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A generalisation of the Onsager trial-function approach: Describing

nematic liquid crystals with an algebraic equation of state.

Mario Franco-Melgar, Andrew J. Haslam, and George Jackson∗

Department of Chemical Engineering, Imperial College London,
South Kensington Campus, London SW7 2AZ, United Kingdom

(Dated: 9 November 2007)

The molecular theory of Onsager [L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)] for liquid
crystals is developed and extended to describe ordering transitions in systems of generic cylindrically
symmetrical molecules. A number of new analytical results are discussed for particles characterised
by a general form of the excluded-volume interaction. Our description makes use of the Onsager
trial function (OTF) to represent the orientational distribution and degree of anisotropy. Algebraic
expressions for the thermodynamic properties, which provide a particularly tractable description
of the isotropic-nematic equilibria, are also presented. The degree of orientational order can be
represented by a simple cubic equation in the molecular parameters (molecular diameter and as-
pect ratio) and thermodynamic variables (temperature and number density). Onsager’s theory was
originally developed at the level of the second virial coefficient; here the Parsons-Lee decoupling
approximation is used to describe the higher body contributions in a straightforward manner. The
adequacy of treating the scaled Onsager (Parsons-Lee) free-energy functional within the OTF for-
malism to describe anisotropic states is illustrated by examining systems of hard spherocylinders.
An excellent representation of the equation of state of the isotropic and nematic phases and the
ordering transition is demonstrated for molecules of moderate aspect ratio (L/D = 5). Algebraic
equations of state of the type developed here are suitable for practical engineering applications in-
volving anisotropic fluids particularly in the case of multicomponent systems; our general analytical
results for the averages of orientational functions will turn out to be useful in the development of a
description of molecules with more realistic attractive and Maier-Saupe interactions.

Keywords: Onsager trial function, Onsager free energy, mean-field theory, Landau-de Gennes theory, liquid

crystals, mesogens, nematics, cholesterics, cubic equations of state, fluid phase equilibria.

I. INTRODUCTION

The simplest liquid crystal phase is the nematic, in
which the constituent molecules (mesogens) are dis-
tributed uniformly within the sample (there is no long-
range positional order and the phase is homogeneous as
for an isotropic liquid) while there is a degree of orien-
tational order whereby the molecules tend to align along
a preferred direction (the director). The nematic state
is therefore anisotropic and possesses long-range (macro-
scopic) orientational order [1–3]. A wide variety of low
molecular weight organic compounds are found to exhibit
liquid crystalline phases (e.g., the reader is directed to the
book by Chandrasekhar [1] and a compilation dedicated
to nematics [4]); these compounds tend to be referred to
as thermotropic liquid crystals owing to the leading role
that temperature plays as a variable in the transforma-
tions between the various states. Liquid crystal phases
are also found with solutions of amphiphilic molecules,
and in dispersions of higher molecular weight molecules
such as polymers, and colloidal suspensions of inorganic
and biological particles (e.g., cellulose, V2O5, DNA, and
viruses).

The unique thermodynamic, structural, rheological,
and optical properties of liquid crystalline materials make

∗Corresponding author: g.jackson@imperial.ac.uk

them suitable for a wide range of applications [1–3]. Since
the first electronic calculators with a liquid crystal dis-
play (LCD) came on to the market in the early 1980s,
systems comprising liquid crystal molecules (mesogens)
have increasingly been used for the development of new
devices in the opto-electronic industry (from standard
LCDs, mobile handsets, laptops, to the now ubiquitous
flat screen televisions). Liquid crystalline materials are
also widespread in the formulation of cosmetics, food
products, and pharmaceuticals, and form part of the bio-
logical structures such as DNA and cell membranes that
are essential to life itself. There is thus a clear need for a
fundamental understanding and accurate theoretical de-
scription of the physical properties of such systems.

There is a vast body of work on the development
of molecular theories for liquid crystals and associated
computer simulation studies which has been collected
and discussed from various perspectives in review liter-
ature [1, 2, 5–15]. It is not our intention here to go
through the different approaches in any detail but to
highlight features which are relevant to our study. The
most commonly used macroscopic theory of liquid crys-
tals is the phenomenological approach of Landau and
de Gennes [2, 16–19] in which the free energy of the sys-
tem is expressed as appropriate contributions in powers
of the order parameters (which characterise the degree
of anisotropy) and their gradients, chosen according to
the symmetry of the phase; the prefactors of each term
are treated as adjustable parameters to be determined
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from experimental information. The approach certainly
has physical appeal, is mathematically tractable, and can
easily be extended and generalised to broad classes of
phase transitions. The main drawback of this type of
macroscopic treatment is that it does not provide a pre-
dictive capability as one can not make a direct link be-
tween the molecular interactions and the parameters in
the theory which characterise the properties of the ma-
terial.

In the development of molecular theories of liquid crys-
talline fluids there are, broadly speaking, two seemingly
opposing views. One has its roots the early suggestion by
Born [20, 21] that dipolar (attractive) interactions are re-
sponsible for the anisotropy in liquid crystalline phases.
Born was the first to apply the mean-field approxima-
tion to the isotropic-nematic (I-N) transition, although
within his approach the anisotropic phase is ferroelec-
tric, the experimental confirmation of which is inconclu-
sive. In their mean-field treatment, Maier and Saupe [22–
24] also make the assumption that orientationally de-
pendent attractive interactions are the molecular feature
that give rise to liquid crystalline order. The Maier-
Saupe approach and its extensions [1, 6, 25–28], now rep-
resent a very popular mean-field treatment of anisotropic
phases. The analytical description of the order param-
eter (but not the free energy) within the Maier-Saupe
theory means that this has been the method of choice
for comparison/correlation with experiment. It is clear
from the rich variety of phase behaviour exhibited by
thermotropic mesogens [4] that the specific features of
the attractive interactions play an important role in de-
termining the types of liquid crystalline phases that are
observed. The relationship between dipolar interactions
and the stabilisation of anisotropic phases has been ex-
amined in detailed computer simulation studies of model
dipolar rod-like molecules, where the isotropic-nematic
and nematic-smectic A (layering) phase transitions are
found to be very sensitive to the position and orientation
of the dipole within the molecular core [29–32]. Though
mesogenic molecules often possess flexible side chains and
groups which mediate anisotropic attractive interactions
(such as the π − π interactions between phenyl cores,
dipole-dipole interactions, and hydrogen bonding) that
affect the stability of the anisotropic phase, it is now
widely accepted that shape anisotropy (a rigid nonspher-
ical core) is the molecular attribute that is primarily re-
sponsible for the formation of liquid crystals. The ne-
glect of anisotropy in the shape of the molecules (which
give rise to anisotropic repulsive interactions) is the main
criticism often directed at the Maier-Saupe theory [33].
As is well known, the structure of isotropic fluid phases
is dominated by the repulsive forces between molecules,
and a description of the thermophysical properties of a
repulsive reference fluid is at the heart of the develop-
ment of perturbative approaches for fluids of molecules
with attractive interactions [34, 35]. The treatment of re-
pulsive interactions as the key feature in the description
liquid crystalline fluids leads to the alternative approach

originally due to Onsager [36, 37].

One of the major driving forces behind the formation
of anisotropic phases is the reduction of the excluded vol-
ume (repulsive interactions) between pair of particles: at
higher densities when the particles are (on average) closer
to each other, the rigid molecular cores align in order to
increase the free volume, and the gain in entropy from
the increase in accessible volume more than compensates
for the loss of orientational disorder. The idea that the
isotropic-nematic transition is entropically driven is the
basic one that Onsager introduced [36] and developed [37]
in his seminal papers of the 1940s. By 1957 Alder and
Wainwright [38] had already highlighted the importance
of entropy in ordering transitions by showing that a sys-
tem of purely repulsive spheres can form a solid phase,
without the need to invoke attractive interactions. Sur-
prisingly, one had to wait more than a third of a century
for Onsager’s clairvoyant hypothesis of the entropic role
in liquid crystalline ordering to be confirmed by the es-
sentially exact findings of molecular simulation. Contin-
uum simulation studies of hard disks [39, 40], ellipsoids of
revolution [41, 42] and hard spherocylinders [11, 43–45]
support the fact that repulsive interactions alone are suf-
ficient to stabilise an orientationally ordered (nematic)
state, and additionally, in the case of hard disks and
hard spherocylinders, positionally ordered columnar and
smectic A states, respectively. One should note that sim-
ulations of ordering transitions in lattice models had been
reported earlier (see the work of Lebwohl and Lasher [46]
for particles on a cubic lattice interacting via a Maier-
Saupe attractive term, and Chapter 9 of reference [6]);
these lattice models artificially omit the essential fluid
nature of the structure of liquid crystals, and hence can
not be used to explore the nature of the stabilisation of
anisotropic phases in a conclusive manner.

Onsager [37] constructed a free energy for the nematic
phase (at the level of the second virial coefficient) as a
functional of the single-particle orientational distribution
function f(θ), which is proportional to the probability
that the principal axes of the molecules are at an an-
gle θ relative to the nematic director. In the case of an
isotropic liquid f(θ) is a constant and the molecules do
not point in a preferred direction but are randomly ori-
ented. The theory of Onsager can be considered as one
of the first classical density functional theories (DFTs)
of the fluid state; the earliest DFT of all is arguably
the square-gradient approach of van der Waals [47] for
the vapour-liquid interface in which the free energy is
a functional of the now inhomogeneous number density
ρ(~r). The precise equilibrium form of the orientational
distribution function that corresponds to the minimum
of the Onsager free-energy functional can be obtained by
numerically determining the coefficients of a series ex-
pansion [48–52], by direct iteration [53, 54], or by Monte
Carlo annealing [55].

In his original theory, Onsager [37] truncated the free
energy at the level of the second virial coefficient. This
limits the applicability to the low-density region; as the
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aspect ratio of the rod-like particles increases, the system
will exhibit an isotropic-nematic at progressively lower
densities so the Onsager second-virial approach is exact
in the limit of infinitely long and thin particles. A num-
ber of alternative approaches are available to incorpo-
rate the effect of higher-body contributions (which are
important for molecules with more moderate aspect ra-
tios) in an Onsager-like treatment: higher virial coeffi-
cients can be included in the density series of the free
energy (often represented as a Padé approximant) [56–
60]; the Onsager free energy can be reformulated as a
scaled-particle theory [49, 61–63]; more-rigorous integral
equation and density functional approaches can be used
(see for example [10, 12, 64–80]); scaling arguments and
the decoupling approximation can be employed to ex-
press the free energy of the system in terms of that of
an effective hard-sphere system (or of an isotropic fluid
of the non-spherical particles) [81–84]. In our work we
opt for a decoupling approximation of this type, as these
have been shown to provide a very accurate representa-
tion of the isotropic-nematic transition for hard-core par-
ticles of moderate size asymmetry (e.g., [11, 42]); further
details of the methodology are presented in the follow-
ing section. Related theories for repulsive lattice mod-
els [7, 85–87], for models with restricted orientations [88],
and for semi-flexible liquid crystalline polymers [89–91]
are also in common use. It is not possible to mention
all of the applications and extensions of the Onsager the-
ory for liquid crystals here; to date of publication there
are over two thousand citations to Onsager’s 1949 pa-
per since 1970, and the approach is still very popular.
Recent examples of studies which make use of his un-
derlying treatment of anisotropic phases include an ex-
amination of: worm-like polymers confined between nar-
row slits [92]; layering transitions in systems of charged
rods [93]; phase separation in mixtures of mesogenic par-
ticle particles [94, 95]; inhomogeneous systems of disk-
like particles [96, 97]; confined DNA in ionic media [98];
chirality in biological suspensions [99, 100]; the addition
of polymer to suspensions of rod-like particles [101]; the
cholesteric-smectic transition of viral suspensions [102];
and of the original Onsager expressions for the excluded
volume of hard cylinders [103]. It is clear from an inspec-
tion of this short selection of papers that the Onsager
theory of liquid crystals is applicable to an astonishingly
broad variety of systems.

The main theme of our study concerns the use of the
Onsager trial function fotf(θ) (OTF) to represent the
single-particle orientational distribution function. The
last three (concise) pages of Onsager’s long paper [37]
are dedicated to the use of a single-parameter hyperbolic
trial function to develop an analytical representation of
the free energy for the nematic phase of hard rod-like par-
ticles. Considering the large number of studies that have
made use of the generic form of the Onsager free-energy
functional for anisotropic phases, it is surprising that his
trial function has been employed far less frequently (see,
for example, references [52, 104–119]). As far as we are

aware only the explicit analytical forms of the free en-
ergy derived by Onsager for the leading term of the sec-
ond virial coefficient of rod-like particles have been used
thus far; no attempt has been made to generalise the
treatment to more complicated mathematical forms of
the excluded volume. One should note that other related
trial functions of the Gaussian form have also been em-
ployed to provide analytical forms of the free energy to
determine the phase behaviour of a variety of anisotropic
fluids and mixtures (e.g., [84, 91, 120–136]). Though the
use of Gaussian trial functions (GTFs) leads to a sim-
pler algebraic treatment, the resulting expressions for the
free energy generally provide a less adequate description
of the free energy and ordering phase transitions than
those obtained with the OTF. In some cases qualitative
differences in the types of phase behaviour are seen when
compared with the full numerical solution particularly for
mixtures (see the studies on mixtures of rod and disk-like
particles [137–140]). The simple model of Zwanzig [88]
(in which only the three cartesian orientations of the ori-
entational distribution function are considered) have also
found popular use owing to the tractable nature of the
free energy [141–154]. As a final remark on the general
use of trial functions, one should mention that in addition
to being a useful ingredient in providing a representation
of the thermodynamic properties of the isotropic-nematic
transition, the Onsager, Gaussian and related trial func-
tions have been used to analyse and describe the degree of
orientational order determined experimentally [155–160].

In the current work we aim to develop an equation
of state for nematic fluids that is suitable for the inten-
sive calculations routinely required in engineering appli-
cations. To this end, the specific question we shall answer
is: Can one use Onsager’s trial function to obtain accu-
rate yet analytical expressions for the free energy in the
case of a general form of the excluded volume (not just
the extreme aspect ratio limit examined by Onsager)?
An accurate analytical description of the thermodynamic
properties of hard anisotropic fluids is the key to the
development of a perturbative platform for an algebraic
equation of state of real mesogens (treating both attrac-
tive and repulsive interactions). This would certainly
enhance the general applicability of the Onsager trial-
function approach for anisotropic order.

An updated view of the derivation of Onsager’s free-
energy functionals is given in Section II. In this paper
we focus on model systems of nematogens with purely
repulsive potentials. In Section II A we take as a starting
point the second-virial theory originally proposed by On-
sager [37]. Later in Section II B we review how Onsager’s
theory can be extended by means of the decoupling ap-
proximation due to Parsons and Lee [81–83] to account
for higher virial-coefficients. The seminal Appendix B of
Onsager [37], in which he introduces his trial function,
is rather difficult to follow, which probably explains why
the OFT approach has not found a more widespread use
even though (as we will show) it is well suited to describe
orientationally ordered systems with a high degree of ac-
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curacy. Particular effort is taken to shed light on the
separate contributions to the free energy (Section II C)
when the orientational distribution is described with the
OTF: an orientational entropy term (Section II E), which
can be seen as an entropy of mixing when one assumes
that every particle with any given orientation represents
a different species in the fluid; and a term which is pro-
portional to the second virial coefficient B2, which can
be seen as a packing or configurational entropy as it ac-
counts for the volume restricted to the centre of any given
molecule within the fluid due to the presence of a second
(Section II F). We examine the form these functionals
take when using the OTF for a general excluded vol-
ume interaction. In Section II G we compare the use of
the OTF and a full numerical solution of the equilib-
rium free energy to locate the I-N transition for a fluid
of hard spherocylinders. We then show in Section IV
how a comparatively accurate, but compact cubic rep-
resentation of the orientational order can be formulated.
We point out that our approach is very general and can
be used to describe systems with generic excluded vol-
ume interactions and orientationally dependent attrac-
tive interactions. The method described by Onsager [37]
for the evaluation of the configurational functional is ap-
plied more generally to evaluate other angle averages of
similar (mathematical) form. This is illustrated in Sec-
tion III by showing how our approach can be used to
provide closed-form expressions for the order parameters,
Sn, which when applied to the nematic order parameter
S2 concurs with the expression commonly obtained via
the addition theorem for spherical harmonics [108, 161].

II. ONSAGER MOLECULAR THEORY OF THE
NEMATIC FLUID

A. Onsager Free Energy (Second Virial Theory)

The first term of the Onsager [37] free-energy func-
tional for the nematic phase represents the ideal free en-
ergy of orientationally ordered rod-like particles, includ-
ing the contributions due to the translational and rota-
tional entropy. Onsager obtained an expression for the
rotational entropy by considering each orientation of the
particle as a separate component in a mixture.

The ideal part of the Helmholtz free energy of an in-
homogeneous system of spherically symmetric molecules
is given by [35]

Aid
sph = kT

∫

ρ(~r){ln Vsph ρ(~r) − 1}d~r, (1)

which is expressed as a functional of ρ(~r), the single-
particle number density at position ~r, which is normalised
such that

∫

ρ(~r) d~r = N , the total number of particles; T
is the temperature and k is the Boltzmann constant. The
de Broglie volume Vsph is defined in terms of the thermal

de Broglie wavelength, Λ =
√

h2/(2πmkT ) , where m

is the molecular mass and h is the Planck constant, so
that, in Equation (1) Vsph = Λ3, which arises from the
partition function of a system of spherical particles that
has only translational contributions.

The partition function for a system of non-spherical
particles also contains rotational contributions [162]. The
de Broglie volume in the ideal free energy for non-
spherically symmetric particles is denoted by V. Further,
the density ρ becomes a function not only of position but
also of orientation ~ω. The analogue of Equation (1) for
non-spherical molecules is then written as an integral over
position and orientation:

Aid = kT

∫

ρ(~r, ~ω){lnVρ(~r, ~ω) − 1}d~r d~ω. (2)

Here, the free energy is a functional of the density ρ(~r, ~ω)
which is normalised such that

∫

ρ(~r, ~ω)d~rd~ω = N .
As a consequence, ρ(~r, ~ω) has the units of ρ/Ω, where
ρ = N/V is the number density, V is the volume, and
Ω =

∫

d~ω = 4π for molecules with cylindrical sym-
metry. The de Broglie volume of rod-like particles is
given by V = VtVr where the subscripts t and r repre-
sent the translational and rotational contributions. As
for spherical particles, the translational contribution is
Vt = Λ3. The rotational contribution is defined as

Vr = s
naxes
∏

i

√

(h2/(2πIikT )), where Ii is the moment

of inertia about the rotation axis i, naxes is the num-
ber of rotation axes, and s is a symmetry number. For
cylindrically-symmetric, rod-shaped molecules, naxes = 2
with I1 = I2 = I, so that Vr = h2/(πIkT ); in this case
the symmetry number s = 2.

The liquid crystalline state relevant to this work is the
nematic, which is characterised by long-range orienta-
tional order but no long-range positional order. The den-
sity ρ(~r, ~ω) can be factorised into a well-defined single-
particle orientational distribution function f(~ω) and a
positionally homogeneous density ρ(~r) = ρ = N/V , so
that ρ(~r, ~ω) = ρf(~ω). The orientational distribution
function describes the probability of finding a molecule
at a certain orientation ~ω (defined relative to the nematic
director), and is normalised such that

∫

f(~ω)d~ω = 1. The
ideal contribution to the free energy of a nematic state
of rod-like particles can thus be expressed as

Aid

NkT
= ln (Vρ) − 1 +

∫

f(~ω) ln {Ωf(~ω)}d~ω . (3)

For an isotropic fluid f(~ω) = 1/(4π), so the free energy
simplifies to

Aid
iso

NkT
= ln (Vρ) − 1 . (4)

The ideal contribution to the free energy of the
anisotropic nematic phase can be written as a sum of
the isotropic and anisotropic contributions,

Aid

NkT
=

Aid
iso

NkT
+ Forient [f ] . (5)
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The functional of the orientational distribution function
f(ω̃), defined as

Forient [f ] ≡
∫

f(~ω) ln {Ωf(~ω)}d~ω, (6)

denotes the so-called ideal orientational entropy which
was derived by Onsager [37]. At this stage we have de-
scribed the ideal contribution of the Onsager free-energy
functional for a nematic state.

The full Onsager free energy is obtained by taking into
account the intermolecular interactions. The total free
energy A can be written as A = Aid + Ares, where the
residual contribution due to intermolecular interactions
is collected in Ares. If one assumes a pairwise-additive in-
termolecular potential, the residual contribution can be
derived by integrating the virial equation (for the pres-
sure p, or equivalently the compressibility factor Z) of an
inhomogeneous system of non-spherical particles [162]:

Z =
p

ρkT
= 1 − 1

6ρkT

∫∫∫

r12
∂φ(~r12, ~ω1, ~ω2)

∂r12

× g(~r12, ~ω1, ~ω2) ρ(~r1, ~ω1) ρ(~r2, ~ω2)d~r12 d~ω1 d~ω2 . (7)

Here, φ(~r12, ~ω1, ~ω2) is the pairwise-additive potential be-
tween particles 1 and 2 with intermolecular vector ~r12 (of
magnitude r12) and orientations ~ω1 and ~ω2, g(~r12, ~ω1, ~ω2)
is the corresponding pair distribution function, ρ(~r1, ~ω1)
is the density of particle 1 at position ~r1 and orienta-
tion ~ω1, and ρ(~r2, ~ω2) that of particle 2 at position ~r2

and orientation ~ω2. Purely repulsive rods were consid-
ered by Onsager, and his free energy may be obtained
as a special case of expression (7). For a homogenous
system, the distribution function may be written as an
expansion in powers of the number density ρ [35]. The
Onsager free energy involves a second-virial approxima-
tion, and therefore corresponds to the low-density limit
ρ → 0. In this case the pair distribution function reduces
to the Boltzmann factor of the pair potential,

lim
ρ→0

g(~r12, ~ω1, ~ω2) = exp

[−φ(~r12, ~ω1, ~ω2)

kT

]

, (8)

which is valid for inhomogeneous systems as the limit is
independent of density. If we focus on the nematic phase
[where ρ(~r, ~ω) = ρf(~ω)] and retain only the low-density
limit of g(~r12, ~ω1, ~ω2) in Equation (7) we have

Z = 1 − ρ

6kT

∫∫∫

r12 f(~ω1) f(~ω2) d~r12 d~ω1 d~ω2

× ∂φ(~r12, ~ω1, ~ω2)

∂r12
exp

[−φ(~r12, ~ω1, ~ω2)

kT

]

= 1 +
ρ

6

∫∫∫

r12 f(~ω1) f(~ω2) d~r12 d~ω1 d~ω2

× ∂

∂r12

{

exp

[−φ(~r12, ~ω1, ~ω2)

kT

]}

. (9)

For a purely repulsive potential φ = φrep of cylin-
drically symmetrical molecules, the Boltzmann fac-
tor can be represented by a Heaviside step function

H(r12−σ(r̂12, ~ω1, ~ω2)); here the particle contact distance
σ(r̂12, ~ω1, ~ω2) depends on the orientations of both parti-
cles and on the (unit) vector r̂12 = ~r12/r12 between their
centres. The derivative of a Heaviside function is the cor-
responding Dirac delta function δ, so the compressibility
factor can be written as

Z = 1 +
ρ

6

∫∫∫∫

r2
12 dr12 dr̂12 d~ω1 d~ω2

× r12δ [r12 − σ(r̂12, ~ω1, ~ω2)] f(~ω1)f(~ω2)

= 1 +
ρ

6

∫∫∫

f(~ω1) f(~ω2) dr̂12 d~ω1 d~ω2

×
∫

r3
12δ [r12 − σ(r̂12, ~ω1, ~ω2)] dr12

= 1 +
ρ

6

∫∫∫

dr̂12 d~ω1 d~ω2

× σ3(r̂12, ~ω1, ~ω2)f(~ω1)f(~ω2). (10)

The second virial coefficient of an orientationally ordered
system of cylindrically symmetrical molecules is defined
as [37]

B2 =
1

2

∫∫∫

f(~ω1) f(~ω2) d~r12 d~ω1 d~ω2

×
{

1 − exp

[−φ(~r12, ~ω1, ~ω2)

kT

]}

. (11)

For hard-core interactions, B2 is related to the angle av-
erage of the excluded volume Vexc(~ω1, ~ω2) of a pair of
molecules with orientations ~ω1 and ~ω2 via

B2 =
1

2
〈Vexc(~ω1, ~ω2)〉~ω1,~ω2

=
1

2

∫

Vexc(~ω1, ~ω2)f(~ω1) f(~ω2) d~ω1 d~ω2, (12)

where

Vexc(~ω1, ~ω2) =

∫ (

1 − exp

[−φ(~r12, ~ω1, ~ω2)

kT

])

d~r12

=

∫∫

r2
12 dr12 dr̂12

×
{

1 − exp

[−φ(~r12, ~ω1, ~ω2)

kT

]}

=

∫ σ(r̂12,~ω1,~ω2)

0

∫

r2
12dr12dr̂12

=
1

3

∫

σ3(r̂12, ~ω1, ~ω2)dr̂12. (13)

It is clear from the preceding discussion that the excluded
volume so defined corresponds to the space inaccessible
to a particle with orientation ~ω2 due to another particle
with orientation ~ω1. From Equation (10), it follows that

Z = 1 +
ρ

2

∫∫

Vexc(~ω1, ~ω2) f(~ω1) f(~ω2) d~ω1 d~ω2. (14)
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The residual free energy can be obtained by integration
from the thermodynamic identity [∂A/∂V ]N,T = −p, or
correspondingly [∂(A/NkT )/∂ρ]N,T = Z/ρ:

Ares

NkT
=

∫ ρ

0

Z(ρ) − 1

ρ
dρ

=
1

2
ρ

∫ ∫

Vexc(~ω1, ~ω2) f(~ω1) f(~ω2) d~ω1 d~ω2

=
1

2
ρVm Fconf [f ] , (15)

where Vm is the molecular volume and

Fconf [f ] ≡ 1

Vm

∫∫

Vexc(~ω1, ~ω2) f(~ω1) f(~ω2) d~ω1 d~ω2

≡ 2 B2

Vm
≡ 2B∗

2 . (16)

The contribution Fconf [f ], which is equivalent to the con-
figurational functional defined by Onsager, incorporates
all interactions between the molecules (in this case the
repulsive interactions) and drives the transition to the
orientationally ordered phase – the nematic liquid. It
is effectively a weighted average of the excluded volume
interaction between two particles, over all orientations;
the corresponding dimensionless second virial coefficient
is defined as B∗

2 = B2/Vm.
On combining the ideal (3) and residual (15) contribu-

tions we obtain the Onsager free-energy functional for an
orientationally ordered phase [37], which lies at the heart
of his molecular theory of the liquid crystalline state:

A

NkT
= ln (Vρ) − 1 +

∫

f(~ω) ln {Ω f(~ω)} d~ω

+
ρ

2

∫∫

Vexc(~ω1, ~ω2) f(~ω1) f(~ω2) d~ω1 d~ω2

= ln (Vρ) − 1 + Forient [f ] +
ρVm

2
Fconf [f ] .

(17)

Clearly, then, the Onsager free energy is truncated
at the level of the second virial coefficient and thus is
expected to provide a good description of the system
only in the low-density limit. Only molecules with ex-
treme aspect ratios exhibit transitions at low densities;
the Onsager description provides a good representation
of the orientational ordering in such systems (e.g., see
[9] and references therein). Higher-body contributions
(third and higher virial coefficients) must also be included
in the description of particles with the moderate aspects
ratios characterising mesogens of practical interest.

B. Higher Body Terms (Parsons-Lee Scaling)

Improvements to Equation (17) are required to account
for the omission of the higher virial terms. A popular
method of including higher-body contributions is due to

Parsons [81] and Lee [82, 83] (also see reference [11]).
The alternative approach due to Vega and Lago [84] can
be employed if the equation of state of the isotropic fluid
is known, but we opt for the more general Parsons-Lee
approach as one requires a knowledge of the properties
only of the hard-sphere fluid.

The Parsons-Lee extension of the Onsager second-
virial free energy can be obtained following an approach
similar to that discussed in the preceding section, but
using an improved approximation for the pair distribu-
tion function g(~r12, ~ω1, ~ω2) in Equation (7). The in-
terparticle distance r12 is scaled in terms of the con-
tact distance σ(r̂12, ~ω1, ~ω2) to define a reduced variable
y = r12/σ(r̂12, ~ω1, ~ω2) which takes the value y = 1 at
contact, regardless of the relative orientation of the two
particles. The distribution function g(y) is then repre-
sented as a simple function such that the positional and
orientational dependencies are decoupled and can be in-
tegrated separately. This type of decoupling approxima-
tion is commonly used to represent the structure of non-
spherical molecules (e.g., see references [67, 163, 164]).
Thereby, the compressibility factor (Equation (7)) be-
comes

Z = 1 − ρ

6kT

∫∫∫

yσ

(

1

σ

)

du(y)

dy

× g(y) f(~ω1) f(~ω2) (y2σ2) (σdy) dr̂12 d~ω1 d~ω2

= 1 − ρ

6kT

[∫

y3 du

dy
g(y) dy

]

×
[∫∫∫

σ3 f(~ω1) f(~ω2) d r̂12 d~ω1 d~ω2

]

= 1 − ρ

2kT

[∫

y3 du

dy
g(y) dy

]

×
[∫∫

Vexc(~ω1, ~ω2) f(~ω1) f(~ω2) d~ω1 d~ω2

]

, (18)

where the angular dependence of σ(r̂12, ~ω1, ~ω2) has been
omitted from the expression for compactness. In terms of
the scaled distance y, the pair potential of a cylindrically
symmetric hard-body takes the form

u(y) =

{

∞ y < 1
0 y ≥ 1.

Defining the cavity function Y(y) = g(y) exp(u/kT ) and
replacing the double integral involving Vexc(~ω1, ~ω2) by B2

(Equation (12)), Z can be expressed as

Z = 1 − ρB2

kT

[∫

y3 du

dy
exp

(

− u

kT

)

Y(y) dy

]

= 1 + ρB2 Y(1)

= Z = 1 + ρB2 g(1+) (19)

via the introduction of a Heaviside step function (as in
the development of Equation (10)). The orientational
dependence of the distribution function has clearly been
factored out into the second virial coefficient. At contact,
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the value of the distribution function is discontinuous and
the value g(1) in Equation (19) is taken as the limit ap-
proaching contact from above, g(1+). For a system of
non-spherical molecules this is generally unknown but
can be approximated by the contact radial distribution
function g(1+) ≈ ghs(σ+) of an equivalent system of hard
spheres of the same molecular volume (Vm = Vhs) at the
same density. The advantage of this is that the Carnahan
and Starling [165] relation provides an accurate descrip-
tion of the compressibility factor for hard spheres, and
the corresponding contact value of the radial distribu-
tion function can be obtained directly from the pressure
virial Zhs(η) = 1 + ρB2,hs ghs(σ+) [35]. Equation (19)
thus becomes

Z = 1 +

(

Zhs − 1

B2,hs

)

B2 . (20)

The hard-sphere compressibility factor Zhs can also be
expressed as a virial expansion, so that the factor pre-
multiplying B2 is actually a sum of virial coefficient terms
ρn−1 Bn,hs/B2,hs:

Z = 1 +

(

n
∑

i=2

ρi−1Bi,hs

B2,hs

)

B2 . (21)

Clearly the Parsons-Lee approximation incorporates all
of the higher virial coefficients Bi (3 ≤ i < ∞) by effec-
tively scaling the hard-sphere terms. The second virial
coefficient of the equivalent hard-sphere system is sim-
ply B2,hs = 4Vm. The compressibility factor [Equa-
tion (19)] of an orientationally ordered system of non-
spherical molecules can thus be obtained simply from the
second virial coefficient of the nematogen and the com-
pressibility factor of the isotropic hard-sphere system as

Z = 1 +
(Zhs − 1)

4Vm
B2

= 1 +
(Zhs − 1)

8Vm

×
∫∫

Vexc(~ω1, ~ω2)f(~ω1) f(~ω2) d~ω1 d~ω2 . (22)

The last form of the expression, in terms of the excluded
volume, provides an indication of dependence of the equa-
tion of state on the orientation of the molecules through
the orientational distribution function f(~ω).

As before, the residual free energy is obtained by inte-
grating the equation of state:

Ares

NkT
=

ρ
∫

0

Z(ρ) − 1

ρ
dρ =

B2

4Vm

ρ
∫

0

Zhs(ρ) − 1

ρ
dρ

=
1

8Vm

Ares
hs

NkT

×
∫∫

Vexc(~ω1, ~ω2)f(~ω1) f(~ω2) d~ω1 d~ω2 . (23)

The residual free energy for hard spheres Ares
hs can be ob-

tained from the Carnahan and Starling [165] compress-
ibility factor as

Ares
hs

NkT
=

η
∫

0

Zhs(η) − 1

η
dη

=
Vm(4ρ − 3ρ2Vm)

(1 − ρVm)2
=

4η − 3η2

(1 − η)2
, (24)

which is more conveniently expressed in terms of the
packing fraction η = ρVm ≡ ρVhs.

Combining the ideal (3) and residual (23) contribu-
tions we obtain the Parsons-Lee Helmholtz free-energy
functional for the nematic phase (Onsager free energy
corrected to include the higher virial coefficients):

A

NkT
= ln (Vρ) − 1 +

∫

f(~ω) ln {Ωf(~ω)}d~ω

+
1

8Vm

Ares
hs

NkT

∫∫

Vexc(~ω1, ~ω2)f(~ω1)f(~ω2) d~ω1 d~ω2

=
Aid

iso

NkT
+ Forient [f ] + G (ρ) Fconf [f ] , (25)

where the the density (packing fraction) dependence is
contained in the function G (ρ) = (Ares

hs /NkT )/8. This
is the final expression of the free energy that is used in the
computations presented in this work. It reduces to the
Onsager second virial theory when a linear density depen-
dence G (ρ) = ρVm/2 = η/2 is assumed; in the limit of
molecules with infinite aspect ratio the free energy takes
the Onsager form as the isotropic-nematic transition oc-
curs in the limit of vanishing density.

Common to Equations (17) and (25) there are two im-
portant terms Forient [f ] and Fconf [f ], which are the com-
peting contributions that give rise to the orientationally
ordered nematic state. The first functional Forient [f ] of
f(ω̃) describes the orientational entropy that the system
loses by ordering its molecular axis. This term is at its
maximum Forient [f ]

max
= Forient [fiso] = 0 for the ori-

entationally disordered isotropic state where fiso(~ω) =
1/(4π); the orientational entropy of the isotropic fluid is
contained in the rotational contribution to the de Broglie
volume in Aid

iso. The second functional Fconf [f ] is pro-
portional to the second virial coefficient B2; it effectively
represents a weighted average of the excluded volume in-
teraction between two particles over all relative orienta-
tions. This term is at a minimum for the perfectly aligned
state, corresponding to a minimum in the excluded vol-
ume; in turn this maximises the free volume available to
the particles (configurational entropy). As the density
is increased [corresponding to an increase in G(ρ)] the
configurational entropy starts to dominate over the ori-
entational contribution, and the subsequent decrease in
free energy drives the transition to a nematic phase. For
the isotropic fluid Fconf [f ] = 2B2,iso/Vm = 2B∗

2,iso, which
can be evaluated once the explicit form of the excluded
volume interaction is specified.
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C. Equilibrium Orientational Distribution Function

It was clear from the preceding sections that the free
energy A[f(~ω)] of a system of orientationally ordered par-
ticles is a functional of the single-particle orientational
distribution function f(~ω). The equilibrium state cor-
responds to the function feq(~ω) that minimises the free
energy (Equation (17) in the case of the Onsager second-
virial theory or Equation (25) in the case of the Parsons-
Lee modification). The variation of the free energy with
respect to f(~ω) must fulfill the following condition [9]:

δA[f(~ω)]

δf(~ω)

∣

∣

∣

∣

eq

− λ = 0, (26)

where λ is a Lagrange undetermined multiplier. In
essence this Euler-Lagrange equation is equivalent to
requiring that the free-energy functional be a mini-
mum subject to the additional normalisation constraint
∫

f(~ω)d~ω = 1. The integral equation for the equilib-
rium orientational distribution corresponding to the free
energy given by Equation (25) is

feq(~ω) =
Ω exp

[

− 2G(ρ)
Vm

∫

Vexc(~ω, ~ω2) f(~ω2)d~ω2

]

∫

exp
[

− 2G(ρ)
Vm

∫

Vexc( ~ω1, ~ω2) f(~ω2)d~ω2

]

d~ω1

.

(27)
A variety of approaches have been applied to undertake
this minimisation. As we alluded to earlier, these can be
grouped into two classes: trial-function methods [37, 91,
120] and numerical methods [48–55].

In order to solve Equation (27) numerically, the ori-
entational distribution function f(~ω) (or its logarithm)
and the excluded volume Vexc(~ω, ~ω2) can be expanded as
series of Legendre polynomials, and the resulting expres-
sion can then be minimised with respect to the unknown
expansion coefficients [48–52]. Alternatively f(~ω) can be
described in discrete form and Equation (27) can then
be solved by straightforward iteration [53, 54] or by us-
ing Monte Carlo annealing [55]. Though all of these nu-
merical techniques provide the equilibrium orientational
distribution function to the desired accuracy, it is clear
that no analytical solution is available.

A well-chosen analytical description of f(~ω) can make
the solution of the equilibrium distribution much simpler
and computationally efficient, without compromising too
much of the numerical accuracy. In his seminal paper,
Onsager [37] used a simple hyperbolic trial function to
describe f(~ω) in terms of single parameter α which char-
acterises the degree or orientational order in the system;
the precise form of the Onsager trial function (OTF) is
given in the following section. Straley [120], and more
recently Odijk [91], have used similar Gaussian trial func-
tions which are also cast in terms of a single parameter,
but as we hope to show it is difficult to improve on the
simplicity and elegance of the Onsager approach. By us-
ing this type of trial function, the free energy becomes a
function of the parameter α and the equilibrium orien-
tational state of the system is determined from a simple

derivative of the free energy with respect to α rather than
the variation described by Equation (26):

(

∂A(α)

∂α

)

NV T

− λ = 0. (28)

In this work we shall show that there are a number of
general and novel results that can be obtained for the
free energy of an orientationally ordered system in terms
of the OTF, and show that the use of the trial function
within a Parsons-Lee free energy provides an accurate
description of the equation of state and ordering of re-
pulsive particles such as hard spherocylinders.

Once the equilibrium orientational distribution func-
tion is known the free energy of the orientational ordered
nematic state can be used to determine the isotropic-
nematic equilibria in a straightforward fashion. The den-
sities of the coexisting isotropic fluid and nematic phases
at a fixed temperature are determined numerically by re-
quiring equality of the pressure p = −(∂A/∂V )NT , and
chemical potential µ = (∂A/∂N)V T of the two phases.

D. Onsager Trial Function

The advantage of describing the orientational distri-
bution function and the free energy of the nematic state
in terms of a simple function has been pointed out in
the previous section. For the nematic fluid, evaluating
the functionals Forient[f ] and Fconf [f ] is not trivial even
with a simple trial function. Here we describe the use
of the original hyperbolic trial function of Onsager in
some detail. As has already been pointed out the use of
the OTF approach is comparatively rare compared with
a full numerical solution of Onsager-like free energies.
This is due in part to the lack of transparency in the
description that Onsager provides in his well-known ap-
pendix [37]. In the majority of studies that have been
made with the OTF [52, 104–119], the Onsager expres-
sions are employed as originally quoted. Significant effort
has to be expended to recognise the general aspects of the
Onsager approach in describing the ordering transition of
more-complex molecules and mixtures with simple alge-
braic equations. It is hoped that the analysis provided in
this section will lift some of the obstacles encountered in
the use of the OTF and reveal the truly generic nature
of the approach.

Onsager chose the following form to represent the ori-
entational distribution function f(~ω) [37]:

fotf (θ) =
α cosh [α cos (θ)]

4π sinh (α)
. (29)

The trial function depends on the azimuthal angle θ =
arccos(~ω · ~ω0), defined with respect to a reference vector
~ω0 which corresponds to the director in a nematic phase.
It is clear from Figure 1 that the degree of orientational
order in the system is determined by the parameter α.
For an isotropic system α = 0, this can be seen by
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FIG. 1: The dependence of the Onsager trial function [Equa-
tion (29)] on the relative orientation θ of the principal molec-
ular axis for a range of values of the orientational parameter
α. The orientational distribution function becomes progres-
sively more peaked around θ = 0 and π as the value of α
is increased, corresponding to states with increasing orienta-
tional order. In the case of the isotropic phase α = 0 and
fOTF(θ) = 1/(4π).

taking the limit lim
α→0

(fotf) using l’Hôpital’s rule, giving

fiso = fotf(α = 0) = 1/(4π), whereas a large value of
α (in practise, ∼ 10 or higher) indicates a high degree
of orientational order. As we show in the following sec-
tions the introduction of this trial function allows one to
solve the integrals analytically giving the free energy as

a function of α. The equilibrium distribution function is
obtained from the simple derivative (∂A/∂α)NV T = 0.
There is no longer a need to specify the undetermined
multiplier λ as Onsager’s trial function is correctly nor-
malised irrespective of the value of α:

∫

~ω

fotf(θ) d~ω =

2 π
∫

φ=0

π
∫

θ=0

fotf(θ) sin θ dθ dφ

=
α

2 sinhα

π
∫

θ=0

cosh(α cos θ) sin θ dθ ;

substituting u = cos θ, du = − sin θdθ, this becomes

∫

~ω

fotf(θ) d~ω =
α

2 sinhα

1
∫

u=−1

cosh(αu)du = 1 . (30)

By contrast the Gaussian trial function is not naturally
normalised [9]; the normalisation constant is a more-
complex function of the parameter α, though the integral
involved can be expressed analytically in truncated form.

E. Orientational Entropy Functional

The importance of the simplification provided by the
use of the OTF is revealed from an evaluation of the
orientational entropy. The functional Forient [f ] [equa-
tion (6)] is integrated to give a simple function of α as
follows (recall that Ω = 4π for cylindrically symmetric
molecules):

Forient [f ] =

∫

α cosh(α cos θ)

4π sinhα
ln

{

α cosh(α cos θ)

sinhα

}

d~ω

=
α

4π sinhα

π
∫

θ=0

2π
∫

φ=0

cosh(α cos θ) ln

{

α cosh(α cos θ)

sinhα

}

sin θ dθ dφ

=
−α

4π sinhα

−1
∫

cos θ=1

2π
∫

φ=0

cosh(α cos θ) ln

{

α cosh(α cos θ)

sinhα

}

d(cos θ) dφ

=
α

2 sinhα

1
∫

u=−1

cosh(αu) du
{

ln
( α

sinhα

)

+ ln [cosh(αu)]
}

=
α

2 sinhα







[

sinh(αu)

α
ln

( α

sinhα

)

]1

u=−1

+

1
∫

u=−1

cosh(αu) ln [cosh(αu)] du







, (31)
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where the substitution u = cos θ has been made. The remaining integral in equation (31) can be solved by parts:

Forient [f ] =
α

2 sinhα

{

[

sinh(αu)

α
ln

( α

sinh α

)

]1

u=−1

+

[

sinh(αu)

α
ln (cosh(αu))

]1

u=−1

−
∫ 1

u=−1

cosh2(αu) − 1

cosh(αu)
du

}

=
α

2 sinhα

{

2 sinhα

α

(

ln
α

sinh α
+ ln coshα − 1

)

+
2arctan(sinhα)

α

}

= ln(α coth α) − 1 +
arctan(sinhα)

sinhα
; (32)

Equation (32) is commonly approximated as Forient[f ] ≈
lnα−1+π exp(−α), e.g., see references [91, 108]; Onsager
himself used simply Forient[f ] ≈ lnα − 1 [37]. Whilst
these approximations are not unacceptable, the full ex-
pression is calculated with no real effort on modern com-
puters and therefore we retain this form. One should note
that in the case of the Maier-Saupe [22–24] approach the
orientational entropic term is not analytical and has to
be evaluated numerically. A clear advantage of the use
of the OTF is the analytical form that one obtains for
Forient [f ].

F. Configurational Entropy Functional

A method for the evaluation of the configurational
functional Fconf [f ] is the subject of the seminal Ap-
pendix B of Onsager’s paper [37]. The essential prob-
lem which Onsager overcame is that the excluded vol-
ume interaction Vexc is a function of the angle between
two molecules, γ = arccos(~ω1 · ~ω2), whereas the integral
is over ~ω1(θ1, φ1) and ~ω2(θ2, φ2), in terms of a cartesian
reference frame where, as usual, θ and φ represent po-
lar and azimuthal angles. By use of the trial function
[Equation (29)], together with ingenious rotations of the
coordinate frame (see Figure 2) and changes of variables,
Onsager was able to reduce the problem to a single inte-
gration over γ, his only stipulation being the symmetry
condition that the intermolecular interaction can be rep-
resented as a function F of sin γ with

F (γ) = F (π − γ) . (33)

This means that an “up-down” symmetry is imposed to-
gether with the implicit cylindrical symmetry. As we
show here a particular strength of the Onsager trial-
function method is that it may be applied to the av-
erage over all orientations of any function F for a pair
of molecules (not just the simple excluded volume inter-
action that Onsager considered) provided that this sym-
metry condition is met.

The functional Fconf [f ] is related to the average sec-
ond virial coefficient and a specific form of the excluded

volume of a pair of particles for a fixed relative orienta-
tion now has to be specified. For purposes of illustration,
we choose to represent the excluded volume in terms of
the relative orientation γ of the main molecular axes of
the two molecules with the following general form which
is used throughout our paper:

Vexc =
∑

i=0

Ci sini γ . (34)

This should not be confused with the representation of
the excluded volume as a spherical-harmonic expansion,
i.e., a series in cosi θ (even i) which is commonly used
to expand the leading term (sin γ) of the excluded vol-
ume in order to perform the numerical integration. The
hard spherocylinder (a cylinder of length L capped by
two hemispheres of diameter D) is an example of a ne-
matogen for which the excluded volume can be exactly
represented in this form as Vexc = C0 + C1 sin γ, where
C0 = 4

3πD3 + 2πD2L and C1 = 2L2D [37]. The leading
contribution in the excluded volume of two hard cylin-
ders given by Onsager [37] is also proportional to sin γ;
Onsager chose to neglect all but this contribution, while
the full expression also contains a term in | cos γ| and the
complete elliptic integral of the second kind E(sin2 γ) =
∫ π/2

0

(

1 − sin2 γ sin2 ξ
)

dξ. The full expression could be
given in the general form of Equation (34) since the for-
mer can be represented as a binomial series expansion
of (1 − sin2 γ)1/2 = 1 − 1

2 sin2 γ − 1
8 sin4 γ − 1

16 sin6 γ −
. . . , and the latter as the series expansion E(sin2 γ) =
π
2

(

1 − 1
4 sin2 γ − 3

64 sin4 γ − 5
256 sin6 γ − . . .

)

. In either
case only a few terms would be sufficient due to the
rapidly decreasing nature of the high powers of sin γ. In
the case of linear chains formed from m tangent hard-
sphere segments the excluded volume is also very accu-
rately represented by a series of the form of Equation
(34) [166]; a truncated form up to sin γ provides the sec-
ond virial coefficient to an accuracy of better that 0.02%
for a chain of length m = 10, and the inclusion of a term
in sin2 γ captures the excluded volume essentially com-
pletely. Even when the chains are flexible the excluded
volume can be represented as a series in sini γ [112], con-
firming the usefulness of such an expansion. Our analysis
is thus more general than that of Onsager, and will enable
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FIG. 2: The orientations ~ω1(θ1, φ1) and ~ω2(θ2, φ2) of a pair of
cylindrically symmetrical molecules in terms of polar coordi-
nates can be described in terms of the polar θ1 and azimuthal
φ = φ1−φ2 angles, and the angle γ between the two principal
axes with a simple rotation of the cartesian axis. The key to
the approach of Onsager [37] is that the configurational func-
tional can be expressed uniquely in terms of γ by integrating
out the variables θ and φ.

one to express the configurational functional in analyti-
cal form even for the full excluded volume contribution
of hard cylinders, linear and flexible hard-sphere chains,
and other such models, albeit as truncated series.

It is simple to evaluate Fconf [f ] for the isotropic fluid.
For a pair of molecules one is free to choose the orien-
tation of one molecule (say ~ω1) as the reference axis, so
that γ = θ2 becomes the polar angle. Thus

Fconf [fiso] =
1

(4π)2Vm

∫

~ω1

d~ω1

2π
∫

φ=0

dφ2

π
∫

γ=0

∑

i=0

Ci sini+1 γ dγ

=
1

2

∑

i=0

C∗
i

π
∫

γ=0

sini+1 γ dγ = 2B∗
2,iso. (35)

where the coefficients of the series C∗
i = Ci/Vm are ex-

pressed in reduced form for convenience, and B∗
2,iso =

B2,iso/Vm is the reduced second virial coefficient of the
isotropic fluid that depends on the precise form of the ex-
cluded volume interaction: the integrals involved are all

functions of the angle γ:
∫ π

0
sin γ dγ = 2,

∫ π

0
sin2 γ dγ =

π/2,
∫ π

0
sin3 γ dγ = 4/3,

∫ π

0
sin2 γ dγ = 3π/8, etc. For

long rods the configurational functional of the isotropic
phase can be approximated by Fconf [f ] ≈ πL2D/(2Vm)
where the excluded volume is given by the leading term
in sin γ [37].

We define a general functional ℑ which represents
the orientational average 〈F (γ)〉~ω1,~ω2

of some function
F which obeys the symmetry condition described earlier:

ℑ =

∫

~ω1

∫

~ω2

F (γ) f1 (~ω1) f2 (~ω2) d~ω1d~ω2, (36)

For complete generality at this stage, it is not assumed
that the particles interacting are of the same type, so a
different trial function is used to represent the orienta-
tional distribution function of each class of particle. In
polar coordinates Equation (36) then becomes

ℑ =

∫

φ1

∫

φ2

∫

θ1

∫

θ2

F (γ)fOTF,1 (θ1) fOTF,2 (θ2)

× sin θ1 dθ1 dφ1 sin θ2 dθ2 dφ2

= K

∫

φ1

∫

φ2

∫

θ1

∫

θ2

F (γ) cosh(α1 cos θ1) cosh(α2 cos θ2)

× sin θ1d θ1 dφ1 sin θ2 dθ2 dφ2 , (37)

where the following constant has been defined

K ≡ K(α1, α2) =
α1α2

(4π)2 sinhα1 sinh α2
(38)

The presence of the product
cosh(α1 cos θ1) cosh(α2 cos θ2) leads one natu-
rally to think about the compound angle for-
mulae for the cosh function, cosh(A + B) and
cosh(A−B), cosh(A±B) = cosh A cosh A±sinh A sinhB.
The sum cosh(A+B)+cosh(A−B) leads to the product
of the cosh functions without introducing a complemen-
tary product of sinh functions. Therefore, for the case
at hand:

ℑ =
K

2











∫

φ1

∫

φ2

∫

θ1

∫

θ2

F (γ) cosh(α1 cos θ1 + α2 cos θ2) sin θ1 dθ1 dφ1 sin θ2 dθ2 dφ2

+

∫

φ1

∫

φ2

∫

θ1

∫

θ2

F (γ) cosh(α1 cos θ1 − α2 cos θ2) sin θ1 dθ1 dφ1 sin θ2 dθ2 dφ2











. (39)
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Making the change of variables τ = π − θ2, dτ = −dθ2 in the second integral only

ℑ =
K

2











∫

φ1

∫

φ2

∫

θ1

π
∫

θ2=0

F (γ) cosh(α1 cos θ1 + α2 cos θ2) sin θ1 dθ1 dφ1 sin θ2 dθ2 dφ2

−
∫

φ1

∫

φ2

∫

θ1

0
∫

τ=π

F (γ) cosh(α1 cos θ1 + α2 cos τ) sin θ1 dθ1 dφ1 sin τ dτ dφ2











. (40)

The sign of the second integral is reversed by inverting
the limits of the integration over τ , whence it can be
seen that the two integrals differ only in a label and are
therefore identical. Thus,

ℑ = K

∫

φ1

∫

φ2

∫

θ1

∫

θ2

sin θ1 dθ1 dφ1 sin θ2 dθ2 dφ2

× F (γ) cosh(α1 cos θ1 + α2 cos θ2) . (41)

At this point the azimuthal angles φ1 and φ2 could be
integrated out, however this would leave the integral in
terms of the inconvenient variables θ1 and θ2, instead of
the convenient variable γ (in terms of which the function
F is defined). Onsager rotates the coordinate frame as
illustrated in Figure 2. In this new coordinate frame, the
polar angles are θ1 and γ, the latter of which becomes one
of the integration variables (in place of the inconvenient
θ2). One of the new azimuthal angles is now integrated
out to give 2π so that the remaining one is labelled simply
φ = φ1−φ2 (with no suffix) and the expression becomes:

ℑ = 2Kπ

∫

φ

∫

θ1

∫

γ

F (γ) cosh(α1 cos θ1 + α2 cos θ2)

× sin θ1 dθ1 sin γ dγ dφ. (42)

This is Equation (B8) of Onsager’s appendix [37]. Follow-
ing this, Onsager transforms the integral with two com-
plicated (and remarkably farsighted) substitutions which
are not straightforward to illustrate. The first replaces
the integration variables θ1 and φ with new variables χ
and ψ, defined through the relations:

cos θ1 = sin χ cos (ψ + η(γ))

sin θ1 cos φ = sin χ sin (ψ + η(γ))

tan η(γ) =
α2 sin γ

α1 + α2 cos γ
; (43)

after some algebra, omitted by Onsager, one finds the
Jacobian,

∂(θ1, φ)

∂(χ, ψ)
=

∂θ1

∂χ

∂φ

∂ψ
− ∂θ1

∂ψ

∂φ

∂ψ
=

sin χ

sin θ1
. (44)

Following further algebra, one can show that the integral

is thus transformed as

ℑ = 2Kπ

π
∫

γ=0

π
∫

χ=0

2π
∫

ψ=0

F (γ) sin γ dγ sin χdχdψ

× cosh
[

(

α2
1 + α2

2 + 2α1α2 cos γ
)

1
2 sin χ cos ψ

]

.

(45)

The advantage of this is not immediately clear, however
the purpose becomes apparent following the final trans-
formation,

sin χ cos ψ = cos µ

cos χ = sin µ cos ξ , (46)

which replaces the integration variables χ and ψ with
(new) variables µ and ξ. Invoking the symmetry condi-
tion on the function F (γ), the Jacobian is derived as

∂(χ, ψ)

∂(µ, ξ)
=

sin µ

sin χ
, (47)

and after some rearrangement the integral becomes

ℑ = 2Kπ

π
∫

γ=0

π
∫

µ=0

2π
∫

ξ=0

F (γ) sin γ dγ sin µdµdξ

× cosh
[

(

α2
1 + α2

2 + 2α1α2 cos γ
)

1
2 cos µ

]

. (48)

The remarkable result of this substitution is that it leads
to a form in which the variables µ and ξ can be integrated
out entirely, leaving only the dependence on the angle γ
between the two principal molecular axes.

It is possible that some of the difficulty in following
Onsager’s method (and in generalising it) arises from the
transformations he makes. Not only is it far from clear
how the substitutions were chosen, but on reading On-
sager’s paper it is not immediately obvious that a very
substantial amount of algebra has been omitted, firstly
in obtaining the Jacobians and secondly in rearranging
the integrals to the forms given - so much, indeed, that
to include it all would create a distraction and we follow
Onsager in its omission. Once this omission is pointed
out, however, much of the opaqueness is lifted.
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The integral over ξ can be carried out directly to yield
another factor of 2π; the integral remaining, considered
as a function of µ, is of the form

∫ π

0
cosh(κ cos µ) sin µ dµ

which integrates out directly as 2 sinhκ/κ :

ℑ = 4Kπ2

π
∫

γ=0

F (γ) sin γ dγ

×







2 sinh
[

(

α2
1 + α2

2 + 2α1α2 cos γ
)

1
2

]

(α2
1 + α2

2 + 2α1α2 cos γ)
1
2







. (49)

The transformations have thus allowed all but the de-

pendence on γ to be integrated out directly. The only
remaining integration variable is γ, as originally desired;
this is the important point to understand from this part
of the derivation. Equation (49) can be rewritten as

ℑ = 8Kπ2

π
∫

γ=0

−1

α1α2
F (γ) dγ

× d

dγ

{

cosh
[

(

α2
1 + α2

2 + 2α1α2 cos γ
)

1
2

]}

, (50)

which can be integrated by parts to give

ℑ =
8Kπ2

α1α2







− cosh
[

(

α2
1 + α2

2 + 2α1α2 cos γ
)

1
2

]

F (γ)
∣

∣

∣

π

γ=0
−

π
∫

γ=0

− cosh
[

(

α2
1 + α2

2 + 2α1α2 cos γ
)

1
2

]

dF (γ)







=
8Kπ2

α1α2







[− cosh(α1 − α2) F (π)] − [− cosh(α1 + α2)F (0)] +

π
∫

γ=0

cosh
[

(

α2
1 + α2

2 + 2α1α2 cos γ
)

1
2

]

dF (γ)







.

(51)

The symmetry requirement F (γ) = F (π − γ) means
F (π) = F (0), therefore

ℑ =
8Kπ2

α1α2

{

F (0) [cosh(α1 + α2) − cosh(α1 − α2)]

+

π
∫

γ=0

cosh
(

[

α2
1 + α2

2 + 2α1α2 cos γ
]

1
2

)

dF (γ)







=
8Kπ2

α1α2

{

2F (0) sinhα1 sinhα2

+

π
∫

γ=0

cosh
(

[

α2
1 + α2

2 + 2α1α2 cos γ
]

1
2

)

dF (γ)







. (52)

From the definition of K [see Equation (38)] we can write

ℑ =
1

2 sinhα1 sinhα2

×
π

∫

γ=0

cosh
[

(

α2
1 + α2

2 + 2α1α2 cos γ
)

1
2

]

dF (γ) + F (0);

(53)

which is essentially Onsager’s expression (B14) [37]. For
identical particles α = α1 = α2 the expression for the

configurational functional may be simplified to

ℑ =
1

2 sinh2α

π
∫

γ=0

cosh
{

α [2(1 + cos γ)]
1
2

}

dF (γ) + F (0)

(54)

=
1

2 sinh2α

π
∫

γ=0

cosh
[

2α cos
(γ

2

)]

dF (γ) + F (0) .

(55)

These two last expressions will become the workhorse for
the evaluation of the orientational average for a general
function of the relative orientation F (γ) using Onsager’s
trial function, which provides a solution for the configu-
rational functional Fconf [f ]. It is important to highlight
that one is not restricted to the excluded volume form
F (γ) ∝ sin γ examined by Onsager. We use these ex-
pressions as the starting point for the illustrations that
follow; depending on the problem at hand either of the
forms given as Equations (54) and (55) may turn out to
be more convenient.

We proceed to calculate Fconf [f ] in which the excluded
volume is given by the general expression (34), which is a
polynomial in sin γ. Each term in sin γ gives an integral
which may be solved using Onsager’s method. In order
to illustrate the generality of the technique, we consider
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the case for some F (γ) = Fn defined by

F0 = F0(0) = C0, ∴ dF0(0) = 0,

Fn = Cn sinn γ ∴ d(Fn) = nCn sinn−1 γ cos γdγ.

The configurational functionals can be approximated by
using the Onsager trial function Fconf [fotf] in terms of a
sum over the corresponding integrals:

Fconf [fotf] =
1

Vm

∑

i

ℑ(Fi) ≡
1

Vm

∑

i

ℑi . (56)

Using either of Equations (54) or (55) yields trivially
ℑ0 = C0, and the first four non-trivial such integrals
for identical particles are given by

ℑ1 =
C1

2 sinh2 α

π
∫

γ=0

cosh
(

2α cos
(γ

2

))

cos γ dγ ∝ 〈sin γ〉~ω1, ~ω2
; (57)

ℑ2 =
C2

sinh2 α

π
∫

γ=0

cosh
(

α [2(1 + cos γ)]
1
2

)

sin γ cos γ dγ ∝ 〈sin2 γ〉~ω1, ~ω2
; (58)

ℑ3 =
3C3

2 sinh2 α

π
∫

γ=0

cosh
(

2α cos
(γ

2

))

sin2 γ cos γ dγ ∝ 〈sin3 γ〉~ω1, ~ω2
; (59)

ℑ4 =
2C4

sinh2 α

π
∫

γ=0

cosh
(

α [2(1 + cos γ)]
1
2

)

sin3 γ cos γ dγ ∝ 〈sin4 γ〉~ω1, ~ω2
. (60)

ℑ1 corresponds to the integral of the leading term of
the excluded volume of a cylinder or a spherocylinder (in
the latter case it is the only angular-dependent term),
and is the example considered by Onsager [37]. As will be
seen in section III, ℑ2 and ℑ4 will be useful in obtaining
an analytical expression for the order parameters S2 and
S4. The usefulness of ℑ3 is less obvious, however it turns
out that this form of integral occurs when nematogens
with attractive interactions are considered [167]. Inte-
grals ℑ1, ℑ2 and ℑ4 can also be used to provide an-
alytical solutions for molecules interacting through an
anisotropic potential resembling that proposed by Maier
and Saupe [167]. The integrals developed in the func-
tional fall into two classes: those with an odd-number
index, in which the power of sin γ in the integrand is even
(including zero), e.g., Equations (57) and (59), which can
conveniently be written in the form of Equation (55) (as
will be shown later); those with an even-number index,
in which the power of sin γ is odd, e.g., Equation (58)
and Equation (60), are conveniently written in the form
of Equation (54).

The former class, with odd-number index, give rise to
linear combinations of modified Bessel functions. The
general form of this class of integral is ℑ2n+1 for some

integer n (including zero):

ℑ2n+1 =
(2n + 1)C2n+1

2 sinh2 α

×
π

∫

γ=0

cosh
(

2α cos
(γ

2

))

sin2n γ cos γ dγ

=
(2n + 1)C2n+1

2 sinh2 α

×
π

∫

γ=0

cosh
(

2α cos
(γ

2

))

(1 − cos2 γ)n cos γ dγ.

(61)

Expanding the product (1 − cos2 γ)n, this integral de-
composes into a series of integrals of the form ℑ2n+1 =
∑

i

aiIi, where

Ii =

π
∫

γ=0

cosh
(

2α cos
(γ

2

))

cos2i+1 γ dγ , (62)

and ai are prefactors to be determined and are functions
of the index i; the actual forms of these prefactors are
not important for this discussion. In each integral Ii,
cos γ appears in the integrand raised to an odd integer
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power, 2i+1. An integer power of cos γ can be expressed
as some combination of cosines of integer multiples of γ
[e.g., cos3 γ = (cos 3γ + 3 cos γ)/4]. The integral ℑ2n+1

can be further rationalised as some combination
∑

j

ajIj

of integrals of the form

Ij =

π
∫

γ=0

cosh
(

2α cos
(γ

2

))

cos jγ dγ , (63)

where j represents an integer index, and the aj are new
prefactors to be determined. Substituting u = γ/2 this
integral becomes

Ij = 2

π/2
∫

u=0

cosh (2α cos u) cos 2ju du

=

π/2
∫

u=0

exp(2α cos u) cos(2ju)du

+

π/2
∫

u=0

exp(−2α cos u) cos(2ju)du . (64)

This may be simplified by recognising that

π/2
∫

u=0

exp(−2α cosu) cos(2ju)du

=

π
∫

u=π/2

exp(2α cos u) cos(2ju)du, (65)

which can be seen by considering the series representa-
tions of the exponentials, differing only in the sign of the
odd powers of the cosines, and noting the correspondence
between cosines in the interval [0, π/2] and the negatives
of cosines in the interval [π/2, π]. Thus Ij can be written
in the form of the standard integral representation [168]
of a modified Bessel function,

Ij =

π
∫

u=0

exp(2α cos u) cos(2ju)du = πI2j(2α) , (66)

giving a general form for the odd-number-indexed inte-
gral in terms of modified Bessel functions:

ℑ2n+1 =
π(2n + 1)C2n+1

2 sinh2 α

∑

j

aj I2j(2α) . (67)

There are several options for dealing with modified
Bessel functions [169]. Derivatives may be conveniently
obtained using the relation

2I ′ν(x) = Iν−1(x) + Iν+1(x) (68)

wherein the recurrence relation, Iν−1(x) − Iν+1(x) =
(2ν/x)Iν(x), gives in particular

∂I2j(2α)

∂α
= 2

(

I2j−1(2α) − j I2j(2α)

α

)

= 2

(

I2j+1(2α) +
j I2j(2α)

α

)

. (69)

For (x ≤ 12 or x ≤ ν), Iν(x) is most conveniently calcu-
lated using the power series:

Iν(x) =

∞
∑

i=0

1

i!(i + ν)!

(x

2

)2i+ν

. (70)

The following asymptotic expansion is preferred when
(x > 12 and x > ν) [169]:

Iν(x) =
ex

√
2πx

×



















1 +

∞
∑

i=1

(−1)i











i
∏

j=1

4ν2 − (2j − 1)2

i!(8x)i





























. (71)

In practise at the transition between the isotropic and
nematic phase a value α ∼ 10 or higher is found, so
in this case the asymptotic-expansion formula would be
the more convenient choice; for the contribution of the
leading term I2(2α), this yields

I2(2α) =
exp(2α)

2
√

πα

{

1 − 15

16α
+

105

512α2

+
315

8192α3
+

10395

524288α4
+ . . .

}

. (72)

We illustrate this class of solution by considering the
first and third integrals, ℑ1 and ℑ3, as given in Equa-
tions (57) and (59). The first is solved immediately by
inspection from Equation (66):

ℑ1 =
C1

2 sinh2 α

π
∫

γ=0

cosh
(

2α cos
(γ

2

))

cos γ dγ

=
C1

2 sinh2 α
πI2(2α) . (73)

This key result was obtained by Onsager [37]. The third
integral is almost as simple:

ℑ3 =
3C3

2 sinh2 α

π
∫

γ=0

cosh
(

2α cos
(γ

2

))

sin2 γ cos γ dγ.

=
3C3

2 sinh2 α

×
π

∫

γ=0

cosh
(

2α cos
(γ

2

))

(

cos γ − cos3 γ
)

dγ . (74)
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After substitution of cos3 γ = 1
4 (cos 3γ + 3 cos γ),

ℑ3 =
3C3

2 sinh2 α

×







1

4





π
∫

γ=0

cosh
(

2α cos
(γ

2

))

cos γ dγ

−
π

∫

γ=0

cosh
(

2α cos
(γ

2

))

cos 3γ dγ











, (75)

for which Equation (66) gives the solution by inspection:

ℑ3 =
3C3

2 sinh2 α

{π

4
(I2(2α) − I6(2α))

}

. (76)

This is a key result for systems with attractions; it con-
cludes our discussion of the first class of integral, of odd-
numbered index, ℑ2n+1.

The second class of integral, with even-numbered in-
dex, ℑ2n, appears as

ℑ2n =
2nC2n

2 sinh2 α

×
π

∫

γ=0

cosh
(

α [2(1 + cos γ)]
1
2

)

sin2n−1 γ cos γ dγ .

(77)

This type of integral can always be solved analytically in
a straightforward manner. The substitution

u = (1 + cos γ)
1
2 , dγ =

−2udu

sin γ
, cos γ = u2 − 1 , (78)

is made so that the integral becomes

ℑ2n =
2nC2n

sinh2 α

×

√
2

∫

u=0

cosh
(

α
√

2u
)

(

u2 − 1
)

u(2u2 − u4)n−1du;

(79)

the limits of integration the power 2(n−1) of sin γ is nec-
essarily even, allowing the replacement of the sine term,
via (1 − cos2 γ)n−1, by (2u2 − u4)n−1. The terms in u
multiplying the cosh term will combine to form a sim-
ple polynomial, so that the integral decomposes into a
combination of integrals ℑ2n =

∑

k

akIk, where

Ik =

√
2

∫

u=0

cosh
(

α
√

2u
)

ukdu, (80)

and the ak are prefactors to be determined. Each integral
Ik can be routinely evaluated by successive integrations

by parts and will clearly give rise to a sum of terms in-
volving sinh(2α) and cosh(2α). The integral ℑ2, given as
Equation (58), is evaluated in this way as

ℑ2 =
C2

sinh2 α

π
∫

γ=0

cosh
(

2α cos
(γ

2

))

sin γ cos γ dγ

=
C2

sinh2 α

×
{

sinh(2α)

[

2

α
+

6

α3

]

− cosh(2α)

[

5

α2
+

3

α4

]

− 1

α2
+

3

α4

}

. (81)

This is a key result for rod-like molecules. Similarly, ℑ4,
given as Equation (60), is evaluated as

ℑ4 =
4C4

sinh2 α

{

cosh(2α)

[

315

α8
+

585

α6
+

123

α4
+

4

α2

]

− sinh(2α)

[

630

α7
+

330

α5
+

30

α3

]

−315

α8
+

45

α6
− 3

α4

}

.

(82)

We note that this class of integral may also be evaluated
from the order parameters using the addition theorem for
spherical harmonics: ℑ2 may be evaluated from S2; ℑ4

from S4 and S2 as will be shown in Section III.

G. General free energy with the Onsager trial
function

By assuming that the orientational distribution func-
tion can be represented by the Onsager trial function, we
are able to express the free energy of the nematogenic
fluid explicitly as a function of α. Up to this point we
have assumed an excluded-volume interaction expressed
as a sum of terms proportional to increasing powers of
sin γ. Here we take this sum only as high as the fourth

power, i.e., Vexc =
4
∑

i=1

Ci sini γ, requiring the integrals ℑ1

to ℑ4 that we calculated explicitly in Section II F. This
is sufficiently general to accurately describe the excluded
volume interaction of most commonly encountered cylin-
drically symmetrical model mesogens. The term in C1

corresponds to the case studied by Onsager describing
the free energy of a system of long rods. For hard sphe-
rocylinders the terms in C0 and C1 suffice to represent the
free energy of the system; terms up to C4 may be needed
in order to capture the effects of more complicated forms
of excluded volume.

We may write Equations (17) for the simple Onsager
free energy or (25) for the Onsager free energy with the
Parsons-Lee correction in the general form

Aotf

NkT
=

Aid
iso

NkT
+ Forient [fotf] + G (ρ) Fconf [fotf]

(83)
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where the density dependence is introduced through the
function G(ρ) which takes the simple linear form for
the original Onsager free energy or the equivalent hard-
sphere form in the case of the Parsons-Lee correction.
By using the Onsager trial function, the expressions for
Forient [fotf] and Fconf [fotf] are written as a function of

α as (see Sections II E and II F):

Forient [fotf] = ln(α cothα) − 1 +
arctan(sinhα)

sinh α
, (84)

and

Fconf [fotf] = C∗
0 + C∗

1

πI2(2α)

2 sinh2 α

+ C∗
2

1

sinh2 α

{

sinh(2α)

[

2

α
+

6

α3

]

− cosh(2α)

[

5

α2
+

3

α4

]

− 1

α2
+

3

α4

}

+ C∗
3

3π (I2(2α) − I6(2α))

8 sinh2 α

+ C∗
4

4

sinh2 α

{

cosh(2α)

[

315

α8
+

585

α6
+

123

α4
+

4

α2

]

− sinh(2α)

[

630

α7
+

330

α5
+

30

α3

]

− 315

α8
+

45

α6
− 3

α4

}

.

(85)

To determine the value of α that minimises the free
energy, the free energy is differentiated with respect to
α:
(

∂Aotf/NkT

∂α

)

NV T

= 0

=

(

∂Forient [fotf]

∂α

)

NV T

+ G(ρ)

(

∂Fconf [fotf]

∂α

)

NV T

. (86)

The terms incorporating Bessel functions are easily dif-
ferentiated making use of the rule given in Equation (69).
The derivatives of the Onsager orientational and config-
urational functionals in terms of α are written as:

∂Forient [fotf]

∂α
=

1

α
− arctan(sinhα) cosh α

sinh2 α
, (87)

and

∂Fconf [fotf]

∂α
= C∗

1

π

sinh2 α

{

α I4(2α)

3
+ I2(2α)

[

α2 + 3

3α
− cothα

]}

+ C∗
2

2

sinh2 α

{

cosh(2α)

[

2

α
+

11

α3
+

6

α5

]

− sinh(2α)

[

6

α2
+

12

α4

]

+
1

α3
− 6

α5

}

+ C∗
3

3π

4 sinh2 α

{

I4(2α)

[

2

α
− (2α2 + 60) coth α

3α2
− 60

α3

]

− I2(2α)

[

4

α
+

8 coth α

3

]}

+ C∗
4

8

sinh2 α

{

2520

α9
− 2430

α7
+

12

α5
+ sinh(2α)

[

2520

α8
+

1410

α6
+

168

α4
+

4

α2

]

− cosh(2α)

[

1260

α9
+

2385

α7
+

576

α5
+

34

α3

]

+ cothα

(

315

α8
− 45

α6
+

3

α4
+ sinh(2α)

[

630

α7
+

330

α5
+

30

α3

]

− cosh(2α)

[

315

α8
+

585

α6
+

123

α4
+

4

α2

])}

. (88)

Judicious use of the recurrence relation, Iν−1(2α) +
Iν+1(2α) = να−1 Iν(2α), enables one to express the
derivative in terms of only two modified Bessel func-
tions; here we choose to write the expression in terms

of I2 and I4. These analytical expressions can be solved
numerically for the equilibrium value of ordering param-
eter α = αeq corresponding to the minimum in the free
energy.
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The phase equilibria between an isotropic and
anisotropic (nematic) fluid states is established by in-
voking the conditions of mechanical and chemical equi-
librium. This involves equating the pressure and chem-
ical potential for the isotropic and nematic phases us-
ing the usual thermodynamic relations µ = (∂A/∂N)V, T

and p = − (∂A/∂V )N, T , where in the case of the ne-
matic state the derivatives correspond to the state with
the minimum Helmholtz free energy.

III. CALCULATING ORDER PARAMETERS, Sn

Orientational order parameters, Sn, are commonly
used to characterise the degree of order of the phase.
If the orientational distribution function of a fluid (ne-
matogen) is f(θ) then Sn can be defined by

Sn =

∫

Pn(cos(θ))f(θ)d~ω , (89)

where Pn(cos(θ)) is the nth Legendre polynomial. For ex-
ample, n = 2 yields the nematic order parameter, which
quantifies the degree of nematic order in the fluid (S2 = 0
for an isotropic fluid, and S2 = 1 for a perfectly ordered
nematic). When the Onsager trial function is used to
represent the orientational distribution, the order param-
eter becomes a function of αeq that is representative of
the equilibrium fluid. After substitution of the Onsager
trial function, the calculation of the order parameter is
facilitated by the further substitution u = αeq cos θ. For
example, the nematic order parameter is simply obtained
performing the integration by parts

S2 =
1

4 sinhαeq
(90)

×











3

(αeq)2

αeq
∫

u=−αeq

u2 cosh u du −
αeq
∫

u=−αeq

cosh u du











= 1 − 3 coth αeq

αeq
+

3

(αeq)2
. (91)

This simple but useful relation has been noted in refer-
ences [108, 161]. In similar fashion, S4 is evaluated from
P4(cos θ) =

(

35 cos4 θ − 30 cos2 θ + 3
)

/8 as

S4 = 1 +
45

(αeq)2
+

105

(αeq)4
− cothαeq

(

10

αeq
+

105

(αeq)3

)

.

(92)
The parameter S4 can be used to quantify the degree of
cubatic order in a system [170].

We can use S2n as an alternative route to calculate
the integrals ℑ2n, which were introduced in Section II F,
using the addition theorem for spherical harmonics:

Pn(cos γ) = Pn(cos θ1)Pn(cos θ2)

+ 2

n
∑

m=1

(n − m)!

(n + m)!
cos (m(φ1 − φ2))

× Pm
n (cos θ1)P

m
n (cos θ2). (93)

We illustrate here the case for ℑ2. Taking the angle av-
erage (denoted by angular brackets) of P2 yields

〈P2(cos γ)〉 ~ω1, ~ω2
=S2

2

=

∫∫

P2(cos θ1)P2(cos θ2)f( ~ω1)f( ~ω2)d ~ω1d ~ω2

=

∫

P2(cos θ1)f(θ1)d ~ω1

∫

P2(cos θ2)f(θ2)d ~ω2 .

(94)

The sum of terms in the azimuthal angles vanishes on
integration since it leads to a sum of integrals from each

of which the term
2π
∫

φ=0

cos(mφ)dφ = 0 can be factored.

If P2(cos(γ)) is written in terms of sin γ as
P2(cos(γ)) = 1 − (3/2) sin2 γ, then

S2
2 = 〈P2(cos γ)〉 ~ω1, ~ω2

= 1 − 3

2

〈

sin2 γ
〉

~ω1, ~ω2
. (95)

A re-examination of integrals outlined in Section II F re-
veals that

〈

sin2 γ
〉

~ω1, ~ω2
= ℑ2/C2, which means that we

can express S2 as a simple function of ℑ2 or, alterna-
tively, that we can write the solution for ℑ2 [Equation
(81)] directly from Equation (91) as

ℑ2 =
2C2

3

{

1 −
[

1 − 3 coth αeq

αeq
+

3

α2
eq

]2
}

. (96)

Equation (81) reduces to this expression if the double-
angle formulae, cosh(2α) = cosh2 α + sinh2 α and
sinh(2α) = 2 sinhα cosh α, are invoked, together with
the identity coth2 α = 1 + 1 / (sinh2 α).

In similar fashion, we can determine the order param-
eter S4. The fourth Legendre polynomial is defined as

P4(cos γ) =
1

8

(

35 cos4 γ − 30 cos2 γ + 3
)

=
1

8

(

35 sin4 γ − 40 sin2 γ + 8
)

. (97)

We can therefore express S4 as the average

〈P4(cos γ)〉 ~ω1, ~ω2
= S2

4 =
35

8

〈

sin4 γ
〉

~ω1, ~ω2

− 5
〈

sin2 γ
〉

~ω1, ~ω2
+ 1 ; (98)

and since, by definition,
〈

sin4 γ
〉

~ω1, ~ω2
= ℑ4/C4 while

〈

sin2 γ
〉

~ω1, ~ω2
= ℑ2/C2 as noted earlier, this gives

ℑ4 =
8C4

35

{

S2
4 +

10

3

(

1 − S2
2

)

− 1

}

= 8C4

{

2

(αeq)2
+

63

(αeq)4
+

270

(αeq)6
+

315

(αeq)8

− 2 coth αeq

[

15

(αeq)3
+

165

(αeq)5
+

315

(αeq)7

]

+ coth2 αeq

[

2

(αeq)2
+

60

(αeq)4
+

315

(αeq)6

]}

. (99)

The higher integrals ℑi for even i can be obtained in a
analogous manner from the corresponding Si.
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IV. ALGEBRAIC EQUATION OF STATE FOR
THE NEMATIC PHASE OF HARD

SPHEROCYLINDERS

There are a number of reasons why the Onsager theory
for isotropic-nematic phase equilibria is not commonly
employed in engineering applications. Firstly, the On-
sager treatment is not easy to follow, particularly if one
is interested in generalising the approach to deal with
more realistic systems and include attractive interactions.
Even if the general expression for the Helmholtz free en-
ergy of the system is specified using the relatively sim-
ple Onsager trial function (Section II G), the expression
involves Bessel integrals, and a numerical solution of a
non-linear equation is required in order to establish the
equilibrium orientational state of the system. Though
the other thermodynamic properties, such as the pressure
and chemical potential, can then easily be obtained from
density derivatives of the free energy, a subsequent nu-
merical solution for the conditions of equality of pressure
and chemical potential is necessary in order to establish
the isotropic-nematic equilibria. The numerical difficul-
ties are particularly severe in the case of multicomponent
mixtures. The common equations of state used in prac-
tice to describe fluid phase equilibria [171] are algebraic
functions of the thermodynamic variables (e.g., tempera-
ture, density, and composition) and the molecular param-
eters, which makes the solution of the coexistence much
easier; the van der Waals [172] equation is the seminal
example of an algebraic (in this case cubic in density)
equation of state of the fluid phase.

In order to make the Onsager approach more amenable
within an engineering context it is highly desirable to
cast the thermodynamic expressions in a closed algebraic
form. We achieve this by expanding the general Onsager
free energy developed in Section IIG in terms of the pa-
rameter α to provide a tractable solution of the equi-
librium state of the system. This is relatively straight-
forward once the orientational Forient [fotf] and config-
urational Fconf [fotf] functionals have been expressed in
terms of α. For a typical nematic state α ∼ 10 which
corresponds to a nematic order parameter of S2 ∼ 0.73
[Equation (90)]; S2 at the isotropic-nematic transition
is usually greater than 50%. In the case of the orienta-
tional entropy [cf. Equation (84)], the last two terms are
negligible when α >> 1:

Forient [fotf] = ln(α) − 1 + ln (coth α)

+
arctan(sinhα)

sinh α
≈ ln (α) − 1 , (100)

since ln (coth α) = ln[(eα + e−α)/(eα − e−α)] → 0,
and arctan(sinhα)/ sinhα → 0. This is the approxi-
mation originally used by Onsager [37]. When a hard
spherocylinder (cylinder of length L capped by hemi-
spheres of diameter D) is used to describe the rod-
like mesogen the excluded volume is exactly given by

Vexc(sin γ) = C0 + C1 sin γ, with C0 = 4
3πD3 + 2πD2L

and C1 = 2L2D [37], and the molecular volume is sim-
ply Vm = πD3/6 + πLD2/4. The configurational func-
tional [Equation (85)] for hard spherocylinders is thus
given simply by

Fconf [fotf] = C∗
0 + C∗

1

π I2(2α)

2 sinh2 α
, (101)

where C∗
0 = C0/Vm and C∗

1 = C1/Vm. This contribution
can be rigourously evaluated by means of a numerical
method to compute the modified Bessel function I2(2α).
In order to develop the desired compact algebraic form
we choose to write the Bessel function as an asymptotic
expansion in the orientational parameter α for which the
general form is given by Equation (71):

I2(2α) =
exp(2α)

2
√

πα

{

1 − 15

16α
+

105

512α2
+

315

8192α3
+ . . .

}

≈ exp(2α)

2
√

πα

{

1 − 15

16α
+ O(α−2)

}

. (102)

Clearly, only the first couple of terms in the series are re-
quired to describe a highly ordered nematic state where
α >> 1. Substituting the truncated asymptotic expan-
sion into Equation (101) yields

Fconf [fotf] ≈ C∗
0 + C∗

1

√

π

α

{

1 − 15

16α

}

, (103)

When the orientational and configurational functionals
are approximated by their forms for moderately ordered
systems (Equations (100) and (103)), the Helmholtz free
energy [Equation (83)] becomes a simple function of α
and the usual thermodynamic variables (N , V , and T ):

A

NkT
≈ Aid

iso

NkT
+ ln (α) − 1

+ G(ρ)

[

C∗
0 + C∗

1

√

π

α

{

1 − 15

16α

}]

. (104)

The ideal isotropic term is the simple function of den-
sity Aid

iso/NkT = ln (Vρ) − 1 as defined earlier. At
this stage we have an analytical expression for the equa-
tion of state for the nematic phase of a system of hard
spherocylinders, described in terms of the Onsager trial
function. In order to describe the high density states
of molecules with a moderate aspect ratio (L/D), the
Parsons-Lee relation (see Section II B) is used where
G(ρ) = G(η) = (Ahs

res/NkT )/8 = (4η − 3η2)/[8(1 − η)2],
in terms of the packing fraction η = ρVm.

The degree of orientational order of the system at equi-
librium is quantified by the value of α = αeq which cor-
responds to a minimum in the nematic free energy. This
is found in the usual way from an examination of the
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derivative of Equation (104) with respect to α:

∂

∂α

(

A

NkT

)

N,V,T

=
∂Forient [fotf]

∂α
+ G(ρ)

∂Fconf [fotf]

∂α

≈ 1

α
+ G(ρ)C∗

1

√
π

(

45

32 α5/2
− 1

2 α3/2

)

= 0 . (105)

For a fixed molecular aspect ratio this yields α as a
function of the packing fraction, as intuitively expected.
Defining the orientational variable Ξ = α1/2 and the co-
efficient ζ = −G(ρ)C∗

1

√
π/2 we can rearrange Equation

(105) as

1

Ξ5

{

Ξ3 + ζ Ξ2 − 45ζ

16

}

= 0, (106)

where the part of the expression enclosed in braces con-
stitutes a cubic equation. This can be solved analytically
to determine the equilibrium value of α = αeq as a func-
tion of the density of the fluid. Since our solution for α
is in terms of a cubic polynomial, it is obvious that we
will obtain three roots. The solution can be cast in the
elegant geometric form of the general solution of a cubic
which has been recently revised by Nickalls [173]:

αj =
1

9

{

ζ − 2 ζ cos

[

2π

3
j +

1

3
arccos

(

1215

32 ζ2
− 1

)]}2

,

(107)
where the value of j = {0, 1, 2} denotes each root. As
will become clear from an examination of the phase di-
agram shown in Section V, the root corresponding to
the largest value of α, α1 = αeq (j = 1), characterises
the orientational order of the equilibrium nematic state
with the lowest free energy. The roots representing the
lowest and intermediate values of α would correspond
to those for the “isotropic” (a small but finite α is ob-
tained, when in reality α = 0) and “metastable” states,
though these should be viewed with considerable caution
as the free-energy expression is obtained via truncation
of the asymptotic expansion used to evaluate the modi-
fied Bessel function; this approximation is only valid for
the larger values of α. At high densities there are always
three positive solutions to Equation (107). As the den-
sity is lowered progressively below the isotropic-nematic
transition one obtains a single positive real root (corre-
sponding to a low “isotropic” value of α) and two imagi-
nary roots; clearly the truncation that has been used for
orientational and configurational terms does not provide
a physically realistic representation of the system in this
region. The equilibrium Helmholtz free energy of the ne-
matic state A(αeq) is obtained from Equation (104) with
the corresponding root for αeq [cf. Equation (107) with
j = 1]. One should mention that though Onsager [37]
also examined a simple algebraic solution for α in terms
of density by inverting the power series [cf. Equation
(88) of his seminal paper], the adequacy of the approach
is poor due to the simplifications made, see Figure (8).

As we will show, the use of a cubic solution does not
compromise the accuracy of our approach in describing
the nematic phase.

The corresponding expression for the chemical poten-
tial can also be expressed in closed algebraic form from
the corresponding derivatives of the Helmholtz function:

µ

kT
=

∂

∂N

(

A

kT

)

V T

=
µ0

kT
+ ln (η) + ln (αeq) − 1

+ G′(ρ)

[

C∗
0 + C∗

1

√

π

αeq

{

1 − 15

16αeq

}]

, (108)

where the constant term is µ0/ kT = ln [V/(4Ω Vm)], and
the derivative of the Carnahan and Starling residual free
energy is G′(ρ) = G′(η) = µres

hs /(8 kT ) = (3η3 − 9η2 +

8η)/[8(1 − η)
3
]. For the isotropic state the orientational

term in Equation (108) is zero, ln (αeq) − 1 = 0, and the
terms between the square brackets are functions of the
molecular parameters (D and L) and correspond sim-
ply to twice the average second virial coefficient, i.e.,
2B∗

2,iso = C∗
0 + πC∗

1/4 [cf. Equation (35)].
The pressure p can also be obtained from the ther-

modynamic relationship A = Nµ − pV . The equation
of state of the nematic phase of hard spherocylinders is
thus expressed in the form of the compressibility factor
as

Z =
pV

NkT
=

µ

kT
− A

NkT

= 1 +
Zres

hs

8

[

C∗
0 + C∗

1

√

π

αeq

{

1 − 15

16αeq

}]

, (109)

where the residual Carnahan and Starling [165] hard-
sphere term is given in its usual form Zres

hs = µhs
res/kT −

Ahs
res/NkT = 2

(

2η − η2
)

/(1 − η)
3
. It is important to re-

iterate that the expression is given in terms of the value
of αeq for the nematic phase with the minimum free en-
ergy. For the isotropic state the term in square brackets
again corresponds to 2B∗

2,iso. Interestingly, as the degree
of orientational order characterised by αeq is obtained
from a cubic equation, the pressure of the nematic phase
is essentially a cubic equation of state in the orientational

parameter α. The well-known van der Waals equation of
state for vapour-liquid equilibria [172] is a cubic equa-
tion of state in the density (molar volume) of the fluid;
the widespread use of semi-empirical equations of state
based on van der Waals’ approach in engineering appli-
cations stems from the fact that they can all be cast in a
cubic form in the density. Though our analytical equa-
tion of state for the nematic phase cannot be expressed
as a cubic function of density (it is based on the quartic
Carnahan and Starling form), the fact that the degree of
orientational order is obtained from a simple cubic equa-
tion in α will certainly make our approach much easier to
apply in practice. An analogous approach can be devel-
oped to provide an algebraic equation of state for more

Page 20 of 40

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

21

realistic models of mesogens which include attractive in-
teractions (as we will show in a forthcoming publication);
this allows one to examine vapour-liquid-nematic equilib-
ria in thermotropic liquid crystalline systems.

V. RESULTS AND DISCUSSION

We are now in a position to examine the adequacy of
the use of an Onsager trial function to represent the ori-
entational order in uniaxial molecules within an Onsager
(or scaled Parsons-Lee) description of the nematic state.
The original second-virial theory of Onsager [37] is ap-
plicable only to molecules with large aspect ratios. The
suitability of using a scaled Onsager free energy [81–83]
in representing the isotropic-nematic phase transition in
systems of hard ellipsoids [42, 83, 174, 175], hard sphero-
cylinders [11, 84], hard cylinders (oblate or prolate) [137–
140], cut spheres [170], and hard-sphere chains [112, 176]
has already been confirmed. Scaled Onsager theories
which go beyond the original two-body theory of Onsager
by including the higher-body terms in an approximate
fashion provide an impressive description of the pressure
and densities of the coexisting isotropic and nematic state
(typically to an accuracy of better than 5% for molecules
of moderate aspect ratio), and of the equation of state
and degree of orientational order of the nematic phase.
In the vast majority of these studies the orientational
distribution function f(θ), which characterises the equi-
librium ordered state, is obtained numerically by min-
imising the free energy, without constraining f(θ) to be
of a particular functional form (e.g., by using the Gaus-
sian or Onsager trial functions). In this case the integrals
that define the orientational [Equation (6)] and configu-
rational [Equation (16)] functionals are solved without
need of approximations or assumptions. A full numeri-
cal implementation of a scaled Onsager approach is not
always the most advantageous in terms of ease of use,
particularly if one is eventually interested in phase equi-
libria of mixtures which require intensive computation.

The benefits of using a prescribed functional form for
the orientational distribution function (such as that pro-
posed by Onsager) arise from a reduction of the computa-
tional demands of the problem from that of a variational
problem [i.e., the evaluation of the convolution integral
in Equation (27)] to the solution of the closed form equa-
tion [such as Equation (86)]. In this section we show
that the use of an Onsager trial function to describe the
orientational distribution f(θ) ≈ fotf(θ) does not com-
promise the adequacy of a scaled Onsager description of
the isotropic-nematic transition. We also examine the
accuracy of the truncated free energy where one can use
a simple cubic solution for the orientational parameter α
in terms of the density and molecular parameters, further
simplifying the computations. Though the focus here is
on a system of hard spherocylinders, the approach is ex-
pected to be just as applicable to other simple models of
mesogenic molecules.

0.40 0.42 0.44 0.46 0.48 0.50
0

10

20

30

40

 

 

FIG. 3: The dependence of the variational parameter α on
the packing fraction η = ρ Vm for a system of hard sphero-
cylinders of aspect ratio L/D = 5 determined from the scaled
Onsager (Parsons-Lee) free energy [Equation (83)] described
with the Onsager trial function fOTF(θ). This represents the
full numerical solution of the modified Bessel function for the
state with the minimum free energy [Equation (85)]. The con-
tinous curve corresponds to the stable nematic phase, and the
dashed curve to the metastable/unstable states. The circles
denote the isotropic-nematic phase transition (ηI = 0.405 and
ηN = 0.430), and the square the bifurcation point (η = 0.435).

As we have already mentioned, the excluded volume for
a pair of hard spherocylinders is given by Vexc(sin γ) =
C0+C1 sin γ, with C0 = 4

3πD3+2πD2L and C1 = 2L2D.
This simplifies the expression for the equilibrium value of
the orientational parameter α (cf. Equation (88)) as the
terms C2, C3 and C4 are all zero in this case. We have de-
termined the equilibrium value αeq for hard spherocylin-
ders of aspect ratio L/D = 5 over a range of packing
fractions η by solving Equation (85); standard quadra-
ture is used to evaluate the Bessel function and a mod-
ified Newton-Raphson method [177] is used to solve for
the roots in α. The density dependence of αeq for the sta-
ble nematic phase of molecules with L/D = 5 is shown
in Figure 3. As in the case of the truncated Onsager free
energy developed in Section (IV), three positive roots
for the values of α, corresponding to turning points in
the free energy, are obtained at intermediate densities
(see Figure 4 for a packing fraction of η = 0.42): the
largest value is that of the nematic phase with the min-
imum free energy, the intermediate value is that of the
metastable/unstable state, and the root α = 0 is that of
isotropic phase. For densities below the point of inflec-
tion seen in Figure 3 only the stable isotropic solution
α = 0 is found (see Figure 4 for η = 0.4). At densities
above a bifurcation point (which for the L/D = 5 sys-
tem is at η ∼ 0.435) two roots are found corresponding
to the stable nematic and isotropic states as can be seen
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0.42
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A'

FIG. 4: The derivative A′ = ∂(A/NkT )/∂α of the scaled On-
sager (Parsons-Lee) free energy [Equation (88)] as a function
of the variational parameter α for a system of hard sphero-
cylinders of aspect ratio L/D = 5. The stationary values
in the free energy correspond to the points where the curves
cross the x axis. In the case of the intermediate packing frac-
tion of η = ρ Vm = 0.42 three roots can be seen: α = 0,
the isotropic state; α = 1.444, the metastable/unstable ne-
matic state; α = 8.823, the stable nematic state. For the
lower packing fraction of η = 0.4 only the isotropic solution
α = 0 is seen , while at (and beyond) the bifurcation density
η = 0.435 only the isotropic α = 0 and stable nematic solution
α = 13.07 are seen. The curves are symmetrical about the
vertical axis, with equivalent negative roots in α (not shown).

in Figure 4, where the roots for ∂(A/NkT )/∂α = 0 for
three different values of the packing fraction η are shown.
The Onsager trial function is symmetrical about α = 0 so
equivalent negative roots are also found. The location of
the isotropic-nematic transition is determined by numer-
ically solving the conditions of mechanical and chemical
equilibrium (see Section II G). The resulting coexistence
values of the pressure, chemical potential and packing
fractions of the isotropic and nematic states, and the cor-
responding values of α and nematic order parameter S2

for hard spherocylinders ranging from L/D = 3 to 1000
are reported in Table I. The value of α at the isotropic-
nematic transition for the L/D = 5 system (see Figure
3) is αeq = 11.69; in the case of the isotropic phase there
is no orientational order which corresponds to α = 0.
The metastable root for α is also shown in Figure 3, and
can be seen to extend from the transition point to lower
values of α; this branch does not correspond to a stable
phase.

The orientational order of the phase is characterised by
the nematic order parameter S2 [cf. Equation (89)]. The
simple parametric relation (91) in terms of α is obtained
when the orientational distribution is described with the
Onsager trial function fotf(θ). The density dependence
of S2 for L/D = 5 hard spherocylinders is depicted in

0.30 0.35 0.40 0.45 0.50
0.0
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0.4

0.6

0.8
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S2

FIG. 5: The dependence of the nematic order parameter
S2 =

〈

3

2
cos2 θ −

1

2

〉

on the packing fraction η = ρ Vm for
a system of hard spherocylinders of aspect ratio L/D = 5.
The behaviour obtained from a scaled Onsager (Parsons-Lee)
approach using the Onsager trial fotf(θ) is represented by the
dashed curve, and that determined from the full numerical so-
lution for f(θ) [178] is represented by the continuous curve;
the dotted curves represent the metastable/unstable nematic
branches. The filled circles denote the coexisting isotropic and
nematic phases, and the filled square the bifurcation point
(η = 0.435). The Monte Carlo simulation data [11] for the
isotropic (open circles) and nematic (open triangles) are also
shown for comparison.

Figure 5. The order parameter obtained from a scaled
Onsager approach using fotf(θ) is compared with that
determined from a full numerical solution of Equation
(27) for f(θ) [178], and with Monte Carlo simulation
data [11]. The degree of orientational order predicted
from the scaled Onsager free energy (Equation 25) with
the Onsager trial function is seen to be close to that ob-
tained using the full numerical solution of f(θ), particu-
larly at higher densities. A small difference can be seen
at the isotropic-nematic transition, where a slight over-
estimate of S2 is found when the Onsager trial function
is used (S2,otf = 0.765 compared with the full numerical
value of S2 = 0.668). Kayser and Raveché [51] have also
pointed out that the bifurcation point obtained with the
Onsager trial function is the same as the one obtained
in the case of the full numerical solution for f(θ), as
can been seen in Figure 5; in this case, however, we are
using the Parsons-Lee free energy (which is suitable for
molecules with moderate aspect ratios) rather than the
original Onsager form (which is accurate only in the long-
molecule limit). The Parsons-Lee description clearly pro-
vides a good representation of the exact simulation data,
even when f(θ) is approximated by fotf(θ). As has been
noted by Williamson [166], the prediction of the order pa-
rameter from this type of scaled Onsager theory has the
inherent problem that the free energy depends only on
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FIG. 6: The equation of state for a system of hard sphero-
cylinders of aspect ratio L/D = 5, where P ∗ = PVm/kT is
the reduced pressure and η = ρ Vm is the packing fraction.
The behaviour obtained from a scaled Onsager (Parsons-Lee)
approach using the Onsager trial fotf(θ) is represented by the
dashed curve, and that determined from the full numerical so-
lution for f(θ) [178] is represented by the continuous curve;
the two curves are virtually indistinguishable at the scale of
the main figure but can be differentiated in the inset. The dot-
ted curve shown in the inset represents the “van der Waals
loop” found for the metastable/unstable nematic branches.
The Monte Carlo simulation data [11] for the isotropic (cir-
cles), nematic (triangles), and smectic (squares) phases are
also shown for comparison.

the angle between two particles, and the angular depen-
dence of higher virial contributions is only approximate;
further treatment of many-body correlations is needed to
improve predictions of the degree of order in the system,
particularly in the case of shorter molecules. Despite this
the predictive capability of a scaled Onsager approach is
impressive; the agreement with simulation improves pro-
gressively as the molecular aspect ratio increases, due to
the fact that the order of the nematic phase at the tran-
sition increases with aspect ratio (see Table I).

The equation of state for L/D = 5 hard spherocylin-
ders is shown on Figure 6 as a pressure-density isotherm.
One can clearly distinguish the lower-density branch of
the isotropic phase and the higher-density branch of the
nematic. The description obtained using the scaled On-
sager free energy with the Onsager trial function fotf(θ)
and the full numerical solution of f(θ) [178], are com-
pared with the Monte Carlo simulation data [11]. The
scaled Onsager free energy clearly provides an excel-
lent representation of both the isotropic and nematic
branches. The solution obtained with fotf(θ) is virtu-
ally indistinguishable from the full numerical solution for
most of the nematic branch, though differences are ap-
parent at the isotropic-nematic transition: the use of the
Onsager trial function leads to a small overestimate of
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FIG. 7: The dependence of a) the variational parameter α and
b) the nematic order parameter S2 =

〈

3

2
cos2 θ −

1

2

〉

on the
packing fraction η = ρ Vm for a system of hard spherocylinders
of aspect ratio L/D = 5 determined from the cubic solution
of [Equation (83)]. The closed-form expression is obtained
from our truncated free energy [Equation (104)] using the
Onsager trial function fotf(θ). The branches corresponding
to the larger values of a) α and b) S2 correspond to the stable
nematic state; three roots can be clearly seen for packing
functions above the minima in these curves.

the pressure and density of the nematic phase at coex-
istence (see the inset of Figure 6). The description ob-
tained with the trial-function method thus suggests that
the transition is predicted to be more first order than it
really is. Considering the approximate nature of the ap-
proach the agreement with simulation is again found to
be remarkably good over the full range of densities of the
isotropic liquid and nematic phases. The metastable and
unstable parts of the isotherm obtained with the scaled
Onsager free energy described in terms of fOTF(θ), which
are also included in the inset of Figure 6, resemble a van
der Waals loop though one should point out that the
high-pressure point now represents a bifurcation point
and not a maximum (see reference [51]). At a packing
fraction of about η = 0.48 the system of L/D = 5 hard
spherocylinders can be seen to exhibit a further transition
from a nematic to a smectic A phase (layered structure)
[11]. In the usual Onsager description, the free energy
is a functional of the molecular orientational distribution
but not on the position. As a consequence such an ap-
proach cannot be used to describe smectic layering, fail-
ing to capture the nematic-smectic transition (see Figure
6). Onsager-like free-energy functionals can be developed
to provide an excellent description of the smectic phase
(e.g., see reference [80]), but this is beyond the scope of
this work.
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It is hoped that we have now convinced the reader that
a good description of the isotropic and nematic phases of
molecules with moderate to large aspect ratios can be
achieved by using a scaled Onsager free energy when one
approximates the orientational distribution function by
the Onsager trial function (in terms of a single orienta-
tional parameter α). One may also have noticed that
the orientational order at the isotropic nematic transi-
tion tends to be large (α > 10). As was shown in Sec-
tion IV the form of the Onsager (and scaled Onsager)
free energy can be further simplified by retaining only
the dominant terms for large values of α. By employing
the Onsager trial function in the limit of large α one can
obtain a simple closed-form cubic solution for the equilib-
rium value αeq in terms of the density and the molecular
parameters, which corresponds to the orientationally or-
dered state with the minimum free energy [see Equation
(107)]. Here, we show that such a truncated free energy
[Equation (104)] still provides an accurate description of
the nematic branch beyond the isotropic-nematic tran-
sition, where the orientational parameter characterising
the stable states is large. The cubic form obtained for
the value of α corresponding to a turning point in the
free energy indicates that up to three roots are possible.
At high density three real positive roots are obtained,
the largest value of which corresponds to αeq for the
nematic state with the minimum free energy (see Fig-
ure 7 a) in the case of L/D = 5 hard spherocylinders
for packing fractions η > 0.425). In the case of lower
density states only a single small positive root (α ∼ 1)
is obtained which should be discarded (see Figure 7 a)
in the case of L/D = 5 hard spherocylinders for pack-
ing fractions η < 0.425). This would correspond to an
“isotropic” state with low orientational order; one would
not expect to obtain the true solution for the isotropic
phase of α = 0 as the truncated free energy is only valid
for large values of α. One may also have noticed that in
the case of the solution obtained with the truncated free
energy [Equation (104)], the system does not exhibit the
bifurcation point which is seen with the full free energy
(cf. Figure 3); this is again a consequence of approxima-
tions involved in the truncation. In Figure 7 b) we show
the direct correspondence between the values of the ne-
matic order parameter S2 and the roots for α resulting
from the simple relation (91). The density dependence
of α and S2 obtained for L/D = 5 hard spherocylinders
with the Onsager trial function fotf(θ) from the scaled
Onsager (Parsons-Lee) free energy [Equation (83)] (cf.
Figures 3 and 5) is compared with the corresponding cal-
culations with the truncated free energy [Equation (104)]
in Figures 8 and 9. It is very gratifying to find that the
results obtained with the truncated free energy are virtu-
ally indistinguishable from those of the full free energy at
the isotropic-nematic transition and over the entire range
of stability of the nematic phase. A clear difference is,
however, observable for the metastable/unstable states:
as we have already mentioned the truncated free energy
does not reproduce the correct isotropic solution α = 0

0.40 0.42 0.44 0.46 0.48 0.50
0

10

20

30

40

Onsager

 

 

Odijk

FIG. 8: The dependence of the variational parameter α on
the packing fraction η = ρ Vm for a system of hard sphero-
cylinders of aspect ratio L/D = 5 determined with the On-
sager trial function fotf(θ). The dashed curve is obtained
from our truncated version of the scaled Onsager (Parsons-
Lee) free energy [Equation (104)], while the continuous curve
is obtained from the full numerical solution of the modified
Bessel function [Equation (83)]; the dotted curves denote the
metastable/unstable states. The circles denote the isotropic-
nematic phase transition, and the square the bifurcation point
(η = 0.435). The results obtained with approximate expres-
sion (110) proposed by Onsager [37], and with the similar re-
lation suggested by Odijk [91] are also shown for comparison
as thin continuous curves.

nor the bifurcation point. Since the proper isotropic free
energy is used to construct the isotropic-nematic phase
diagram the solutions in the metastable/unstable regions
are of no further consequence.

The closed-form truncated free energy [Equation (104)]
is clearly seen to provide a good representation of the
nematic order when compared with the simulation data
which are also included in Figure 9; a slight overestimate
is seen close to the isotropic-nematic transition as men-
tioned earlier. The behaviour obtained with the simple
algebraic relation for α proposed by Onsager for highly
ordered states (Equation (88) of reference [37]) is also
shown on Figure 8. Onsager essentially rearranges the
asymptotic series for the modified Bessel function of the
configurational functional as a power series in the inverse
of α [cf. our Equation (102)], invokes the condition of a
minimum in the free energy, retaining only terms up to
α−1, and inverts the series to obtain α as a function of
the square of a reduced density. In order to apply this
approach with the Parsons-Lee free energy for hard sphe-
rocylinders, one simply has to replace Onsager’s reduced
density bc with G(ρ) C∗

1 π/4:

α ≈ 4

π
(bc)2 − 45

8
=

π

4
[G(ρ)C∗

1 ]
2 − 45

8
(110)
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FIG. 9: The dependence of the nematic order parameter
S2 =

〈

3

2
cos2 θ −

1

2

〉

on the packing fraction η = ρ Vm for a sys-
tem of hard spherocylinders of aspect ratio L/D = 5 with the
Onsager trial function fotf(θ). The behaviour obtained from
our truncated version of the scaled Onsager (Parsons-Lee) free
energy [Equation (104)] is represented by the dashed curve,
and that from the numerical solution of the modified Bessel
function [Equation (83)] is represented by the continuous
curve; the dotted curves represent the metastable/unstable
nematic branches. The filled circles denote the coexisting
isotropic and nematic phases, and the filled square the bi-
furcation point (η = 0.435). It is pleasing to see that the
two approaches provide a virtually indistinguishable descrip-
tion for the isotropic-nematic transition and the stable ne-
matic branch. The Monte Carlo simulation data [11] for the
isotropic (open circles) and nematic (open triangles) are also
shown for comparison.

A very similar expression (identical to that of Onsager
but without the constant term −45/8) was also derived
by Odijk [91] with a Gaussian trial function. As pointed
out by Onsager, the description of the density depen-
dence of α obtained in this way is rather poor (see Figure
8). The point of inflection is not reproduced with such an
approach, but as one would expect Onsager’s expression
(110) approaches the correct limiting behaviour at high
density where the orientational order is high; the Odijk
expression does not provide the correct asymptotic limit.
It is interesting to point out that though in common with
Onsager (and Odijk) we discard terms beyond α−1 to
truncate the free energy (see section IV), our resulting
cubic solution describes the point of inflection and pro-
vides a very good description of the density dependence
of α for the whole of the stable nematic branch. As
a final demonstration of the adequacy of our truncated
scaled Onsager free energy in describing the isotropic-
nematic phase equilibrium we again examine the equa-
tion of state for L/D = 5 hard spherocylinders. In Fig-
ure 10 we show the density dependence of the reduced
pressure determined from the Onsager trial-function ap-
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FIG. 10: The equation of state for a system of hard sphe-
rocylinders of aspect ratio L/D = 5, where P ∗ = PVm/kT
is the reduced pressure and η = ρ Vm is the packing frac-
tion, described in terms of the Onsager trial function fotf(θ).
The behaviour obtained from our truncated version of the
scaled Onsager (Parsons-Lee) free energy [Equation (104)] is
represented by the dashed curve, and that from the numeri-
cal solution of the modified Bessel function [Equation (83)] is
represented by the continuous curve; the two approaches yield
virtually indistinguishable results for this system. The dot-
ted curve shown in the inset represents the “van der Waals
loop” found for the metastable/unstable nematic branches.
The Monte Carlo simulation data [11] for the isotropic (cir-
cles), nematic (triangles), and smectic (squares) phases are
also shown for comparison.

proach with the full [Equation (83)] and truncated [Equa-
tion (104)] scaled Onsager (Parsons-Lee) free energies,
together with the corresponding simulation data. As
expected from the analysis of the nematic order, the
isotherms obtained with the full and truncated free en-
ergies are almost indistinguishable. Both approaches are
found to accurately describe the isotropic and nematic
branches of the isotherm, with a slight overestimate of
the pressure and density of the nematic phase at the tran-
sition. In summary one can say that the truncated free
energy, which can be expressed in closed algebraic form,
provides a simple yet accurate description of the ordering
phase behaviour in such systems. The dependence of the
isotropic-nematic transition on the aspect ratio of hard
spherocylinders described with the Onsager trial function
using our truncated free energy is compared to that ob-
tained with a numerical solution of the Bessel function
in Table I.

VI. CONCLUSIONS.

We have introduced and developed an approach which
takes the form of a general Onsager type free-energy
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functional that accounts for the repulsive interactions of
cylindrically symmetrical mesogens [see Equation (25)].
An analytic form of the free energy is developed by use
of the trial function originally suggested by Onsager [37].
A number of novel results are presented, indicating the
true general nature of the Onsager approach. These new
features will be invaluable in studies of real liquid crys-
talline materials, where attractive interactions have to be
incorporated and a computationally straightforward de-
termination of fluid phase equilibria is desired. We shall
be providing further details of the development of an al-
gebraic description of the thermodynamics of mesogens
with both repulsive and attractive interactions in future
work.

The Onsager trial-function method is first assessed
by comparison with simulation data for hard sphero-
cylinders. The results from the analytical form of the
scaled Onsager equation of state for hard spherocylin-
ders (L/D = 5) are in good agreement with those from
the simulation, indicating that the Parsons-Lee correc-
tion to the Onsager’s approach is suitable to describe
ordering transitions for mesogens with realistic aspect
ratios. It is worth pointing out that the free-energy ex-
pression here obtained extends the original scope of On-
sager, since we show that the trial-function method can
be generalised to describe different molecular geometries
such as chains and discs, not just the leading excluded
volume term for rod-like paricles originally examined by
Onsager [37]. The only requirement for this is that we
express the excluded volume as a series of powers in sin γ.

As mentioned at the beginning of the paper we seek to
have an equation of state suitable for the intensive cal-
culations routinely required in engineering applications.
Though the analytical form of the free energy in terms
of modified Bessel functions presented in the first part of
the paper can be solved numerically, an alternative sim-
ple algebraic solution is developed. The Euler-Lagrange

extremum condition for the free-energy minimum is trun-
cated to obtain a cubic equation in the orientational pa-
rameter α. The solution of the cubic expression pro-
vides a simple algebraic form for the equilibrium value
αeq in terms of the thermodynamic variables and molec-
ular parameters, and as a consequence the equation of
state becomes an algebraic function of thermodynamic
state. This is equivalent to using a van der Waals-like
equation of state.

Finally, we would like to emphasise that the Onsager
approach for the configurational entropy functional has
been recast in a general form that provides a way to
analytically solve arbitrary orientational functionals ex-
pressed in terms of series of sini γ. This should not be
confused with the expansion of the excluded volume con-
tribution (namely sin γ) in spherical harmonics which is
often employed to numerically determine the configura-
tional contributions.
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TABLE I: Isotropic-nematic transition obtained from the scaled Onsager (Parsons-Lee) free energy with the Onsager trial-
function method for different values of aspect ratio L/D. The packing fractions (η = ρVm) of the coexisting states are give,
together with the pressure p, chemical potential µ, and orientational parameter α. The Fconf [fOTF] is computed via the full
modified Bessel function [FMB, Equation (83)], and the truncated algebraic cubic solution [CUB, Equation (104)].

L

D
ηiso ηnem

[

PVm

kT

]

[

µ

kT
−

µ0

kT

]

α S2

3 FMB 0.531349 0.546528 13.531971 33.227199 10.201939 0.734762
CUB - - - - - -

4 FMB 0.460059 0.480404 8.150812 23.618309 11.023232 0.752536
CUB - - - - - -

5 FMB 0.405413 0.429629 5.649302 18.744979 11.691228 0.765346
CUB 0.405559 0.427231 5.656625 18.763038 10.121401 0.732883

6 FMB 0.362218 0.389209 4.255137 15.828508 12.249347 0.775083
CUB 0.362287 0.387351 4.257820 15.835912 11.086108 0.753801

7 FMB 0.327240 0.356152 3.383766 13.892377 12.724235 0.782759
CUB 0.327285 0.354535 3.385180 13.896699 11.731366 0.766074

8 FMB 0.298357 0.328541 2.794577 12.512759 13.133837 0.788974
CUB 0.298390 0.327083 2.795447 12.515677 12.241277 0.774948

9 FMB 0.274115 0.305087 2.372773 11.478030 13.490992 0.794112
CUB 0.274140 0.303747 2.373361 11.480177 12.665591 0.781839

10 FMB 0.253486 0.284886 2.057465 10.671381 13.805231 0.798432
CUB 0.253506 0.283642 2.057889 10.673055 13.028232 0.787405

20 FMB 0.144371 0.172713 0.865377 7.165659 15.647120 0.820525
CUB 0.144376 0.171952 0.865450 7.166166 15.045313 0.813855

40 FMB 0.077468 0.097296 0.395940 5.269297 16.943202 0.833388
CUB 0.077470 0.096854 0.395961 5.269557 16.407917 0.828305

50 FMB 0.062887 0.079916 0.311165 4.821281 17.242794 0.836105
CUB 0.062888 0.079550 0.311179 4.821506 16.719068 0.831297

100 FMB 0.032394 0.042247 0.150154 3.693994 17.887282 0.841659
CUB 0.032394 0.042049 0.150159 3.694161 17.384548 0.837359

500 FMB 0.006639 0.008862 0.029194 1.752173 18.447704 0.846193
CUB 0.006639 0.008820 0.029195 1.752303 17.959308 0.842257

1000 FMB 0.003330 0.004458 0.014546 1.018409 18.520547 0.846764
CUB 0.003330 0.004437 0.014546 1.018535 18.033762 0.842870
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