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Abstract: A study of 250 commercial drugs to act as corrosion inhibitors on steel has been developed
by applying the quantitative structure-activity relationship (QSAR) paradigm. Hard-soft acid-base
(HSAB) descriptors were used to establish a mathematical model to predict the corrosion inhibition
efficiency (IE%) of several commercial drugs on steel surfaces. These descriptors were calculated
through third-order density-functional tight binding (DFTB) methods. The mathematical modeling
was carried out through autoregressive with exogenous inputs (ARX) framework and tested by
fivefold cross-validation. Another set of drugs was used as an external validation, obtaining SD,
RMSE, and MSE, obtaining 6.76%, 3.89%, 7.03%, and 49.47%, respectively. With a predicted value of
IE% = 87.51%, lidocaine was selected to perform a final comparison with experimental results. By
the first time, this drug obtained a maximum IE%, determined experimentally by electrochemical
impedance spectroscopy measurements at 100 ppm concentration, of about 92.5%, which stands
within limits of 1 SD from the predicted ARX model value. From the qualitative perspective, several
potential trends have emerged from the estimated values. Among them, macrolides, alkaloids from
Rauwolfia species, cephalosporin, and rifamycin antibiotics are expected to exhibit high IE% on steel
surfaces. Additionally, IE% increases as the energy of HOMO decreases. The highest efficiency is
obtained in case of the molecules with the highest ω and ∆N values. The most efficient drugs are
found with pKa ranging from 1.70 to 9.46. The drugs recurrently exhibit aromatic rings, carbonyl,
and hydroxyl groups with the highest IE% values.

Keywords: corrosion inhibition; lidocaine; QSAR; tight binding; ARX model; FROLS algorithm; lidocaine

1. Introduction
1.1. Corrosion Inhibition and QSAR Fundamentals

Amongst the metals, steel is the most used iron alloy for industrial applications [1],
such as oil, food, energy, chemical, and construction industries. Being highly ductile,
durable, and resistant, steel is highly appreciated for its mechanical properties. Furthermore,
the several different alloys obtained at a considerable low-cost increase the variety of
properties exhibited. Unfortunately, corrosion is probably the most common phenomenon
that leads to weakening metals; this originates from the electrochemical interaction of
metallic surfaces with a corrosive environment. Furthermore, the sulfates, oxides, and
other compounds produced from these interactions modify the inherent properties of the
metal surface, leading to undesired behaviors [2].
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From the above, the most common corrosion inhibition strategies are dedicated to
steel [3–5], although copper and aluminum alloys are studied to a lesser extent [6–12].
According to the National Association of Corrosion Engineers (NACE), through its “Inter-
national Measures of Prevention, Application and Economics of Corrosion Technology”
study, the Global cost of the damages produced by corrosion in 2013 was US$2.5 trillion.
This massive amount of resources represented 3.4% of the Global Gross Domestic Product
(GDP) in 2013 [13]. Thus, providing novel solutions to reduce the undesired effects of
corrosion on metals is a global priority.

The most recurrent strategy to reduce the corrosion on metals is to employ corrosion
inhibitors on their surface [3,14–16]. A corrosion inhibitor is a substance that, added in
small amounts to the metal surface, reduces the action of the corrosive media on the metal
by forming a protective film. These organic species could bond strongly to the metal
surface through intermolecular interactions, from the inhibitor molecule to neighboring
metal atoms [2]. Electrostatic interactions, London dispersion forces, and even covalent
bonding could be exhibited. Mostly, these organic compounds contain nitrogen, oxygen,
and sulfur. Moreover, organic molecules rich in π-electrons, associated with either triple,
double, or conjugated bonds and aromatic rings, are recurrently found to act as corrosion
inhibitors [2–5,17].

Several organic compounds acting as corrosion inhibitors have been evaluated in
recent years—for instance, plant extracts [14,17–23] and commercial drugs [3–8,10,24–30].
However, the massive amounts of phytochemicals and drugs that can be tested as corrosion
inhibitors need intelligent strategies for their study [31–33]. In pharmacology, the evalua-
tion and prediction of biological activities and properties for massive amounts of potential
drugs have been assessed for a long time by the quantitative structure-activity/property
relationship (QSAR/QSPR) paradigm [34–37]. QSAR/QSPR proposes predicting a given
activity/property of quantifiable descriptors. These values can be extracted from existing
databases, experiments, theoretical calculations, or simulations. Consequently, data cura-
tion, descriptors selection, and mathematical modeling join the problem proposed by the
QSAR/QSPR approach [38].

Besides, the QSAR/QSPR modeling in the corrosion field is scarce. The ground-
breaking work of Zhang et al. proposes QSAR linear models correlating parameters,
obtained mainly by quantum-chemical calculations, such as polarizability, dipole moment,
frontier orbital energies, and others, to predict the corrosion inhibition efficiency (IE%) of
18 inhibitors on steel, obtaining average deviations of about 9.82%. Another relevant and
quite elegant QSAR linear model is the one reported by Keshavarz and coworkers [39],
given the number of nitrogen atoms, amino groups, and other structural parameters. This
QSAR model accounts for root mean squared deviation (RMSD), mean absolute error, and
maximum errors of about 6.15%, 4.93%, and 12.0%, respectively.

Moreover, recent reports on QSAR/QSPR studies applied to predict IE% of organic
corrosion inhibitors on metal surfaces borrow tools from data science. For instance, Liu
and coworkers used support vector machine (SVM) models with 11 top descriptors to
characterize 20 benzimidazole derivatives [40]. The root mean square error (RMSE) reported
is about 4.45%. On the other hand, Ser et al. reported that the corrosion inhibition efficiency
of pyridines and quinolines on iron surfaces had been evaluated utilizing machine learning-
based QSPR relationships [41]. The authors obtained the mathematical model by genetic
algorithm-artificial neural network methods, leading to linear and nonlinear models, with
RMSE of about 16.5% and 8.8%, respectively. In this case, the models considered up to nine
variables, mainly obtained from DFT calculations.

1.2. QSAR Paradigm and HSAB Descriptors

This work proposes modeling the quantitative structure-activity relationship (QSAR)
paradigm using several empirical and theoretical descriptors to predict organic molecule
corrosion inhibition efficiency. Since these descriptors are almost any quantitative values
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that can be measured by experiments or determined by theoretical calculations, this work
proposes a set of empirical and theoretical descriptors.

The QSAR descriptors determine a drug’s biological activity, looking for specific
behaviors. For instance, as proposed by Hansch and Muir, the log P octanol-water partition
coefficient was correlated with the biological activity 1/C [35]. The log P descriptor is
massively used to study potential drugs since it determines a substance’s concentrations
between a hydrophobic phase and a hydrophilic phase. Other QSAR descriptors commonly
used in drug design are the solubility coefficient log S, pKa, molecular weight, polar surface
area, polarizability, and H-bond acceptor and donor counts [35]. Some common QSAR
descriptors are defined within Pearson’s HSAB [42] theory. These descriptors are based
on the vertical ionization energy (I) and the vertical electron affinity (A). By Koopmans’
theorem, both can be calculated by I = −EHOMO and A = −ELUMO, where EHOMO and
ELUMO are the energies of the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), respectively. According to the HSAB principle, two
species will interact easily if either hard or soft [42]. A molecule’s global hardness (η) can
be calculated by η = (I − A)/2. Other helpful properties are the absolute electronegativity
χ = (I + A)/2 and the global electrophilicity ω = µ2/2η [43]. The first one determines the
“ability” of a given molecule to attract electrons from the environment, whereas the second
is related to the energetic stabilization a species gains by obtaining an additional electron.

Lastly, the fraction of electrons transferred (∆N) is a valuable property to elucidate
the behavior of the organic molecule interacting with the metal surface. This value can be
calculated by ∆N = (χMetal − χInhibitor)/[2(ηMetal + ηInhibitor)], where the electronegativities
and harnesses of the metal species and the corrosion inhibitor molecule are used. Lukovits
and coworkers reported that the higher ∆N value, the higher the corrosion inhibition
efficiency [44]. Additionally, isosurfaces of frontier molecular orbitals and electrostatic
potential arise to describe the active sites and the electrostatic interactions [45].

This work elucidated the contribution to the corrosion inhibition properties in terms
of these HSAB descriptors. In addition, the most common QSAR descriptors listed in the
previous subsection were studied for completeness. Since DFT calculations require massive
computational resources, third-order density-functional tight binding (DFTB) method
with Lennard-Jones (LJ) dispersion-correction was used to obtain the quantum chemical
descriptors. Thus, the method, hereafter labeled as DFTB3-LJ, was used as implemented
in the DFTB+ 21.2 quantum chemistry package [46,47] (more details in Supplementary
Materials).

From all the above, this work aims to obtain a QSAR model to predict common
commercial drugs to act as high-performance corrosion inhibitors. Thus, this work is
divided into four subsections shown as follows. Firstly, the QSAR model is rationalized.
Secondly, we describe how the corrosion inhibition efficiency behaves in terms of the
descriptors chosen. Then, we discuss the characterization of the high-performance corrosion
inhibitors by a quantum-chemical study, and lastly, we provide a theoretical-experimental
evaluation of lidocaine as a corrosion inhibitor on steel.

2. Theoretical and Experimental Methods
2.1. NARMAX System Identification Approach

Nonlinear autoregressive moving averages with exogenous inputs, NARMAX, system
identification methodology [48] is used to build models smartly using historical data from
the inputs, outputs, and other components. Some relevant applications of these techniques
are stock prices [49] and weather [50] prediction, speech recognition [51], pattern classi-
fication [52], and aircraft dynamics [53]. As a model, the autoregressive with exogenous
inputs (ARX) model is more straightforward (and easier to solve) than other more complex
models such as NARMAX. This simplicity is because the ARX model does not require more
detailed information about the system to be identified, such as nonlinear elements, which
is why it is considered convenient for engineering applications where sufficient data in
terms of representativeness is attainable as monitoring or diagnosis [54].
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The NARMAX system identification methodology builds first a dictionary or matrix
D composed of the system descriptors and corresponding observations. At that point,
the forward regression orthogonal least squares (FROLS) algorithm [55,56] and the error
reduction ratio (ERR) estimator [57] process the D matrix to produce an iterative feature
selection that is capable of building a compact but representative model.

The ARX model in the system identification context has been successfully applied
in various areas, such as troubleshooting and diagnostics for cooling dehumidifiers [54],
fault analysis modeling for variable air volume [58], monitoring of buildings’ energy con-
sumption [59], interstitial glucose prediction during human physical activity [60], to predict
the global magnetic disturbance in near-Earth space [61], the variability of the Atlantic
meridional circulation [62], the Artemia population swimming motion [63], Drosophila
photoreceptor responses [64], and EEG signal identification in the neuroscience field [65].

2.2. ARX Theoretical Model

The solution method for obtaining the prediction model presented in this work consists
of two stages. The first one seeks to place the descriptor data for each drug in the form of a
matrix according to the ARX model. In the second part, the descriptors that best explain
the IE% are selected in an iterative process to identify the final model.

2.2.1. Arrangement of Candidate Terms

In the first step, it is required to arrange the commercial drug’s data within rows
and their corresponding chemical descriptors data into columns, aiming to produce an
arrangement analogous to the ARX mathematical model structure, where only linear terms
are included. Hence, the drug’s regression representation remains as follows:

yi = ΣM
j=1 βj xi,j∀ i ∈ N (1)

The previous series can also be expressed as:

yi = β1 xi,1 + β2 xi,2 + . . . + βM xi,M ∀ I ∈ N (2)

where yi is the maximum corrosion inhibition efficiency (IE%) for the ith commercial drug
contained within the database (for i = 1, . . . , N), xi,j is the jth chemical descriptor value for
the ith commercial drug (for j = 1, . . . , M), and β1, . . . , βM is a set of adjusted weights to be
computed once the final model has been identified by the FROLS algorithm.

The goal of generating this series of N equations is to pack them together to produce
an N × 1 vector array on the left side, namely y, and an N ×M matrix arrangement on the
right side, namely X, containing N rows of commercial drugs and M columns of chemical
descriptors. In this stage, each column in X represents a model term that is viewed as
a candidate that can be included (or not) in the final ARX prediction model, as will be
explained in the next section.

2.2.2. FROLS and ERR Algorithms for Model Structure Selection

The second stage of the solution methodology aims to identify a final ARX prediction
model for accurately predicting the corrosion inhibition efficiency. We incorporated the
FROLS algorithm to achieve this end, designed to select a subset of candidate terms that
best explains the corrosion inhibition efficiencies contained in vector y.

In the final model selection, the FROLS algorithm compares each candidate column in
X with the column vector y to incorporate step by step into the model the terms/features
that primarily reduce the error prediction of y. Such a process continues iteratively until
the selected descriptors collectively reach a minimum value for the sum of error reduction
ratio (SERR) [48].

Finally, to complete the system’s mathematical model, it is necessary to obtain the
weights or parameters of the descriptors previously selected by the FROLS algorithm. The
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weights are easy to calculate thanks to the fact that the new model has a linear-in-the-
parameters representation:

y = β Z (3)

where y is the response vector, Z is the matrix of selected descriptors, and β is the vector of
weights obtained from the model. Thus, to compute the vector of linear weights, we only
need to clear the vector β as follows:

β = y Z−1 (4)

2.2.3. Cross-Validation

Cross-validation is a standard procedure when the dataset on hand has too few
observations for data splitting. In the case of the current study, fivefold cross-validation was
employed to seek a reliable model creation; hereafter, such a method is described [66,67].
Firstly, a database of 250 chemical compounds is elaborated as described in Section 3.
Secondly, all compounds containing an experimental value of IE% are promoted to the
training/validation set. The remaining compounds, those with no available experimental
IE%, are set aside. Then, for each ARX/FROLS simulation run, the training/validation set
is further randomly divided into five groups. In the first iteration, the first group is treated
as a validation subset, and the remaining four groups are designated as the training subset,
over which the ARX model and FROLS algorithm are run. The mean squared error (MSE)
is computed on the first validation set. This procedure is repeated five times; each time,
a different group of observations is treated as a validation subset. This process results in
5 different linear models with five distinct MSE estimates of the test error. The model with
the lowest MSE value is promoted to predict the IE% of the remaining compounds.

Other metrics were employed to analyze the model’s performance: Mean absolute
percentage error (MAPE), standard deviation (SD), mean square error, and root mean
square error (RMSE). These metrics, discussed throughout the manuscript, are defined
now: MAPE = (1/n) Σn

i=1|(yi − ŷi)/yi| × 100%, SD = [(1/n − 1)Σn
i=1 (ŷ − yi)2]1/2,

MSE = (1/n) Σn
i=1 (yi − ŷi)2, and RMSE = [(1/n) Σn

i=1 (yi − ŷi)2]1/2. Where yi is the exper-
imental value of IE% for compound i, ŷi is the estimated value of IE% for compound i
provided by the model, and y is the average IE% within a sample of compounds of size n.

2.3. Experimental Details
2.3.1. Solution Preparation

Different concentrations of the lidocaine compound (Figure 1) were prepared and
obtained in an injectable solution from “Farmacias del Ahorro” pharmacy. The initial
solution concentration was 0.01 M, dissolved in ethanol, to make later solutions of 0, 10, 20,
50, and 100 parts per million (ppm). The corrosive solution is NaCl 3% (100 mL).
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Figure 1. Lidocaine molecule experimentally used to validate the ARX model.

2.3.2. Electrochemical Evaluation

The standard three-electrode system was used for the electrochemical evaluation at
room temperature. The API 5L X70 sample was the working electrode, a saturated Ag/AgCl
electrode was the reference electrode, and a graphite bar was the counter electrode. The
test sequence was performed on a piece of Gill-AC equipment as follows: (a) Open circuit
potential (OCP) was measured for 1800 s; (b) Electrochemical impedance spectroscopy (EIS)
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was employed using 10−2–104 Hz with an amplitude of ±10 mV. The exposure area of
experimentally used samples was 0.78 cm2. The electrochemical tests were performed in
triplicate.

After the EIS measurements, potentiodynamic polarization curves of the inhibitor at
different concentrations were performed, measured from −300 mV to 300 mV in relation to
the open circuit potential (OCP), with the speed of 60 mV/min using the ACM Analysis
software for data interpretation.

2.3.3. Characterization by Atomic Force Microscopy (AFM)

The morphology of the steel sample surface after immersion in the corrosive media,
in the presence and absence of the Lidocaine inhibitor, was characterized by atomic force
microscopy (AFM) using digital instruments scanning probe microscope with a nanoscope
IIIa controller. The AFM was operated in tapping mode using an etched silicon cantilever
with a length of 125 µm, with a nominal tip radius of approximately 10 nm.

3. Results and Discussion

In order to predict the corrosion inhibition efficiency of drugs on steel surfaces, a
database with 250 commercial drugs containing common QSAR descriptors and those
formulated within Pearson’s HSAB theory was used to obtain a linear mathematical model
by an ARX analysis. The ARX methodology was also used to exclude the variables that do
not contribute to the prediction of IE%. In addition, a more sophisticated method for data
analysis, IBM’s Watson artificial intelligence [68], will be implemented to compare it with
the ARX model and ensure the proper performance of the linear function. Thus, this work is
divided into four subsections. Firstly, the model’s determination is discussed and compared
briefly with the privative AI model. Secondly, the main tendencies exhibited by the linear
model are discussed. Then, species predicted as highly efficient corrosion inhibitors are
studied and, for extension, correlated with their families. Lastly, the prediction of IE% for
lidocaine was compared with its experimental counterpart.

3.1. Model Determination

This section explains how an ARX model was estimated to predict the iron corrosion
inhibition of different compounds through a system identification methodology based
on the FROLS algorithm. First, we narrate the data processing of the stated problem
into a linear input-output system, followed by a term selection process to reach the final
prediction model.

3.1.1. Data Processing into an ARX Linear System

As stated, system identification aims to find a model that reveals the distinctive
elements of a system by processing the history of its interactions with the environment.
Here, we took the system to be identified as the corrosion inhibition efficiency on steel,
IE%, explained by ten candidate quantum chemical descriptors. We studied the previous
interaction through instances collected from 42 commercial chemical substances. The
input-output model determination problem implies a suitable selection of the variables
(descriptors) present in the following simple ARX linear model:

y = β1 x1 + β2 x2 + β3 x3 + β4 x4 + β5 x5 + β6 x6 + β7 x7 + β8 x8 + β9 x9 + β10 x10 (5)

where y is an output term plus ten input terms composed of candidate descriptors, as
labeled in Table 1, and a corresponding parameter value or weight βi. The list of the
ten candidate descriptors and their corresponding index number is listed in Table 1. Each
drug’s molecular weight (MW) was considered a size-dependent parameter. Additionally,
the negative base-10 logarithm of the acid dissociation constant of a solution, pKa =−logKa,
was included to determine the strength of an acid in the solution. Additionally, the octanol-
water partition coefficient, log P, is a descriptor associated with the concentration of a
given substance in the aqueous phase of a two-phase octanol-water mix. Similarly, the
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log S descriptor is directly related to the water solubility of a substance employing a base-
10 logarithm. Besides, the polar surface area (PSA) is the molecular surface associated
with heteroatoms and polar hydrogen atoms, giving a quantitative amount related to
charge accumulation. In addition, polarizability, α, denotes the tendency of a particular
molecule to acquire an electric dipole moment in the presence of an external electric field.
As described previously, energies of HOMO and LUMO orbitals can be related, through
Koopman’s theorem, to ionization energy and the electron affinity of a given molecular
species, respectively. In addition, electrophilicity, ω, relates to the change in energy of an
electrophile when it comes in contact with a perfect nucleophile, being a measure of the
tendency to react between electrophile and nucleophile species. Finally, the fraction of
electrons shared, ∆N, was selected since it relates to the amount of charge transferred from
one species to another (Table 1).

Table 1. List of variables included, in the database, used to obtain the QSAR model, symbols, units,
and references of their use in QSAR studies for corrosion inhibition. Additionally, parameters and
ERR were obtained by the FROLS algorithm after processing the model of Equation (5) for the final
model.

xi Descriptor Symbol Units Reference Parameter ERR
(%)

x1 Molecular weight MW Da [69,70] - -
x2 Acid dissociation constant pKa - - 0.5287 0.0600
x3 Octanol-water partition coefficient log P - [71,72] - -
x4 Water solubility log S - - - -
x5 Polar surface area PSA Å2 [38,71,72] - -
x6 Polarizability α Å3 [72] - -
x7 Energy of HOMO EHOMO eV [38,69,71,72] 812.1748 97.8259
x8 Energy of LUMO ELUMO eV [38,69,71,72] 823.4630 0.1034
x9 Electrophilicity ω eV [44,72] 6579.0080 0.0688
x10 The fraction of electrons shared ∆N - [44,70,72] 33.1669 1.3933

Sum of ERR 99.4514

Unlike nonlinear models with second or third-order expansions, linear regression
models are simpler to solve as they have precisely the same number of variables and model
terms. A final critical point in data processing is the determination of the partition of the
samples in testing and training data sets. Here, we divided data at random, where 80% of
the data was used for training and 20% for validation.

3.1.2. Term Selection through FROLS and ERR

In the term selection stage, we consider the linear model in Equation (5) and the
training set as entry points to the FROLS algorithm, which can easily detect the most
relevant terms in first-order expansions [48]. At the first step, the ERR values of each
candidate m included in the D dictionary, where D = {p1, p2, . . . , pM}, are determined:

ERRm = (yTpm/pT
mpm)2(pT

mpm)/yTy (6)

The ERR value helps determine the final subset of the model’s terms because these
indicate each one’s contribution to the prediction error reduction. The first term selected
from the D dictionary is always the one with the highest ERR. The descriptor with the
highest ERR was x7, with an ERR of 97.82% in our testing.

The selection process takes only the remaining unselected terms from dictionary D
and introduces orthogonal transformations via the Gram–Schmidt algorithm from step
two onwards. The orthogonalization process prevents the following candidates from being
included from containing information already provided by the descriptors already selected,
thus each new term contributes independently to the model’s accuracy. Finally, the selection
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procedure ends when the error-to-signal ratio (ESR) decreases below a predetermined
threshold, where:

ESR = 1 − ΣMo
i=1 ERRi ≤ ρ (7)

where ρ is a very small value, for instance, in this work, ρ = 0.005 and M0 is the number of
unselected candidate variables. The terms included in the final model and the ERR values
for each can be consulted in Table 1.

The final calculation involved the estimation of the parameters β, as it is shown in
Section 2.2.1, thus the final ARX model, derived from the initial linear formulation in (5),
can be stated as follows:

ŷ = 812.1748 x7 + 33.1669 x10 + 823.4630 x8 + 6579.0080 x9 + 0.5287 x2 (8)

Consequently, the linear ARX model obtained accurate and precise results compared
to the testing set, as evidenced by the computed mean absolute percentage error and
standard deviation. The testing set included aspirin, cephapirin, ascorbic acid, imidazole,
trimethoprim, clindamycin, phenobarbital, and doxycycline data, obtaining MAPE, SD,
RMSE, and MSE of about 5.18, 2.51, 4.87, and 23.80%, respectively.

In addition, another set of drugs was collected to verify the generalization power of
the ARX model. Additional data for streptomycin [73], fexofenadine [74], quinoline [75]
N, N-dimethylformamide [76], and mycophenolic acid [25] was used to compute the
MAPE, SD, RMSE, and MSE, obtaining 6.76%, 3.89%, 7.03%, and 49.47%, respectively.
These values are fully comparable to those obtained with the testing set, pointing to a
correct prediction of IE% values for drugs relatively different from those in the original
database. IBM’s Watson artificial intelligence platform was also used to obtain a private
and highly hyperparametrized model. In this case, the five variables (pKa, EHOMO, ELUMO,
ω, and ∆N) in the ARX model were included in the AutoAI Watson’s routine to fit the
experimental IE% values [77]. Additionally, 80% of the data was used for the training
set and the remaining 20% for validation. Finally, four different experiments, pipelines,
were done by the extra trees regressor algorithm. The model obtained improved the
external comparison only to 5.44%, 2.91%, 5.35%, 28.59% for MAPE, SD, RMSE, and MSE,
respectively. Thus, the ARX model (obtained through FROLS), a linear function that
depends only on five descriptors, obtained results close to a highly hyperparametrized,
non-portable, and nonlinear alternative.

Other QSAR models have been proposed recently. Thus, it is pertinent to compare
our linear ARX model with those found in the literature regarding standard evaluation
metrics. For instance, Quadri and coworkers reported several multiple linear regression
and artificial neural network (ANN) models adjusted to twenty pyridazine derivatives.
The best ANN model yielded a lower MAPE value, of about 10.2362%, whereas the RMSE
and MSE achieved were 10.5637 and 111.5910%, respectively [78]. In comparison, Li and
colleagues obtained a QSAR model by a support vector machine approach to predict the
performance of benzimidazole derivatives. In this case, the nonlinear model achieved an
RMSE of about 6.79% [79]. More recently, they updated the model, improving the RMSE
up to 4.45% [40]. In addition, Al-Fakih and coworkers reported QSAR models for furan
derivatives, obtained with sparse multiple linear regression using ridge penalty and sparse
multiple linear regression using an elastic net, achieving MSE of about 7.75 and 2.34%,
respectively [80]. The ARX approach obtained similar metrics compared to those obtained
with alternative methods, as reported by other authors.

A brief discussion is included below to identify the extent and perspectives of the ARX
linear model. In principle, corrosion inhibition is a multifactorial phenomenon since drug
solubility, pH, temperature, concentration, corrosive medium, dynamic conditions, the
employed alloy, and even experimental technique used to determine IE% could influence
the results [2]. Thus, it is possible to assume that a 5-parameters model such as that
introduced above is not enough to catch the variety of conditions experimentally used.
However, to the best of our knowledge, these experimental variables are not recurrently
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considered, possibly by the scare IE% values measured with the same experimental design,
hindering the formulation of mathematical models. Nevertheless, work conditions are
naturally occurring variables that should be considered for robust predictive models.

Finally, although linear models to predict IE% are the most common approach [78],
nonlinear formulations can also be suitable. A nonlinear version of ARX comes to be the
NARMAX model in the current case. According to Gu et al., nonlinear models performed
better than linear ones in a study about cortical responses. Nevertheless, the linear terms
had larger weights than those in the resulting NARMAX models [81]. In addition, NAR-
MAX approaches are known to identify mathematical models for nonlinear systems, which
prevail in nature. This is the case of the solar wind coupling analysis reported by Boynton
and coworkers [82] or the peak air pollution levels forecasted by Pisoni et al. [83]. Thus,
it is expected that a NARMAX approach to the corrosion inhibition problem may well
determine whether the phenomenon is nonlinear in terms of the proposed descriptors.
However, as suggested by Boynton, a high number of possible monomials resulting from
the polynomial expansion can be a challenging situation. The above stems from the need
for a final parsimonious NARMAX model with fewer monomials selected out of a vast
majority with no or minimal influence on the phenomenon. In principle, such as in the
ARX approach used here, the FROLS algorithm could lead to a small set of monomials
within the selected allowable model order [84].

3.2. Main Tendencies

This subsection aims to elucidate the main tendencies exhibited by the predictions,
carried out on 250 commercial drugs by the ARX model detailed previously, of the cor-
rosion inhibition efficiency IE%. Thus, five variables contained in the ARX mathematical
model (EHOMO, ELUMO, ∆N, ω, and pKa) and molecular weight were used to illustrate the
predicted IE% values. In addition, five drugs were excluded from the following analyses
due to their unrealistic IE% values predicted above 100%. These species are sulfadiazine
(106.31%), methacycline (111.72%), glycine (124.03%), ethosuximide (158.88%), and hexeti-
dine (259.25%).

First of all, Figure 2 shows that corrosion inhibition efficiency IE% increases as the
energy of HOMO decreases. Consequently, by Koopman’s theorem, the most efficient drug
molecules to act as corrosion inhibitors are those with the lowest ionization potential. The
above can be rationalized by the necessity of the metal surface atoms to fill their vacant
d-orbitals with electrons, coming from the corrosion inhibition molecule in the current case.
Consequently, the easier it is to remove valence electrons from the organic molecule, the
higher corrosion inhibition performance exhibited.

On the other hand, ELUMO splits the IE% values into two sets (Figure 2). The first
set of drugs, with ELUMO values below 2.0 eV, shows a tendency similar to that exhibited
by EHOMO since the most efficient corrosion inhibitors are those with the most negative
ELUMO values and consequently the highest electron affinities. Thus, it is expected that
high-performance corrosion inhibitor molecules can catch electrons from the environment
and donate them, leading to shared electrons as in covalent interactions. However, the
other set of molecules with moderate performance, with ELUMO values above 4.5 eV, offers
another route to produce the corrosion inhibition effect (Figure 3). Since up to 14 species are
obtained with low and even positive ELUMO values and intermediate EHOMO energies, rang-
ing from−6.5 to−5.0 eV, they are expected to donate charge to the metal surface and handle
mostly electrostatic interactions with it. These intermediate efficiency corrosion inhibitors
are, in order of increasing IE%, the following ones: cyclopentamine (84.92%), methenamine
(85.56%), triethylamine (86.74%), gentamicin (87.12%), mecamylamine (88.32%), kanamycin
(88.66%), diethylamine (90.00%), diethanolamine (90.75%), ethambutol (91.46%), amanta-
dine (92.43%), ethanolamine (92.57%), tromethamine (92.59%), tuaminoheptane (92.99%),
and ethylamine (94.12%).
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In the case of IE% as a function of the electrophilicity and the fraction of electrons
shared, the efficiency shows two sets of compounds. The highest IE% values are obtained in
the molecules with the highest ω and ∆N values (see Figure 3). The above can be related to
the previous assumptions about how the electrons behave between the corrosion inhibitor
molecule and the metal surface. Thus, a highly effective corrosion inhibitor molecule is
expected to donate a considerable number of electrons to the metal surface, as denoted by
the ∆N values calculated for the specific case of an iron surface. Additionally, according to
the ARX model, a highly efficient corrosion inhibitor molecule is expected to behave as an
electrophile with high power to attract electrons to itself. Besides, the other set of molecules
is composed precisely of those drugs named above. Drugs with intermediate performance,
with IE% efficiency ranging from 84.92% to 94.12%, cannot donate large amounts of charge
to the metal surface and neither to attract it. Thus, the fourteen species with moderate
performance are expected to interact by electrostatic interactions.
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Lastly, the heat map obtained for IE% as a function of the molecular weight and pKa
shows more smoothly dispersed values without the two sets obtained previously (see
Figure 4). It is noticeable that the highest efficiency is obtained for species with molecular
weight ranging from 415 to 823 Da. Additionally, all the high-performance molecules are
predicted for those species with positive pKa, ranging from 5 to 10. Thus, weak acids are
expected to behave as potential corrosion inhibitors, whereas strong acids are not helpful
for this application. Although light molecules are not particularly prominent by their
corrosion inhibition efficiencies, values above 90% are easily reached. In the case of these
light species, with a molecular weight below 400 Da, the IE% increases as the pKa increases.
Since the commercial drugs must exhibit high corrosion inhibition efficiencies, above 90%
according to international standards for industrial applications, the following subsection
aims to deep into the species predicted by the ARX models as highly efficient corrosion
inhibitors.
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3.3. High-Efficiency Corrosion Inhibitors

In order to produce reliable predictions for highly efficient commercial drugs to act
as corrosion inhibitors, species with IE% estimated above 95% are studied as follows.
The value 95% was chosen to take into account MAPE and SD values computed for the
mathematical model of about 5.18% and 2.51%, respectively. This way, it is expected that
efficiencies measured under experimental conditions must fall into the regime required for
industrial applications, with inhibition efficiencies above 90%. The drugs fulfilling these
conditions, shown in Table 2, are minocycline (97.58%), deserpidine (95.29%), daunoru-
bicin (96.67%), dipyridamole (97.28%), doxorubicin (97.40%), amphotericin B (97.55%),
acepromazine (97.73%), cephaloridine (98.57%), mercaptopurine (98.66%), and rifampicin
(98.71%).

Being weak acids, the most efficient drugs are found with pKa ranging from 1.70 to 9.46.
Moreover, EHOMO values are found in a tight range, from −5.87 to −4.34 eV. Conversely,
ELUMO values are exhibited in a broader range, from −4.01 to −1.83 eV. Electrophilicity
ranges from 0.77 to 1.23 eV, whereas ∆N ranges from 1.12 to 1.55. Thus, all the above is
consistent with previous observations about general tendencies. There are no significant
similarities among all the high-efficient species; however, some functional groups are re-
currently exhibited by these species. In addition, invoking the similarity principle, drugs
belonging to the same family are suitable to be presumed as corrosion inhibitors with
efficiencies comparable to those obtained for the species shown in Table 2. For instance,
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minocycline is a tetracycline antibiotic, with multiple dimethylamino, hydroxyl, and car-
bonyl groups, obtained as a highly efficient corrosion inhibitor, with an IE% predicted
value of 97.58% (Table 2). Other tetracycline antibiotics are presumed to be obtained as
suitable corrosion inhibitors. Doxycycline and oxytetracycline are predicted as efficient CIs,
with 91.89% and 93.95% IE% values, respectively.

Table 2. Descriptor values, common use, and structure of drugs predicted as corrosion inhibitors
with efficiency above 95%.

Drug pKa EHOMO ELUMO ω ∆N IE% Common Use 2D Structure

Deserpidine 6.68 −4.92 −2.42 0.92 1.33 95.29 Antihypertensive and
antipsychotic
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Deserpidine is an example of an ester alkaloid drug, exhibiting multiple methoxyl and
carbonyl groups, used for their antihypertensive and antipsychotic properties. Although
alkaloids predicted to act as corrosion inhibitors cover a wide range of structural motifs,
the most prominent by their structural similarity to deserpidine and predicted IE% value
of about 94.55% is reserpine, another alkaloid that can be obtained from Rauwolfia species
(Table 2). By extension, yohimbine is another alkaloid presumed to act as a suitable corro-
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sion inhibitor. Finally, daunorubicin and doxorubicin are two examples of anthracycline
class drugs for cancer treatments [85], with predicted IE% values of about 96.67% and
97.40%. Similar to the previous cases, these species exhibit several hydroxyl and carbonyl
groups, presumed to be covalent-polar and dative bonds with iron surface atoms, respec-
tively [86,87]. Additionally, multiple π-electrons coming from their aromatic rings can be
donated to the iron surface.

Furthermore, amphotericin B is another drug that is predicted to act as a highly
efficient corrosion inhibitor, with IE% estimated as 97.55%. This drug belongs to macrolides
and the same class of antibiotics, including erythromycin, roxithromycin, azithromycin,
and clarithromycin. In particular, Amphotericin B does not contain several aromatic rings,
such as those exhibited by the species previously discussed. Thus, this drug, exhibiting
eleven hydroxyl groups and two carbonyl ones, is expected to interact mainly with the
metal surface by their functional groups. Erythromycin is another macrolide expected to
work as a suitable corrosion inhibitor, with IE% estimated as 90.11% (Table 2) according to
NRF-005-2009. This decrement in the corrosion inhibition efficiency can be rationalized by
the few functional groups in erythromycin capable of interacting with the metal surface
compared to amphotericin B.

On the other hand, acepromazine heads the phenothiazine family of antipsychotics,
accounting for an estimated corrosion inhibition efficiency of about 97.73%. This molecule’s
interactions can be explained by the π electrons available in its aromatic rings in addi-
tion to a carbonyl group. Other members of the phenothiazine family, promazine and
levomepromazine, lack that carbonyl group. These drugs achieve lower corrosion inhi-
bition efficiencies of 91.19 and 91.81% (Table 2). Another relevant drug is cefaloridine,
being part of the cephalosporin class, a large group of antibiotics derived from the fungus
acremonium. Aromatic rings and carbonyl groups are the most relevant structural motifs
constituting cefaloridine. However, several cephalosporin drugs were also studied but
achieved lower efficiencies. These drugs are cephapirin (85.72%), cephalexin (85.87%),
cephalothin (86.06%), cefazolin (86.24%), and cephradine (86.68%). In this case, it is unclear
why cefaloridine is so efficient since all cephalosporin exhibits similar functional groups.
Thus, it is necessary to deepen the corrosion inhibition effect of cefaloridine and other
cephalosporin drugs. According to these measurements, cephapirin (82.5%) and cephalexin
(76.9%) achieve lower corrosion inhibition efficiencies in comparison with the predicted
values, whereas cephalothin (92.0%), cefazolin (93.9%), and cephradine (95%) are closer to
the value predicted for cephaloridine of about 98.57% (see Supplementary Materials). It is
plausible that the ARX model does not well describe the cephalosporin family.

Dipyridamole and mercaptopurine are two drugs without relatives in the current
study. With high corrosion inhibition efficiencies of about 97.28 and 98.66%, respectively,
dipyridamole and mercaptopurine are presumed to strongly interact by their double bonds
and polar functional groups. Finally, rifampicin is part of the rifamycins class, a group of
antibiotics, with IE% estimated as 98.71% (Table 2). Interestingly, rifampicin is the only of
these highly efficient corrosion inhibitor molecules, with an experimental measure of its IE%
of about 94.7% (see Supplementary Materials). Furthermore, this species exhibits several
functional groups, such as carbonyl and hydroxyl groups and heteroatoms and π-electrons,
thus suggesting that rifampicin could interact with the metal surface by covalent, dative
bonds, or electrostatic interactions. Thus, the whole rifamycin family could be evaluated as
corrosion inhibitors.

The above discussion points out the highly efficient corrosion inhibition properties
expected for ten commercial drugs, with IE% values ranging from 95.29 to 98.71% (Table 2).
In comparison, other drugs experimentally evaluated exhibited similar or lower corrosion
inhibition efficiencies. For instance, losartan, a drug commonly used for hypertension
treatment, obtained a maximum IE%, by EIS technique, of only 92.0% [88]. Additionally,
salbutamol, a commonly used treatment for asthma, was obtained with a maximum IE%,
determined by EIS measurement, of about 84% [89]. Similarly, Anadebe and coworkers
collected the maximum IE% achieved by several recently reported commercial drugs,
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ranging from 80% to 95% [89]. Drugs applied to carbon steel were tobramycin (80%) [90],
metformin (90%) [91], metolazone (92%) [92], and nifedipine (94%) [93]. Additionally,
species applied on mild steel surfaces were: dexamethasone (83%) [94], rosuvastatin
(90%) [95], ambroxol (94%) [96], and dapsone (95%) [97]. Additionally, Abeng, et al.
reported the IE% on carbon steel achieved by moxifloxacin (88.2%), nifedipine (89.6%),
metolazone (92.8%), and levofloxacin (94.1%) [98]. Even more, the recently evaluated
drugs, mycophenolic acid [25] and fluconazole [24], obtained moderate efficiencies of
about 90%. Clearly, all these recently studied drugs obtained values below the threshold
assumed in this work. However, other drugs were comparable to those expected for the
molecules analyzed in this subsection. This is the case of pyrazinamide, isoniazid, and
rifampicin, which achieved maximum IE% values of about 95.86%, 97.89%, and 97.06%,
respectively [99]. Thus, the predictions and tendencies discussed could be the object of
study and further confirmation.

3.4. Experimental Verification

(a) Open circuit potential (OCP)

The variations of the OCP without and with the corrosion inhibitor lidocaine reached
a steady state at 600 s (Figure 5). It is evident that when a corrosion inhibitor is present, the
potential considerably decreases, indicating a drop in the corrosion process.
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(b) Concentration effect of lidocaine by EIS

The equivalent electric circuits employed to fit the experimental data of the Nyquist
diagrams are shown in Figure 6. A Randles circuit in the case of the sample of Figure 6a
was used without inhibitor (Blank). A parallel circuit with two constant phase elements
(Figure 6b) for the samples with inhibitor.
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Where Rs is the solution resistance, Rct is the charge transfer resistance, CPEinh is the
constant phase element of the inhibitor, and CPERct is the constant phase element associated
with the double layer. The inhibitor efficiency IE% was calculated by the equation [100]:

IE% = 100 [(Rp blank
−1 − Rp inh

−1)/Rp blank
−1)] (9)

where Rp blank
−1 is the polarization resistance of blank and Rp in

−1 is the polarization
resistance of sample with inhibitor.

The polarization resistance (Rp) was calculated with:

Rp = Rct + RF (10)

where Rct is charge transference resistance and RF film resistance, in Ω cm2.
The electrochemical double-layer capacitance (Cdl) was calculated through the next

equation [101]:
Cdl = Y0

1/n (Rs
−1 + Rct

−1) (n − 1)/n (11)

where Y0 is the constant phase element, Rs is the solution resistance (Ω cm2), and Rct is the
charge transfer resistance (Ω cm2).

For the description of a frequency-independent phase shift between an applied AC
potential and its current response, a constant phase element (CPE) is used, defined in the
impedance representation as:

ZCPE = Y0
−1(jω)−n (12)

where Y0 is the CPE constant, n is the CPE exponent that can be used as a gauge of the
heterogeneity or roughness of the surface, j = −1 is an imaginary number, and ω is the
angular frequency in rad s−1. Depending on n, CPE can represent a resistance (ZCPE = R,
n = 0), a capacitance (ZCPE = C, n = 1), and a Warburg impedance (ZCPE = W, n = 0.5), or
inductance (ZCPE = L, n = −1). The correct equation to convert Y0 into CF is given by [102]

CF = Y0 (ω′)n−1 (13)

where CF is the film capacitance (µF/cm2) andω′ is the angular frequency at which Zreal is
maximum.

Figure 7a shows the Nyquist diagram of API 5L X52, called “blank”. A semicircle that
is not entirely close was observed, attributed to charge transfer resistance.
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Figure 7. Nyquist plots (a) without inhibitor and (b) different concentrations of lidocaine in API 5L
X70 immersed in NaCl 3%.

On the other hand, the Nyquist diagram in Figure 7b in all concentrations showed
two processes: one attributed to inhibitor film and the charge transfer resistance [103].

Table 3 shows the electrochemical parameters obtained after fitting with the equivalent
electric circuits of Figure 6. At 100 ppm, the highest value of Rct was reached (1522 Ω cm2).
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This behavior could be attributed to the high adsorption process of the organic compound
on the metallic surface. On the other hand, the Cdl and CF values decreased because the
surface is protected by the inhibitor at the metal/solution interface [104].

Table 3. Electrochemical parameters at different concentrations of lidocaine in API 5L X70 immersed
in NaCl 3%.

C
(ppm)

Rs
(Ω cm2) n Cdl

(µF/cm2)
Rct

(Ω cm2)
CF

(µF/cm2) n2 Rmol
(Ω cm2)

Rtotal
(Ω cm2)

IE%
(%)

0 6 0.800 2960 127 - - - - -
10 8.24 0.80 181.3 102.00 4034.0 0.8 28.70 130.70 3.2
20 10.53 0.77 187.5 404.10 622.2 0.52 337.90 742.00 83.0
50 24.66 0.85 90.3 1493.00 40.7 0.49 151.70 1644.70 92.3

100 24.29 0.84 51.9 1522.00 26.0 0.48 157.00 1679.00 92.5

(c) Polarization curves

The polarization curves of the API 5L X70 steel, immerse in 3% NaCl with and without
lidocaine, are shown in Figure 8. The polarization parameters are enlisted in Table 4:
corrosion potential (Ecorr), current density (icorr), tafel slopes (ba and bc), and the inhibition
efficiency (IE%) was determined by:

IE% = [1 − icorr/icorr blank] × 100 (14)

where icorr and icorr blank are the current density with and without inhibitor.
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Table 4. Polarization parameters for lidocaine in API 5L X70 immersed in NaCl 3%.

C
(ppm)

Ecorr
(mV) vs.

Ag/AgCl sat

icorr
(µA/cm2)

ba
(mV/dec)

−bc
(mV/dec)

IE%
(%)

0 −804.7 67.4 159.5 173 -
10 −909.7 65.0 146.6 161.5 3.4
20 −709.6 4.9 104.5 204.1 92.6
50 −907.7 7.4 170.5 60.3 89.0
100 −916.5 8.2 187.8 68.2 87.4

Figure 8 shows that the curve shifts to the left due to the corrosion current density
decreasing when the concentration increases due to the adsorption of the inhibitor.

The electrochemical parameters by this technique show that the corrosion current
density (icorr) value decreased in the presence of the lidocaine inhibitor, being attributed to
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the protected metal surface (Table 4). This phenomenon implies that the inhibitor might
suppress the anodic reaction of the metal dissolution and the detachment of cathodic
hydrogen [105], while the inhibition efficiency by this technique shows similar results to
the other technique (EIS), and the best concentration was 20 ppm with 92.6% to protect the
metal surface. Finally, according to corrosion potential (Ecorr), at a concentration of 20 ppm,
the lidocaine behaved as an anodic inhibitor, while at 10, 50, and 100 ppm, the behavior
was cathodic.

(d) Adsorption process

The corrosion inhibition displaces the water molecules and replaces them with the
inhibitor molecules on the metal surface.

Nevertheless, the superficial coverage (θ) for the different lidocaine concentrations as
corrosion inhibitors in this system was evaluated by EIS using IE%:

θ = (1/100) IE% (15)

Using the Langmuir isotherm, a good fit is obtained, and according to the value of the
free energy of adsorption of Gibbs (Equation (17)), the combined process continues [106].

C/θ = kads
−1 + C (16)

∆G0
ads = − 55.5 RT ln kads (17)

where C is the concentration, θ is the coating coverage, kads is the adsorption constant, R is the
ideal gas constant, and T is the temperature. In some reports, the ∆G0

ads will indicate which
adsorption mechanism follows the organic compound; if it is lower than −20 kJ/mol, it can
be considered a physisorption process. If it is higher than−40 kJ/mol (∆G0

ads >−40 kJ/mol),
then it is a chemisorption process, but if it is in the middle of −20 kJ/mol and −40 kJ/mol,
the type of process that is taking place is called “combined”.

Figure 9 shows a good fit, having a correlation coefficient (R2) of 0.9996. The equation
obtained is C/θ = 1.0534 C + 8 × 10−6, obtaining a ∆G0

ads = −38.39 kJ/mol due to a
combined type process.
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Figure 9. Langmuir isotherm at different concentrations of lidocaine in API 5L X70 steel immersed in
NaCl 3%.

(e) AFM analysis

Figure 10 shows AFM images recorded on the surfaces of steel samples, and Table 5
shows the roughness values; both Ra (the mean roughness or arithmetic average of the
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absolute values of the roughness profile ordinates) and Rq (root mean square roughness or
the root mean square average of the roughness profile ordinates) are reported.
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Figure 10. AFM images (2D and 3D formats) were recorded on the surface of API 5L X70 steel samples
after 24 h immersion in NaCl 3%: (a) in the absence and (b) in the presence of 50 ppm lidocaine. The
image in (c) corresponds to the as-polished steel sample not immersed in the corrosive media.

Table 5. Roughness values calculated from the AFM images shown in Figure 10.

AFM
image

Ra
(nm)

Rq
(nm)

a 142 181
b 30.5 45
c 3.4 4.3

After exposure to the corrosive media for 24 h in the absence (Figure 10a) and in the
presence of 50 ppm of lidocaine (Figure 10b), it can be noted that the roughness values
of the steel sample that was not protected with lidocaine are notorious compared with
that of the sample that was protected with lidocaine or that which was not exposed to the
corrosive media, Figure 10c, such notable rugosity is due to the different corrosion products
formed in each case.

4. Conclusions

A QSAR relationship constructed through a linear ARX model was used to predict
the corrosion inhibition efficiency of 250 commercial drugs on steel. The ARX treatment
found the five most important descriptors to predict IE%, reducing by half the number of
variables used in the linear model. These variables, obtained mostly from quantum chemical
calculations of gas-phase molecules at the DFTB3-LJ level, are the pKa, electrophilicity,
HOMO and LUMO energies, and the fraction of electrons transferred to bulk iron.
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The ARX model obtained a MAPE and SD of about 5.18 and 2.51%, respectively,
compared to the testing set. Another five drugs not included in the original database
were used as an external validation set for which the computed MAPE and SD were
approximately 6.76% and 3.89%, respectively, thus confirming the previous predictions. In
addition, a fivefold model, obtained by IBM’s Watson AI extra trees regressor algorithm,
was used to compare it with the ARX one. In this case, IBM’s Watson model improved the
external comparison only to 5.44% and 2.91% for MAPE and SD, respectively. Thus, the
linear ARX model is competitive compared to highly hyperparametrized and privative
alternatives.

Overall, there are several tendencies of IE% as a function of the selected variables. For
instance, IE% increases as the energy of HOMO decreases. Additionally, the highest IE%
values are obtained in the case of the molecules with the highest ω and ∆N values. The most
efficient drugs are found with pKa ranging from 1.70 to 9.46. The drugs recurrently exhibit
aromatic rings, carbonyl, and hydroxyl groups with the highest IE% values. Ten drugs are
predicted with IE% above 95%—those are: minocycline (97.58%), deserpidine (95.29%),
daunorubicin (96.67%), dipyridamole (97.28%), doxorubicin (97.40%), amphotericin B
(97.55%), acepromazine (97.73%), cephaloridine (98.57%), mercaptopurine (98.66%), and
rifampicin (98.71%). Alkaloids from Rauwolfia species, macrolides, cephalosporin, and
rifamycin antibiotics are expected to exhibit high IE% on steel surfaces.

Lastly, lidocaine was predicted and experimentally tested for the first time. At 100 ppm
concentration, the lidocaine showed IE% of about 92.5% using electrochemical impedance
spectroscopy and 87.4% by polarization curves; in comparison, the ARX model predicted
87.51%. The thermodynamic analysis showed that the lidocaine follows a mixed adsorption
process in the API 5L X70 surface. This linear model proposed to deepen the use of
commercial and reused drugs to act as corrosion inhibitors on steel.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms23095086/s1.

Author Contributions: Conceptualization, A.E.-V., C.B.-P., A.A.A.S. and A.M.; methodology, A.E.-V.,
C.B.-P., A.A.A.S. and A.M.; software, C.B.-P. and A.M.; validation, A.E.-V., C.B.-P., A.A.A.S. and
A.M.; formal analysis, A.E.-V., C.B.-P., A.A.A.S., R.O.-C., A.M.-J. and A.M.; investigation, A.E.-V.,
C.B.-P., A.A.A.S., G.S.-R., R.O.-C., A.M.-J. and A.M.; resources, A.E.-V., C.B.-P., R.O.-C., A.M.-J. and
A.M.; data curation, A.E.-V., C.B.-P., A.A.A.S., G.S.-R., R.O.-C., A.M.-J. and A.M.; writing—original
draft preparation A.E.-V., C.B.-P., A.A.A.S. and A.M.; writing—review and editing, A.E.-V., C.B.-P.,
A.A.A.S., G.S.-R., R.O.-C., A.M.-J. and A.M.; supervision, A.E.-V. and A.M. All authors have read and
agreed to the published version of the manuscript.

Funding: The APC was funded by Tecnologico de Monterrey through the grants for scientific papers
publication fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: A.E.-V., A.M., and R.O.-C. wish to acknowledge the SNI for the distinction of its
membership and the stipend received. A.E.-V. and R.O.-C. express their gratitude to the Instituto de
Ingeniería of the Universidad Veracruzana (UV). A.M. thanks to Laboratorio de Supercomputo del
Bajio and Hasso Plattner Institute for the supercomputer resources received.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mineral Commodity Summaries 2021; Mineral Commodity Summaries: Reston, VA, USA, 2021; p. 200.
2. Sastri, V.S. Green Corrosion Inhibitors: Theory and Practice; John Wiley and Sons: Hoboken, NJ, USA, 2011.
3. Shamnamol, G.K.; Sreelakshmi, K.P.; Ajith, G.; Jacob, J.M. Effective Utilization of Drugs as Green Corrosion Inhibitor—A Review.

In AIP Conference Proceedings; AIP Publishing LLC.: Puducherry, India, 2020; p. 070006.

https://www.mdpi.com/article/10.3390/ijms23095086/s1


Int. J. Mol. Sci. 2022, 23, 5086 20 of 23

4. Sharma, S.; Kumar, A. Recent Advances in Metallic Corrosion Inhibition: A Review. J. Mol. Liq. 2021, 322, 114862. [CrossRef]
5. Nduma, R.C.; Fayomi, O.S.I.; Nkiko, M.O.; Inegbenebor, A.O.; Udoye, N.E.; Onyisi, O.; Sanni, O.; Fayomi, J. Review of Metal

Protection Techniques and Application of Drugs as Corrosion Inhibitors on Metals. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107,
012023. [CrossRef]

6. Elsaoud, A.A.; Mabrouk, E.M.; Seyam, D.F.; El-Etre, A. Recyclization of Expired Megavit Zinc (MZ) Drug as Metallic Corrosion
Inhibitor for Copper Alloy C10100 in Nitric Acid Solution. J. Bio-Tribo-Corros. 2021, 7, 64. [CrossRef]

7. Li, H.; Zhang, S.; Tan, B.; Qiang, Y.; Li, W.; Chen, S.; Guo, L. Investigation of Losartan Potassium as an Eco-Friendly Corrosion
Inhibitor for Copper in 0.5 M H2SO4. J. Mol. Liq. 2020, 305, 112789. [CrossRef]
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