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METHODOLOGY

A generalised approach for high-throughput 
instance segmentation of stomata 
in microscope images
Hiranya Jayakody1* , Paul Petrie1,2, Hugo Jan de Boer3 and Mark Whitty1

Abstract 

Background: Stomata analysis using microscope imagery provides important insight into plant physiology, health 
and the surrounding environmental conditions. Plant scientists are now able to conduct automated high-throughput 
analysis of stomata in microscope data, however, existing detection methods are sensitive to the appearance of 
stomata in the training images, thereby limiting general applicability. In addition, existing methods only generate 
bounding-boxes around detected stomata, which require users to implement additional image processing steps to 
study stomata morphology. In this paper, we develop a fully automated, robust stomata detection algorithm which 
can also identify individual stomata boundaries regardless of the plant species, sample collection method, imaging 
technique and magnification level.

Results: The proposed solution consists of three stages. First, the input image is pre-processed to remove any colour 
space biases occurring from different sample collection and imaging techniques. Then, a Mask R-CNN is applied to 
estimate individual stomata boundaries. The feature pyramid network embedded in the Mask R-CNN is utilised to 
identify stomata at different scales. Finally, a statistical filter is implemented at the Mask R-CNN output to reduce the 
number of false positive generated by the network. The algorithm was tested using 16 datasets from 12 sources, con-
taining over 60,000 stomata. For the first time in this domain, the proposed solution was tested against 7 microscope 
datasets never seen by the algorithm to show the generalisability of the solution. Results indicated that the proposed 
approach can detect stomata with a precision, recall, and F-score of 95.10%, 83.34%, and 88.61%, respectively. A sepa-
rate test conducted by comparing estimated stomata boundary values with manually measured data showed that 
the proposed method has an IoU score of 0.70; a 7% improvement over the bounding-box approach.

Conclusions: The proposed method shows robust performance across multiple microscope image datasets of differ-
ent quality and scale. This generalised stomata detection algorithm allows plant scientists to conduct stomata analysis 
whilst eliminating the need to re-label and re-train for each new dataset. The open-source code shared with this 
project can be directly deployed in Google Colab or any other Tensorflow environment.

Keywords: Automatic stomata detection, Microscope imagery, Mask R-CNN, Instance segmentation, High-
throughput analysis, Machine learning
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Background

Stomata are microscopic pores in the leaf surface that 

play a critical role in controlling photosynthesis and tran-

spiration [1–3]. �e apertures of these microscopic pores 

are controlled by two guard cells that surround each 

pore. �e opening and closing of stomatal pores directly 
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impact both CO2 intake and water transpiration rate of a 

plant [4–6]. Hence, plant scientists study stomata behav-

iour to learn more about plant water stress as well as sur-

rounding environmental changes [7–9]. In addition to 

studying living plants, scientists also use plant fossil cuti-

cles to uncover climate change patterns by analysing sto-

matal density, size and behaviour [10–12].

Stomatal traits can be measured using both direct and 

indirect methods. �e direct method involves stomata 

phenotyping using microscope images, whereas the indi-

rect methods use porometers or infrared gas analysers to 

measure stomatal conductance and gas exchange to infer 

information on the aperture of the stomatal pores [8, 13, 

14]. Among the two methods, stomata analysis through 

microscope images provides additional information such 

as stomata size, shape, orientation, density and patchi-

ness [1, 6, 15–17]. However, microscope image analysis 

requires scientists to count and measure a large number 

of stomata in order to find statistically significant pat-

terns, and this proves to be time consuming and cum-

bersome work if done manually. Software solutions such 

as  ImageJ® aim to automate this process to some extent, 

but such software require experts to either manually 

mark certain features of cells or tune a set of parameters 

before measurements can take place [18–20]. Such time-

consuming steps force scientists to conduct their stud-

ies with fewer data points; thus the true potential of the 

dataset is never achieved.

Automatic detection and measurement of stomata have 

the potential to solve this problem. Reliable automation 

leads to high-throughput analysis, which allows research-

ers to conduct their work using all available data. Recent 

advancements in computer vision and machine learning 

have provided some promising solutions to achieve high-

throughput stomata analysis.

Initial attempts to automatically detect stomata in 

microscope images involved classical image processing 

approaches. After Osama and Onoe’s initial attempt in 

1985, many researchers implemented different types of 

traditional image morphology operations to achieve this 

goal [21–24]. Sole reliance on image morphological oper-

ations performs well when the background is featureless, 

and stomata are clearly visible on the image. However, 

this is not the case for many microscope datasets. More 

recently, sophisticated methods such as template match-

ing, maximum stable external region extraction and 

wavelet spot detection were utilized to identify stomata 

[25–27]. �ese methods require images to be relatively 

in focus to operate reliably. However, image quality for 

microscope images can vary dramatically depending on 

data collection and imaging techniques.

Recent developments in machine learning and Convo-

lutional Neural Networks (CNN) have opened up new 

avenues for rapid detection and measurement of stomata 

in microscope images. Research by Vialet-Chabrand 

and Brendel, and Jayakody et al. utilised Cascade Object 

Detection (COD) algorithms with Histogram of Oriented 

Gradients (HOG) and Haar-like features to detect sto-

mata [17, 28, 29]. Simple machine learning techniques 

like COD require a large amount of training data and 

have proven to be less robust than the more sophisti-

cated CNN based machine learning algorithms devel-

oped recently. With the introduction of transfer learning, 

researchers were able to re-train existing general CNN 

models for specific applications using small amount of 

data [30]. In a research area where data collection and 

ground truth generation are time consuming exercises, 

researchers quickly proceeded to adopt these novel CNN 

models. Toda et al. [31] used HOG features to find areas 

which contain stomata, and used a CNN to classify the 

state (open, partially open, closed) of Dayflower (Com-

melina communis) stomata, using a sliding window 

technique. Using a sliding window makes the algorithm 

computationally more expensive and requires additional 

parameters, especially if stomata of different sizes need 

to be detected. Sakoda et  al. developed a framework to 

analyse the genetic diversity in stomatal density of Soy-

beans (Glycine max) using a Single Shot Multi-box 

Detector (SSD) [32]. �e SSD approach eliminates the 

need for a sliding window, improving the speed of sto-

mata detection [33]. �is popular approach was also 

adopted by Bhugra et al. to detect and measure pores of 

different rice cultivars [15]. However, in all these machine 

learning based approaches, the researchers have focused 

on implementing the algorithm targeting a specific plant 

species and a uniform sample preparation and imaging 

approach, where stomata have limited variation in size 

and appearance. �is means, despite these CNN net-

works showing promising results, significant changes are 

required in order for them to be adopted for new data-

sets. �erefore, implementing a generalised methodology 

which can detect stomata across a variety of plant species 

is critical to facilitating wide-spread and rapid stomata 

analysis.

A couple of recent works focused on building gener-

alised stomata detection platforms. Casado and Heras 

introduced a stomata detection pipeline using a YOLO 

object detector [34, 35]. In addition to applying the 

YOLO detector to identify stomata on cotton, peanut 

and maize plants, they implemented a general machine 

learning pipeline using a  Jupyter® notebook environment 

where researchers can prepare, train and apply the YOLO 

algorithm to their microscope data. �e solution still 

requires new users to carry out some implementation 

work, but saves time by providing all the necessary tools 

and processes required for stomata identification. Fetter 
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et al. tackled the problem of generalising stomata detec-

tion by implementing the web tool “StomataCounter” 

[36]. Here, the authors use thousands of samples across 

multiple plant types imaged using different techniques 

and scale to implement a generalised stomata detector. A 

popular CNN classifier named AlexNet is combined with 

a sliding window to achieve the stomata detection goal. 

Although StomataCounter performs well across multi-

ple plant types, the algorithm is not robust against scale 

invariance as the scale of the stomata depends on the 

sliding window size. �us, prior knowledge of stomatal 

size is required for robust operation.

All CNN methods discussed above generate rectan-

gular bounding-boxes around detected stomata. �is is 

useful in counting the number of stomata, but if the user 

intends to investigate the morphological features of the 

stomata, additional image processing steps are required. 

�ese image processing steps cannot be easily adopted 

to new datasets without serious modifications and 

pre-processing.

Regardless of the image processing technique used 

for stomatal detection and measurement, all current 

approaches suffer from the following limitations: 

(1) None of the methods have the ability to directly 

measure the stomata boundary during the detec-

tion step. Instead, a bounding box surrounding the 

stomata is first detected. Additional morphological 

operations are required to determine the boundary 

of the stomata.

(2) None of the methods perform well across stomata 

at different scales.

(3) All methods, except for [36], focus on applying their 

method on a specific plant type using a specific data 

collection procedure. �us, the performance of the 

algorithm is drastically reduced when applied to a 

new dataset.

In this paper, we propose a robust framework to auto-

matically detect stomata and directly measure stomatal 

area, which performs well across multiple plant species 

and is robust to different image magnification levels and 

image qualities. �e proposed methodology utilizes the 

Mask R-CNN instance segmentation technique followed 

by a statistical filter to achieve this goal [37]. With this 

combination, our proposed method can: 

(1) directly determine the stomata boundary around 

the guard cell pair as shown in Fig. 1 instead of gen-

erating simple bounding boxes.

(2) detect stomata at different scales utilizing the Fea-

ture Pyramid Network (FPN) implemented within 

the Mask R-CNN algorithm [38].

(3) perform well across different plant species and sam-

ple preparation methods without any modification 

to the network.

Measuring the stomata boundary using instance segmen-

tation allows researchers to directly determine stomata 

area, orientation and axis lengths. We also introduce 

a statistical filter at the Mask R-CNN model output to 

increase the overall precision of the algorithm when pro-

cessing low quality images.

�e proposed method was successfully tested using 

over 2800 microscope images containing more than 

60,000 stomata. �e overall accuracy, precision and 

F-scores of the algorithm were measured to be 95.10%, 

83.34% and 88.61% respectively. For the first time in this 

domain, we successfully tested our algorithm against 

7 microscope image datasets fully unknown to the 

Fig. 1 a Current state-of-the-art. b Instance segmentation of proposed method. Proposed method provides further insight into the morphological 
properties of stomata.
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neural network. A detailed breakdown of the results can 

be found in section: Results.

In situations where researchers do require increased 

accuracy, especially when the data is of poor quality, we 

provide comprehensive instructions and code to re-train 

our algorithm using less than 15 training images.

Methods

�e main aim of this research is to develop a generalised 

stomata detection and measurement platform which can 

robustly carry out instance segmentation across different 

microscope datasets. Input data can be collected from 

different plant species using a range of sample prepara-

tion and imaging techniques. �e proposed methodol-

ogy provides the end-user with the number of stomata 

on a given image, along with the area and the boundary 

coordinates for each individual stoma in the image. In 

short, the stomatal detection pipeline presented in this 

paper consists of three main stages as shown in Fig.  2. 

�e first stage processes the microscope images such that 

biases introduced by different data preparation and imag-

ing techniques are removed from the input dataset. �e 

second and main stage of the pipeline, the Mask R-CNN 

algorithm, ensures stomata instances are detected across 

different scales. �e final stage which consists of a statis-

tical filter, removes false positives from the Mask R-CNN 

output, increasing the precision of the proposed solution. 

�e solution is developed using Python3 backed by the 

OpenCV, Tensorflow and Keras libraries [39–41].

Data preparation

Twelve microscope image datasets from 6 different 

sources were used for this research. �e datasets cover 

a wide variety of plant types. A summary of the sample 

preparation methods, imaging methods and the image 

quality is provided in Table 1. �e images quality catego-

ries, “high”, “medium” and “low”, were defined based on 

the following criteria.

• High: Image is sharp and detailed. Stomata are clearly 

visible.

• Medium: Image is somewhat blurred and has average 

colour contrast. However, stomata can be identified 

with respect to the background.

• Low: Image is mostly blurry. Artifacts such as 

dust, air bubbles and veins are present. Hard to dis-

cern stomata with respect to background elements.

Samples from 10 Gymnosperm species were collected at 

the Utrecht University botanical gardens. Samples were 

first macerated to the point that cuticle could be sepa-

rated, following Lammertsma et  al. [42]. After staining 

with Safranin, cuticles were mounted on glass slides in 

glycerol gelatine and imaged using a  Leica® Quantimet 

500C optical microscope at 400× and 100× zoom lev-

els. Leaves of Betula nana specimen were obtained from 

three populations grown under sub-ambient, ambient 

and elevated CO2 levels in growth chambers of the Utre-

cht Fytotron [43]. �e sample preparation mechanism is 

similar to Gymnosperm datasets. Samples were imaged 

using an  Olympus® BH-2 optical microscope using 200× 

and 400× magnification levels.

�e Ferns and Grass samples were collected at botani-

cal gardens of Utrecht University and Amsterdam, Neth-

erlands. �irteen fern and 10 grass families are included 

in the dataset. Samples were collected by applying nail 

Fig. 2 Proposed stomata detection pipeline. Image pre-processing removes colour space biases. Mask R-CNN instance segmentation detects 
stomata boundaries at different scales. Statistical filtering reduces the number of false positives generated by Mask R-CNN
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polish on leaf epidermis and lifting the print using clear 

Scotch tape. �e samples were put through a 5% chlo-

rine bleach before being mounted on microscope slides. 

�e samples were imaged using a  Leica® DM6000-B 

microscope.

�e UNSW-2019 dataset consists of samples from Vitis 

vinifera, Prunus armeniaca, Citrus sinensis and Vinca 

major. �e samples were collected by applying nail pol-

ish on the leaf surface and lifting the imprint using clear 

tape. �e tape was then mounted on a glass slide and 

imaged using an  Aperio® XT Brightfield Slide Scanner at 

40× zoom.

�e Eucalyptus dataset containing 27 species was 

sourced from publications by Schulze et  al. and de 

Boer et  al. [44, 45]. �e samples were imaged using an 

 Olympus® BX51 optical microscope. �e Poplar and 

USNM/USBG datasets were sourced from Fetter et  al.’s 

publication on stomata detection [36]. �e Cuticle and 

Ginkgo datasets were sourced from cuticle work carried 

out by Barclay et al. [12, 46]. �e Google Images dataset 

consists of image search results for search query “stomata 

microscope”.

Altogether 3065 microscope images containing over 

60,000 stomata was used for training and testing pur-

poses. During the algorithm testing phase, some of these 

datasets were sub-divided based on image quality, which 

resulted in 16 datasets (see Table 3).

Stage 1: Image pre-processing

�e quality and the colour of microscope images vary 

significantly depending on the sample collection and 

imaging techniques. �e main aim of the image pre-

processing step is to remove any colour space biases in 

the input image. �is ensures that the final Mask R-CNN 

model is robust to images having unbalanced colour 

spaces (for example, high red-shift or high yellow-shift 

as shown in Fig.  3b and g). Contrast Limited Adaptive 

Histogram Equalisation (CLAHE), a common histogram 

equalisation method, is applied to the input image before 

being handed over to the Mask R-CNN model [47]. �e 

exact steps of the process are as follows. 

(1) Convert the 3-channel colour image from RGB 

space to YCbCr space.

(2) Apply Contrast Limited Adaptive Histogram Equal-

isation (CLAHE) on Y-channel.

(3) Convert the image from YCbCr to RGB space.

(4) Convert the image from RGB space to Grayscale 

and store it as a 3-channel .jpeg image.

�e resulting image is fed into the Mask R-CNN which 

expects a 3-channel array as the input. �e pre-process-

ing steps assist Mask R-CNN to train without any colour 

space biases. Fig.  2 shows how the pre-processing step 

affects the image colour space.

Stage 2: Mask R-CNN Algorithm

�e proposed solution utilizes the Mask R-CNN algo-

rithm to detect stomata. Compared to object detection 

algorithms such as SSD, YOLO, RCNN, Fast-RCNN and 

Faster-RCNN, which produce a single bounding box 

around the object of interest, Mask R-CNN focuses on 

instance segmentation, where the true boundary of the 

object is identified regardless of its shape [33, 35, 37, 

48–50]. �us, Mask R-CNN allows us to directly meas-

ure stomata orientation, axes lengths and overall area 

without any additional image processing steps. Such 

additional information further simplifies the process 

of developing algorithms which aim to measure finer 

characteristics of stomata, such as the pore opening. In 

Table 1 Details of the datasets used for this research

DIC: Di�erential Interference Contrast; SEM: Scanning Electron Microscope

Dataset Quality Preparation method Imaging method Source

Gymnosperm 400× Med–High Macerate and stain Optical This paper

Gymnosperm 100× Low–High Macerate and stain Optical This paper

Poplar High Nail polish DIC Fetter et al. [36]

Cuticle Low–Med. Clear and stain Brightfield Barclay et al. [12]

Ginkgo High Lamina peel SEM Barclay and Wing[46]

USNM/USBG Low–Med. Nail polish DIC,SEM Fetter et al. [36]

Betula Nana Low–Med. Macerate and stain Fluorescence This paper

Eucalyptus Medium Macerate and stain Fluorescence This paper

Ferns Low–Med. Nail Polish, 5% Cl bleach Brightfield This paper

Grass Medium Nail Polish, 5% Cl bleach Brightfield This paper

UNSW-2019 Med.–High Nail polish Brightfield This paper

Google Images Medium Unknown Unknown Google
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addition to instance segmentation, Mask R-CNN lever-

ages the capabilities of the Feature Pyramid Network 

(FPN) concept which uses the pyramidal nature of CNNs 

to detect objects at different scales [38]. Hence, Mask 

R-CNN is able to detect stomata of different sizes with-

out having any prior knowledge on the magnification 

level of the input microscope image.

�e Mask R-CNN implementation by Matterport 

is used as the base model for this work [51]. For this 

application, a Mask R-CNN model pre-trained on the 

MS-COCO dataset was employed to carry out transfer 

learning. 157 microscope images across 6 datasets were 

manually labelled to train the Mask R-CNN model. �e 

manual stomata labelling process was carried out using 

the VGG Image Annotator (VIA) tool [52]. �e aim was 

to train a general enough model using the minimum 

amount of training data by leveraging the capabilities of 

transfer learning. More information on the training data 

is provided in Table 2.

Several changes were made to the default Mask-RCNN 

training settings. An additional step of image augmenta-

tion was introduced to randomly rotate 2/3 of the input 

Fig. 3 Images representing each dataset. Dataset name and quality provided in each sub-figure
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images, to ensure that the trained model is robust to 

stomata orientation. �e anchor box scales for each fea-

ture pyramid level were set to [12, 24, 48, 96, 192] pix-

els in order to detect stomata of different sizes. �e 

object detection confidence threshold was set to 50%. A 

batch size of 2 and a learning rate of 0.002 was adopted 

based on available computing resources. �e model was 

trained for 85 epochs, where the input image was scaled 

such that the largest dimension is set to 1024 pixels. �e 

model generated at epoch 51 was selected for testing pur-

poses, to avoid any overfitting to training data. Additional 

details regarding the training setup can be found at https 

://githu b.com/Smart -Robot ic-Vitic ultur e/MaskS tomat a.

Stage 3: Statistical �lter

�e Mask R-CNN algorithm outputs stomata detections 

along with corresponding boundary masks. In leaf epi-

dermis microscopy, the stomata size does not vary much 

within an individual microscope image as the magnifica-

tion is fixed and actual stomatal sizes are relatively uni-

form within a single leaf. However, the magnification 

level (and the resulting stomata size) can vary across a 

single dataset. In addition, the natural size of stomata var-

ies between species. Nonetheless, the FPN embedded in 

Mask R-CNN, of which the main task is to detect objects 

at different scales, attempts to detect stomata at differ-

ent scales for any given input image. �is could result in 

false positives, especially when the image quality is low 

and other stomata-like structures are present (air bub-

bles, leaf structure) in the image. �erefore, a statistical 

filter is introduced to determine the actual scale of the 

stomata in a given image. �e filter utilizes the prediction 

confidence values and the corresponding object areas to 

determine the appropriate stomata size range for a given 

image. Once the suitable stomata area range is calculated, 

all predictions outside this range are rejected. �e follow-

ing steps are implemented in the statistical filter: 

(1) Using Mask R-CNN output, select detections where 

the detection confidence is above the 90th percen-

tile. Let’s call this collection {A}.

(2) Calculate the average stomata area value for {A}.

(3) From {A}, select the items where the stomata area is 

smaller than the average stomata area. Call this col-

lection { As}.

(4) From {A}, select the items where the stomata area is 

larger than the average stomata area. Call this col-

lection { Al}.

(5) If there are more items in { Al } compared to { As }, 

this indicates that the image contains “large” sto-

mata. Now calculate the optimal stomata area 

(area_optimal) for that image by taking the average 

area value for { Al}.

(6) If there are more items in { As } compared to { Al }, 

this indicates that the image contains “small” sto-

mata. However, there could be a lot of “small” sto-

mata detected due to noise in the image. Hence 

compare the average detection confidence score of 

{ As } and { Al }. If the detection confidence score is 

still higher in { As }, we can safely conclude that the 

image contains “small” stomata. Now calculate the 

optimal stomata area (area_optimal) for that image 

by taking the average area value for { As}.

(7) From the original detections, select all stomata 

where the stomata area is, 0.65 × area_optimal < 

stomata area ≤ 1.5 × area_optimal, despite their 

detection confidence value. Call this stomata collec-

tion { Af }.

(8) {Af  } includes all detections selected by the statisti-

cal filter. { Af  } is the final output of the algorithm.

�e pseudo-code for the statistical filter is presented in 

Algorithm 1.

 

 

 

 

Table 2 Image data used for Mask R-CNN training and validation

Dataset Training 
images

As a % of dataset Val. images Avg. 
stomata/
image

Gymnosperm 
40×

43 15.14% 14 6

Gymnosperm 
10×

25 4.99% 16 27

Cuticle 28 4.20% 19 32

Ginkgo 15 7.61% 10 10

USNM/USBG 31 4.44% 30 26

Poplar 15 8.50% 10 33

Total 157 − 99 -

https://github.com/Smart-Robotic-Viticulture/MaskStomata
https://github.com/Smart-Robotic-Viticulture/MaskStomata
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across these four datasets are 98.42%, 93.80%, and 96.05% 

respectively, despite the variation in image quality. �e 

next 5 datasets in Table 3 contain images partially known 

to the system. �is means a small percentage of images 

from these datasets were used for training, but they do 

not represent all plant types contained in those datasets. 

Hence, for partially known datasets, the trained neural 

network contains information on the sample collection 

and imaging procedure, but lacks plant leaf epidermis 

information for each individual species within the data-

set. �e average precision, recall and F-score for these 5 

datasets are 94.60%, 79.76% and 86.48% respectively. 

�e last seven datasets in Table 3 include mostly low to 

medium quality data never seen by the neural network. 

�us, the results provide important insight to the gen-

eralised nature of the proposed solution. �is is the first 

time a stomata detection algorithm was tested against 

this many datasets unknown to the network. Apart from 

two low quality datasets, the proposed algorithm is able 

to produce 80+% F-scores for datasets unknown to the 

network, which shows the robustness of the proposed 

stomata detection pipeline. �e precision values for the 

unknown datasets vary between 97.52% and 78.91% with 

the lowest precision value produced for the low qual-

ity ferns dataset (Ferns:  low). Compared to previous 

tests, the recall values on average were 70.09% for data 

unknown to the neural network. Datasets with low image 

quality exhibit lower recall values, suggesting that the 

algorithm may be rejecting some stomata detections due 

to low confidence in the prediction due to quality.

Results in Fig. 5a indicate that the algorithm maintains 

the precision of the detections despite the varying image 

 

�e coefficient values of 0.65 and 1.5 were chosen empir-

ically to represent a 50% variation from the optimal_area 

value (i.e.: 0.65 × 1.5 ≈ 1.0 and 1.0 × 1.5 = 1.5 ). �e 

same coefficients were used across every experiment pre-

sented in this paper.

Results

A series of experiments were conducted to evaluate the 

performance of the proposed Mask R-CNN based sto-

mata identification system. �e inference tasks were 

carried out on an Ubuntu 16.04 operating system, with 

60 GB memory and an NVIDIA Tesla T4 GPU hosted 

on the Google Cloud Platform (GCP). On average, the 

algorithm takes 734ms to completely process an image. 

All input images were resized such that their width is set 

to 1024 pixels. �e complete code for the project can be 

accessed at: https ://githu b.com/Smart -Robot ic-Vitic ultur 

e/MaskS tomat a.

Stomata detection performance

�e stomata detection performance of the proposed 

methodology was evaluated against 12 different micro-

scope datasets. Some datasets were separated into new 

sub-groups based on image quality as discussed in the 

previous section, resulting in 16 evaluation datasets. Fig-

ure  4 provides some examples which show the robust-

ness of the proposed methodology against the image 

quality and stomata size. �e final results are presented 

in Table 3. Out of the 16 datasets, the first 4 datasets are 

well known by the system, where data used for train-

ing sufficiently captures the stomata characteristics in 

these datasets. �e average precision, recall, and F-score 

https://github.com/Smart-Robotic-Viticulture/MaskStomata
https://github.com/Smart-Robotic-Viticulture/MaskStomata
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quality. �ere is a performance drop in the recall value, as 

the algorithm has less confidence in its predictions (thus, 

rejecting them) as the image quality goes down. Figure 5b 

show how the detection performance varies based on 

how much a dataset is known to the model. Again, the 

conservative nature of the statistical filter ensures that 

the average precision variation is maintained within 10% 

across all datasets. However, the recall values show a 

higher variation with the average value dropping nearly 

22% when dealing with unknown datasets. 

�e results presented in Table  3 also suggest that the 

proposed algorithm performance is more sensitive to 

image quality compared to other factors such as sample 

collection mechanism and stomata scale. �e reduction 

of precision and recall is especially visible for low and 

medium quality datasets such as Ferns: low, Grass, Betula 

nana and Cuticle: low. 

Stomata instance segmentation performance

A key feature of the proposed algorithm is its ability to 

estimate the stomata boundary, thus providing an accu-

rate result for the stomata area. In order to test the per-

formance of this feature, the proposed algorithm was 

applied to 79 images where the stomata boundaries 

were manually marked to provide ground truths. �ese 

79 images were sourced from datasets partially and fully 

known to the model. �e IoU between the ground-truths 

and the stomata estimations were measured. Results 

were compared with that of a bounding box approach 

utilizing the same neural network architecture. Table  4 

summarises the results. �e proposed method easily out-

performs the bounding box approach by 7% for IoU. Note 

that the results include errors due to false positives and 

false negatives. Figure 6 provides a visual example of how 

instance segmentation is far closer to the ground truth 

compared to a bounding box approach.

E�ect of the statistical �lter

As discussed in "Methods" section, we introduced a sta-

tistical filter to the stomata detection pipeline to improve 

the final output. �e results presented in Table 3 include 

the statistical filter. Nevertheless, it is important to ana-

lyse how the statistical filter affects the final output of the 

system; thus, tests were conducted repeating the stomata 

detection process without the aid of the statistical filter. 

�e corresponding unfiltered results for two datasets are 

shown in Table  5. �e results show that the statistical 

filter clearly improves the precision of the algorithm. In 

both cases, the precision increases by around 10 % with 

the filter. However, the recall value drops by a similar 

percentage during this process. �is is expected, as the 

algorithm is now being “more careful” before confirm-

ing stomata detections. In a practical sense, higher preci-

sion outweighs recall when there is a lot of data available. 

With higher precision, users can arrive at more accu-

rate results relating to microscope images. Nonetheless, 

if needed, the user can sacrifice precision for recall by 

bypassing the statistical filter in the system.

Fine-tuning the algorithm for a New Dataset

Results so far show that the proposed methodology per-

forms well with different types of microscope datasets, 

including datasets never before seen by the neural net-

work. However, there may be cases where the researchers 

Table 3 Performance of the proposed stomata detection algorithm

Dataset Quality Known to model Num. of stomata Precision (%) Recall (%) F-Score (%)

Gymnosperm 400× Med–High Yes 944 95.87 98.41 97.12

Gymnosperm 100×: low Low Yes 10597 98.89 91.92 95.28

Gymnosperm 100×: high High Yes 7713 98.15 94.30 96.18

Poplar High Yes 5042 98.34 96.11 97.22

Cuticle: low Low Partially 8181 93.46 73.51 82.29

Cuticle: med Medium Partially 2631 94.80 89.43 92.04

Ginkgo High Partially 2802 96.02 82.65 88.84

USNM/USBG: low Low Partially 2569 92.70 70.65 80.19

USNM/USBG: med Medium Partially 16083 95.20 82.31 88.30

Betula nana Low–Med No 683 85.62 75.25 80.06

Eucalyptus Medium No 1088 93.22 83.46 88.07

Ferns: low Low No 964 78.91 51.24 62.14

Ferns: med Medium No 713 90.15 74.47 81.56

Grass Low–Med No 3288 85.20 55.66 67.32

UNSW-2019 Med–High No 2242 91.53 85.77 88.56

Google Images Medium No 1496 97.52 76.34 85.64
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Fig. 4 Some results for the proposed methodology. The method works well with stomata of difference sizes and quality

Fig. 5 Stomata detection performance variance a based on image quality. b based on how well the dataset is known to the Mask R-CNN model. In 
both cases, recall drops while precision value is maintained
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would require higher accuracy and recall values than the 

ones produced by the proposed solution. For example, a 

researcher might have a limited number of low quality, 

microscope images where it is important to extract as 

much information as possible from available data. Results 

in Table  3 suggest that low quality images can have an 

impact on the performance, especially on recall. Hence, 

for such scenarios, we have provided a set of instructions 

on fine-tuning our stomata detector model with transfer 

learning. �e relevant instructions can be found here: 

https ://githu b.com/Smart -Robot ic-Vitic ultur e/MaskS 

tomat a. Table  6 presents how the model performance 

improves with transfer learning. For the low-quality 

Ferns dataset, we marked the ground truth on 12 training 

images containing around 14 stomata per image, using 

the VGG Image Annotator tool [52]. �e labelling pro-

cess took approximately 28 min. �en the Mask R-CNN 

was retrained for 40 epochs, with our existing stomata 

model providing the initial training weights. �e fine-

tuned algorithm drastically improves both precision and 

recall. Similar improvements were also found for the low-

quality Grass dataset where 15 new training images (with 

labelling taking approximately 48 min) were introduced 

to the system.

Table 4 Instance segmentation performance of the proposed 
method

Results are compared with a similar network structure which generates 

bounding boxes instead of instance polygons

Num. of images Num. of stomata Proposed 
method

Bounding box

IoU IoU

79 2386 0.70 0.63

Fig. 6 a Mask R-CNN overlap with ground-truth. b Bounding-box overlap with ground-truth. Lighter areas show overlap between ground-truth 
and the estimated output. Note: darker areas in both images represent false positives and false negatives

Table 5 Effect of the statistical filter on stomata detection performance

The statistical �lter improves the precision of the algorithm while sacri�cing recall

Dataset Quality No filter (%) With Statistical filter (%)

Precision Recall F-Score Precision Recall F-Score

Ginkgo High 88.15 92.00 90.00 96.02 82.66 88.83

Eucalyptus Medium 83.17 90.24 86.56 93.23 83.46 88.07

Table 6 Performance improvement after fine tuning the stomata model to a specific dataset

Dataset Quality Train images New precision (%) New recall (%) New F-score (%)

Ferns: low Low 12 87.98 (+9.07) 81.13 (+29.89) 84.42 (+22.10)

Grass Low–Med 15 90.91 (+5.71) 82.68 (+27.02) 86.60 (+19.28)

https://github.com/Smart-Robotic-Viticulture/MaskStomata
https://github.com/Smart-Robotic-Viticulture/MaskStomata
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Discussion

Results presented in the previous section indicate that 

the proposed Mask R-CNN based methodology performs 

well across different datasets containing stomata of vary-

ing size and quality. �e test conducted using 7 micro-

scope datasets previously not seen by the CNN model 

further solidifies the generalisable nature of the approach.

�e results also suggest that image quality is the main 

factor affecting the performance of the solution. In addi-

tion to the reduction in the recall value, boundary esti-

mation performance may also decrease in low quality 

images. However, more training images from low quality 

datasets could easily improve the performance of the sys-

tem. Table 6 provides a couple of good examples support-

ing this case.

All input images were resized such that the image 

width is set to 1024 pixels. �e authors expect this meth-

odology to perform at its best when the original input 

image size is in this range.

Conclusions

�is paper presented a fully automated, high-throughput 

stomata instance segmentation methodology for micro-

scope images. �e proposed methodology combined a 

statistical filter with an FPN backed Mask R-CNN algo-

rithm to accurately estimate the stomata boundary of 

a wide-variety of plant types. �e algorithm was thor-

oughly tested against different datasets collected using 

different sample collection and imaging techniques. For 

the first time in this domain, the algorithm also tested 

against 7 datasets containing features never experienced 

by the network. Results show that the proposed method 

has an overall stomata detection precision, recall and 

F-score of 95.01%, 83.34% and 88.61% respectively, in a 

test conducted using over 2800 images containing over 

60,000 stomata.

�e next step would be to use these results to accu-

rately measure other morphological traits of the sto-

mata such as pore dimensions and guard cell widths. �e 

authors also intend further improve the model presented 

in this paper by adding more training samples from addi-

tional plant types.
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