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Abstract We will prove the following generalisation of Tverberg’s Theorem: given
a set S ⊂ R

d of (r + 1)(k − 1)(d + 1) + 1 points, there is a partition of S in k

sets A1,A2, . . . ,Ak such that for any C ⊂ S of at most r points, the convex hulls
of A1\C,A2\C, . . . ,Ak\C are intersecting. This was conjectured first by Natalia
García-Colín (Ph.D. thesis, University College of London, 2007).
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1 Introduction

In 1921 Johann Radon published a proof of Helly’s theorem in which he used what
is known today as Radon’s lemma (or Radon’s theorem): for any d + 2 points in R

d

there is always a Radon partition [7]; that is, there is a pair of disjoint subsets of
those points whose convex hulls are intersecting. This result has been the basis of a
wide number of generalisations [3]. One of these is due to Helge Tverberg in 1966
[11]. He proved that for every (k − 1)(d + 1) + 1 points in R

d there is a k-Tverberg
partition; that is, there are k disjoint subsets of those points whose convex hulls are
intersecting. In both these theorems, the given numbers were proven to be tight.

The “tolerated” versions of these theorems started to appear in 1972 when David
Larman solved a nice problem proposed to him by Peter McMullen [5]. The problem
translates, via Gale’s diagrams, to the following: for any 2d + 3 points in R

d there is
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a Radon partition with tolerance 1. That is, for any 2d + 3 points there is partition
of them in two parts A and B , such that for any point x, the convex hulls of A\{x}
and B\{x} are intersecting. This result was later generalised by Natalia García-Colin
in her Ph.D. thesis [4] with Larman as her supervisor, saying that for any (r + 1) ×
(d + 1) + 1 points in R

d there is a Radon partition with tolerance r . It is interesting
that García-Colin’s proof of the tolerated Radon theorem is very similar to Tverberg’s
original proof.

In both proofs one finds a suitable set of points that has a k-Tverberg (a tolerated
Radon) partition, and starts to move continuously one point. When the k-Tverberg
(the tolerated Radon) partition stops working, one can prove that there is a suitable
rearrangement of the partition that solves the corresponding problem.

Larman’s result has been proven to be optimal only for d ≤ 4 (see also [2]). The
best lower bound so far is 3 + � 5d

3 � which was proven by Jorge Ramírez-Alfonsín
in [8].

Other tolerated theorems have begun to appear recently, such as the tolerated ver-
sions of Helly’s and Carathéodory’s theorems (see [6] and the references therein).

In [4] the author conjectures a tolerated version of Tverberg’s theorem. In this pa-
per we give a positive answer to that conjecture. The main theorem reads as follows:

Theorem 1 Let k ≥ 2, d ≥ 1, r ≥ 0 be integers. If S ⊂ R
d is a set of at least

(r +1)(k −1)(d +1)+1 points, there is a k-Tverberg partition of S with tolerance r .

2 Preliminaries

Given a set S ⊂ R
d we denote by 〈S〉 := conv(S) its convex hull. A Radon partition

is a pair of disjoint sets A,B such that 〈A〉 ∩ 〈B〉 
= ∅. A k-Tverberg partition of S

is a partition of S in k sets A1,A2, . . . ,Ak such that
⋂k

i=1〈Ai〉 
= ∅ (a Radon par-
tition is a 2-Tverberg partition). A k-Tverberg partition with tolerance r , or simply
an r-tolerated k-Tverberg partition, of S will be a k-Tverberg partition such that the
convex hulls of the parts have a point of common even after we remove any r points
of S. We will say S captures the origin with tolerance r if 0 ∈ 〈S\C〉 for any C ⊂ S

of at most r points.

Definition 1 Given two sets S ⊂ S′ ⊂ R
d of points, and a group G, we will say that

an action of G in S′ is compatible with S if the following two properties hold.

• If A ⊂ S′ captures the origin, then gA captures the origin for any g ∈ G.
• Given a point x ∈ S, then Gx captures the origin.

It is clear that an action of G that is compatible with S is also compatible with any
subset of S.

G
g1s1 g1s2 g1s3 . . . g1sn

}
S

g2s1 g2s2 g2s3 . . . g2sn
...

...
...

...

gt s1 gt s2 gt s3 . . . gt sn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

S′
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The following lemma is the core of the main theorem’s proof.

Lemma 1 Let p ≥ 1 and r ≥ 0 be integers, S ⊂ R
p a set of n = p(r + 1) + 1 points

a1, a2, . . . , an and G a group with |G| ≤ p. If there is an action of G in a set S′ ⊂ R
p

which is compatible with S ⊂ S′, then for each ai there is a gi ∈ G such that the set
{g1a1, g2a2, . . . , gnan} captures the origin with tolerance r .

Proof We proceed by induction on r . For r = 0, the lemma is a direct conse-
quence of the Bárány–Lovász generalisation of Carathéodory theorem [1], taking
Ga1,Ga2, . . . ,Gan as the colour classes.

Searching for a contradiction, suppose the lemma is true for r − 1 and false
for r . Let {g1, g2, . . . , gt } be the elements of G with t ≤ p. Given any vector
α = (g1, g2, . . . , gn) in Gn, let α · S = {g1a1, g2a2, . . . , gnan}. Since we are sup-
posing that the lemma is false, for any α there is a subset C ⊂ α · S of r points such
that (α · S)\C does not capture the origin. For each α, let

P(α) = max|C|=r
dist

(〈
(α · S)\C〉

,0
)
.

Observe that P(α) > 0 for all α.
Let α0 be the vector in Gn such that P(α0) is minimal, and let C0 ⊂ α0 ·S be a set

of r points such that dist(〈(α0 ·S)\C0〉,0) = P(α0). If p0 is the point of 〈(α0 ·S)\C0〉
closest to the origin, p0 must be in a face of 〈(α0 · S)\C0〉. Thus, there is a set A ⊂
(α0 · S)\C0 of at most p points such that p0 is in the relative interior of 〈A〉. Let
B = (α0 · S)\A and H be a hyperplane that contains A and leaves the origin in one
of its open half-spaces H−.

By induction, since the action of G is compatible with B and B has at least pr +1
points, there is a vector β of G|B| such that β · B captures the origin with tolerance
r − 1. Since Gx captures the origin for all x ∈ B , for each b ∈ B there is a gi such
that gib ∈ H−. Consider the sets (g1β) · B, (g2β) · B, . . . , (gtβ) · B . Using |G| ≤ p

we can apply the pigeonhole principle to find a g ∈ G such that (gβ) · B contains at
least r + 1 points in H−.

Let α1 be the vector in Gn that results in changing in α0 the elements correspond-
ing to B for those of (gβ) · B . We claim that P(α1) < P (α0). Let C′ ⊂ α1 · S be a set
of r points. If in those r points there are at most r −1 of (gβ) ·B , then (α1 ·S)\C′ cap-
tures the origin. If C′ ⊂ (gβ) · B , then there is a point x ∈ H− ∩ ((gβ) · B) that is not
in C′. It follows that 〈A ∪ {x}〉 is closer to the origin than 〈A〉; thus P(α1) < P (α0),
which contradicts the minimality of P(α0). �

3 The Main Theorem

Using Lemma 1 instead of the Bárány–Lovász theorem, the proof resembles Karanbir
Sarkaria’s proof of Tverberg’s theorem [9].

Proof of Theorem 1 Let n = (r + 1)(k − 1)(d + 1)+ 1, p = (k − 1)(d + 1) and S0 =
{a1, a2, . . . , an} ⊂ R

d . Let u0, u1, . . . , uk−1 be the k vertices in R
k−1 of a regular
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simplex centred at the origin. Thus α0u0 + α1u1 + · · · + αk−1uk−1 = 0 if and only if
α0 = α1 = · · · = αk−1. For 1 ≤ i ≤ n, let bi = (ai,1) ∈ R

d+1 be the vectors in R
d+1

that result in adding a coordinate 1 to each ai .
Let S′ := {ui ⊗ bj | 0 ≤ i ≤ k − 1, 1 ≤ j ≤ n} ⊂ R

p and S := {u0 ⊗ bj | 1 ≤ j ≤
n}. There is a natural action of Zk in S′ defined as m(ui ⊗ bj ) = ui+m ⊗ bj , where
the sum is taken mod k.

Zk
u0 ⊗ b1 u0 ⊗ b2 u0 ⊗ b3 . . . u0 ⊗ bn

u1 ⊗ b1 u1 ⊗ b2 u1 ⊗ b3 . . . u1 ⊗ bn

...
...

...
...

uk−1 ⊗ b1 uk−1 ⊗ b2 uk−1 ⊗ b3 . . . uk−1 ⊗ bn

Since the set {u0, u1, . . . , uk−1} captures the origin in R
k−1, we have that Zka

captures the origin in R
p for every a ∈ S.

Given a subset A ⊂ S′ that captures the origin, since the simplex with vertices
{u0, u1, . . . , uk−1} is regular, the coefficients of the convex combination of A that
gave 0 work in gA to give 0 again for any g ∈ Zk . So gA also captures the origin.
Observe that p ≥ k. Thus, applying Lemma 1, one can choose elements g1, g2, . . . , gn

in Zk such that the set {g1(u0 ⊗b1), g2(u0 ⊗b2), . . . , gn(u0 ⊗bn)} captures the origin
with tolerance r .

We will prove that the sets Ai = {aj | gj = i} for 0 ≤ i ≤ k − 1 form the k-
Tverberg partition we are looking for. Consider Hi = {j | gj = i} the set of indices
of Ai .

Let C be a subset of {1,2, . . . , n} of r elements, and consider the sets A′
i =

{aj | j ∈ Hi\C}. We want to prove that
⋂k

i=1〈A′
i〉 
= ∅.

Since the set {ugj
⊗ bj | j 
∈ C} captures the origin, there are nonnegative real

numbers not all zero α1, α2, . . . , αn such that
∑

i 
∈C αi(ugi
⊗ bi) = 0. The last coor-

dinate of the bi is 1, so we have that
∑

i 
∈C αiugi
= 0. Thus there is a positive T such

that:

T =
∑

i∈H1\C
αi =

∑

i∈H2\C
αi = · · · =

∑

i∈Hk\C
αi.

We also know that for all 1 ≤ t ≤ d ,
∑

i 
∈C αi(ai)tugi
= 0, where (ai)t denotes the

t th coordinate of ai . So, we obtain
∑

i∈H1\C
αi(ai)t =

∑

i∈H2\C
αi(ai)t = · · · =

∑

i∈Hk\C
αi(ai)t .

If we take βi = ai

T
, we obtain that

∑
i∈Hj \C βi = 1 for all 1 ≤ j ≤ k and

∑

i∈H1\C
βiai =

∑

i∈H2\C
βiai = · · · =

∑

i∈Hk\C
βiai .

Since these are convex combinations, we have found a point in
⋂k

i=1〈A′
i〉.

We conjecture that the number of points in this theorem is tight; that is:
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Conjecture 1 For every triple of integers k ≥ 2, d ≥ 1, r ≥ 1 there is a set S of
(r + 1)(k − 1)(d + 1) points in R

d with no r-tolerated k-Tverberg partition. �

4 Remarks on the Proof

The proof of the main theorem is made by extending Sarkaria’s proof of Tverberg’s
Theorem for the tolerated case. It seems at first glance that instead of Lemma 1 one
could try to extend the Bárány–Lovász theorem in a tolerated way. However, this
turns out to be false.

False Claim Given d(r + 1) + 1 colour classes that capture the origin in R
d , there

is a colourful choice that captures the origin with tolerance r .

For, it suffices to take each colour class as the vertices of the same simplex in R
d .

Since a colourful choice has less than (r + 1)(d + 1) points, there is a vertex that was
used at most r times. Removing those points gives us a set contained in a face of the
simplex, which does not capture the origin. This also shows that the Bárány–Lovász
Theorem does not have a non-trivial tolerated version—(r + 1)(d + 1) colour classes
are necessary and sufficient—which is also interesting by itself.

If one tries to prove only the case k = 2, it is easy to see that the only action of Z2
compatible with a set S is (−1)x = −x except for positive factors. Also, the tensor
product in the main proof is not necessary, since we only need to choose between bi

and −bi in R
d+1 for each i. This yields a simpler proof of García–Colin’s result.

Sarkaria’s quick proof of Tverberg’s Theorem can be seen in its most natural
context perhaps in his subsequent paper [10]. Lemma 1 is essentially a tolerated
generalisation of the “linear” Borsuk–Ulam theorem (2.4) of that paper—viz., if an
N -dimensional representation E of a group G with |G| ≤ N does not contain the triv-
ial representation, then, under any linear G-map EN(r+1)(G) → E, some simplex of
EN(r+1)(G) shall capture the origin with tolerance r (here Et(G) denotes the join of
t + 1 copies of G)—which yields Theorem 1 for the case of the matrix representation
E = L

⊥ defined in [10]; and there may well also be a tolerated generalisation of its
“continuous” theory.
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