators g,v , j,d, resistances r
_J_ C R and R and capacitance C) effect%vgly %akes part in detér-
Vg mination of the open-loop transfer functions G_ and G_,.
T l Zot——— The immediate implication of this 1s that for Ieal Aowlce
t ! voltage v_, the loop gain T is defined only with respect
!b°°5* power stage | to the oufput port as shown in Fig.28 . Likewise, the
duty ratio D | : output impedance Z_ and line transmission characteristic
i F (audio—susceptibglity) become solely defined in terms
control J of the output port elements, while the input port takes
modulator|  Yoltage Vo

part only in determination of the input impedance Z,.
This is easily confirmed by analysis of the equivalént
circuit in Fig.28 , which leads to

amplifier

reference
Fig. 27. Switching-mode negulaton T = Gvd(s)A(s)fm(s)/Vm 97
i} Zeo(s)
7.1 Modulator stage modelling and complete regulator o 1+T (98)
circuit model
—_— G __(s)
F=—B
So far, we have obtained the canonical circuit model 14T (99)
for the switching-mode converter. The next step in
development of the regulator equivalent circuit is to 1 T /¢ 1 1 A
obtain a model for the modulator. This is easily done e mm [ g j, - —] +—|— - s 0
by writing an expression for the essentigl function of z, 14T G "1 14 WT\r, 81Cyg (100)
the modulator, which is to convert an (analog) control
:gitzgew¥§tt:nt§e_s;17$h g:tzhizﬁfobg.deigiitizgfessiiz The first three expressions are rather obvious and
the range of controlcsignal required to sweep the d&ty are a consequence of the general results of linear feed-

ratio over its full range from 0 to 1. A small variation gistciggeré t::ey 219: °°“firT that T, 2 , and F are
v superimposed upon V_ therefore produces a corresponding output port elements only, since the

vSriation 4 = ¢ /V incD, which can be generalized to o?ez-loop transfer functions Gvg and Gvd are independent
account for a ngnuniform frequency response as ° nput port elements.
fm(s) R It should be noted, however, that this peculiar
d=— \A (96) dependence of some feedback quantities T, Z , and F on
m output port elements only, is a quite Apecial case,
which is a consequence of the {deal $ource voltage v .
in which £ (0) = 1. Thus, the control voltage to duty If the source voltage had an internal impedance, or
ratio smalT—aignal transmission characteristic of the input filter were included in front of the converter,
modulator can be represented in general by the two even the open-loop transfer functions G and G , would
parameters V_ and f (8), regardless of the detailed become dependent on alf.circuit elementi® the £38dback
mechanism by which Phe modulation is achieved. quantities even more so, and this special feature would

54-PESC 77 RECORD



disappear. This once again demonstrates how powerful Again by using element definitions from Table III
these converter equivalent circuit models are, since any 1in (106) we get for alf three converters

of such additional effects can be dinectly included in R v \2
the circuit model of Fig. 28, owing to its complete R, == = £} R (107)
cinewit representation of the converter properties. M v
We now investigate in more detail the important which correctly predicts the open-loop low-frequency
input properties of the circuit model in Fig. 28. input resistance to be positive.
7.2 Input properties of switching regulators in From these results and the corresponding one for
discontinuocus conduction mode continuous conduction mode [1], it follows that the closed-
loop low-frequency input resistance R, is given by (104)
As seen in (100) the input impedance z, is also negardless of the conduction mode typé and switching
dependent on the input quantities j., s and 8 In converter type (buck, boost, or buck-boost). The same is
addition the input duty ratio depenéent current gener- - calso true for the open-loop low-frequency input resis-
ator j. is now responsible for the negative input impe- tance Rin given by (107).
dance at low frequencies. Indeed, 1f j, = 0, and since
at low frequencies T»w, the input resis%ance R, would Hence, this section has confirmed that the canonical
appear to be positive, in obvious conflict with the circuit model for discontinuous conduction mode (Fig. 28)
actual physical requirement. properly models the regulator input properties (closed-
loop input impedance) in much the same way as the canon-
Let us now verify this for the discontinuous con- ical circuit model for continuous conduction mode [1,2]
duction mode, and consider first the limiting case of did, through the presence of duty ratio dependent cur-
(100) for high loop gain T+~ (at low frequencies) rent generators at the input of the converter model.
The immediate consequence of this is that the regulator
1 G 1 circuit model (Fig. 28) is a compfete circuit model which
—_ = - VB j, - — (101) represents all essential properties; input, output and
Ry Gog 1 1 transfer properties.
From the circuit model in Fig. 28 the converter open-loop
transfer functions Gvg and Gvd are easily found as 8 CONCLUSIONS
G =g (r IlR) 1 A general method for modelling any three-state
vg 2272 1+ BC(r2| R) switching converter operating in the discontinuous con-

(102) duction mode has been presented. The fundamental step
1 is in replacement of the state-space descriptions of the
Gvd = jz(rZHR)i—;—;E?;—jTET three switched networks (3) by their average (8) over the
2 single period T , the same step as taken for any ordinary
three-state converter. This 1s then supplemented by

By use of (102) in (101) we finally obtain the additional constraints (9) and (10) which properly
closed-£Loop Incremental resistance Ri as account for the discontinuous conduction mode of operation.
R = - gl _ 3;_ (103) The subsequent perturbation and linearization steps
i 32 & r are applied not only to the state-space or circuit

averaged models but also to the constraints, which then
Using now the definitions of element values j provide the additional information needed to define com—

s 3os _
and r. from Table III in (103), we obtain for &ll 2 pletely both dc and ac small-signal models.

B,
t%ree converters (buck, boost and buck-boost) that An extensive analysis of the de conditions in the

R v 2 discontinuous conduction mode has been given, in Section
Ry =-—5 =~ -£) g (104) 3, which then enabled the definition of the boundary
between the two operating modes for a specific boost con-
verter example. An easily interpretable formula ((45) or
From (103) it is also evident that despite the (49)) led to simple criteria  ((46), (47) and (48)) for
presence of the positive term, the negative term has pre- dJetermination of the converter. mode of operation.
vailed, correctly predicting the negative closed-loop
input resistance. Analysis of the dynamic (ac small-signal) model
confirmed the general modelling prediction - reduction
Let us now consider the other extreme when the loop of the system order by one. Thus, common converters of
gain is very small, that is T>0 (or equivalently at high Fig. 1 showed a single-pole frequency response in the
frequencies). Then, the input impedance approaches the discontinuous conduction mode, as apposed to their two-
open-loop input impedance 2, obtained from (100) as pole response in the continuous conduction mode.

v

Then, following the hybrid modelling path (Section

El— = %— - gle (105) 4) and the circuit averaging path (Section 5), a new
in 1 g circuit model (Fig. 18) with a rather unusual topo-

logical structure is obtained for the boost converter,
The same result could be obtained directly from the open- which provides a complete model for dynamic (ac small-
loop converter model in Fig. 22. From (105) it seems as gignal) behavior.

though 2 could be negative owing to this negative in-
ternal e%?ect of the current generator g.v in the model The canonical circuit model with the same topo-
of Fig. 22. However, this is not true, Since the low- logy (Fig. 18), but with different element values, 1s
frequency value of the open-loop input impedance R obtained in Section 6 for the other two converters of
becomes from (105) Fig. 1, and the results are conveniently summarized in
r 106) various tables. Experimental verification of dc and ac
Rin 1= g1r182(r2]!R) ( transfer properties of a buck-boost converter in dis

continuous conduction mode are also provided.

PESC 77 RECORD-55



Finally, the model of the switching-mode regufatonr
operating in the discontinuous conduction mode 1s ob-
tained in Section 7, and important input properties
(both open- and closed-loop) are thoroughly analyzed.

The outlined method is general and directly appli-
cable to investigation of the discontinuous conduction
mode in wmore complex switching converter structures,

such as those described in [12,13], involving more than
a single inductor.
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APPENDIX A

STATE-SPACE AVERAGING STEP EXTENDED TO CONVERTERS WITH
MULTISTRUCTURAL (THREE OR MORE) TOPOLOGICAL CHANGES

We derive the state-space averaging step for
switching converters characterized by thiee structural
changes within each switching period. Each topological
structure can be described as before by linear state-
space equations, hence

» < <
Xl Alxl + blvg for interval les’ (0 -t -~ tl)
. < <
x, = Ayx, + bzvg for interval d,T , “(t; =t -t,) (A.1)
. < <
Xy = A3x3 + b3vg for interval d3Ts’ (t2 -t - Ts)
Two boundary conditions are now imposed. Since the

state—space vector is continuous in transition from first
to second and from second to third regions,
xz(tl) = xl(tl)
(A.2)
xa(ty) = x,(t;)

Solution of (A.1l) under the small signal assumption for
v (where v. = V+v_ and v_ << V) yilelds
4 g g g 4 4

At
1
xl(t) e xl(O) + vgBl(t)bl for t e [O,tl]
Az(t—tl)
x, (t) = x,(ty) + vng(t-t,)bz for t e [tl,tz] (A.3)
A3(t-t2)
x(t) = e x,(ty) + vgB3(t—t2)b3 for t ¢ [tz,Ts]
where c
Air
Bi(t) = S e dr , i=1,2,3 (A.4)

[+]

Use of boundary conditions (A.2) in (A.3) gives

Ad.T Ad,T AdT
@ - e 393 seAz 2%s M1%%s @+

Ad, T A4T
3"3"s 2728
+ vg[e e By (4T )by +

T

A.d
3 3s
+e B, (d,T )b, + B3(d3Ts)b3] (A.5)

With introduction of the linear approximations

AidiTs

v I+ AidiTs s i=1,2,3 (A.6)



into (A.4) and (A.5), and after retention of only first-
order terms (linear in Ts)’ (A.5) reduces to

al S, on,S; off:

L| L2 Ll L2

x5(Ty) = (I+d A +d,As+d A0, (0) + (d1b1+d2b2+d3b3)vg A.7) y JQ. C 3p Vi C, CosR
This leads to a single continuous linear system ' 1_ ]:7 time-{ ]- 1—

A
. A= dlAl + dya, + dyA, d} S off,Sp off: cl S, off , S, on:
x = Ax + bvg where A (A.8) L L L

= ! 2

b dlbl + d2b2 + d3b3
It remains, finally, to characterize the state~ \bl C ]_ R
space averaging step for the generalized switching con- I‘ ‘]_ C%]:
verter with n structural changes within each switching
period, namely, one described by
. 4T =ttt 4 Fig. A.2 Various switched networks fon the conventer in
s i1 >

X = Aix + bivg’ 1= 1,2:' [P (A.Q) F»(.g. A.la.

te [ti "ll t‘i]

for which the corresponding basic state-space averaged

model is a
A= ZdiAi
. i=1
x = Ax + bvg H n (A.10)
b =Zd1b1
i=1

As an illustration of a switching converter with
such multistructural change, consider the converter
shown in Fig. A.la whose two switches S, and S, are
driven as specified in Fig. A.1b. The %wo swi%ches S
and S, are shown in their "on" position in Fig. A.la.
It cafi easily be recognized that this converter is
actually a boost converter cascaded by a buck converter
whose switches are driven synchronously but with dif-

ferent duty ratios, d1 and dl+d2 respectively.
a) L Lo v
—[erU\_—X/S| 82
VQI l TC ‘[‘Ce R
b} switches ¢} switches
A 4
S Sl oft
p— -
S —- ) S — 1
i P | 2l [on | off
—1idsd,ils -
Ts
Fig. A.1 Switching converter exhibiting multistructural

change: aj
conventen; b)
behavion; c)
behavion.

boost conventen cascaded by a buck
switch dnive fon "three-state"
switch dnive fon "foun-state”

However, if this converter is looked upon as single
system, the switching action of Fig. A.1lb would produce
periodic sequential change among three different struc-
tures (shown in Fig. A.2b,c, and d), while that of Fig.
A.l.c would produce periodic sequential change among all
four different switched networks of Fig. A.2. In any
case, it demonstrates the .feasibility of realization of
a switching converter having three or more switched net-
work configurations, even {n the continuous conduction
mode of operation.

On the other hand if the converter is looked upon
as consisting of cascaded boost and buck converters and
each of them has been modelled separately as a "two-state"

converter as in [2], and their models put together, the
same result would have been obtained.

However, for the discontinuous conduction mode, in
addition to the state-space averaging step (A.8) for
"three-state" converters, other restrictions «1), (2))
are lmposed to reflect the limited behavior of inductor
current (Fig. 2b) with fixed (zero) boundary values.

But in any case, for either continuous conduction
mode [2], or discontinuous conduction mode, the corre-
sponding state-space averaging step is justified on the
basis of the fundamental performance requirement for
switching dc-to-dc converters of small (negligible)
switching ripple, as follows:

switching = natural << switching - fundamental o
ripple small frequencies frequency matrices
linear state-space
approximation ~ averaging step

This, together with proper inclusion of the inductor
current discontinuity as additional comstraints (1), (2),
enable the extremely simple, powerful and accurate scheme
for modelling and analysis of switching converters in
discontinuous conduction mode to be established.
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