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Abstract: We investigate the maximum number 

C(P) of arguments of P that must be tested in 

order to compute P, a Boolean function of d 

Boolean arguments. We present evidence for the 

general conjecture that C(P) = d whenever 

P(O d) ~ P(l d) and P is left invariant by a tran- 

sitive permutation group acting on the arguments. 

A non-constructive argument (not based on the con- 

struction of an "oracle") proves the generalized 

conjecture for d a prime power. We use this 

result to prove the Aanderaa-Rosenberg conjecture 

by showing that at least v2/9 entries of the 

adjacency matrix of a v-vertex undirected graph G 

must be examined in the worst case to determine if 

G has any given non-trivial monotone graph 

property. 

I .  INTRODUCTION 

A fundamental problem of computer science is 
to determine the re la t i ve  ef f ic iencies of d i f fe rent  
data structures for representing a given problem. 
For example, Hopcroft and Tarjan [4] mention that 
determining i f  a v-vertex graph is planar from i t s  
adjacency'matrix requires ~(v 2) operations; t f  
th is should be contrasted with Tarjan's [ I I ]  l inear 
O(v)-time algorithm for p lanar i ty  based on an adja- 
cency- l is t  representation of graphs. S imi lar ly ,  
Holt and Reingold [3] haw~ shown that 
( v+ l ) ( v - l ) / 4  inspections of the adjacency matrix 
of a directed graph G are required in the worst 
case to determine i f  G contains a directed cycle. 

Motivated by these resul ts,  Arnold Rosenberg 
conjectured [ I0 ]  that, for any nontr iv ia l  graph 
property, representing a graph by an adjacency 
matrix forces an algorithm which recognizes the 
property to make ~(v 2) "inspections of the matrix 
in the worst case. Aanderaa disproved this conjec- 
ture by showing that less than 3v inspections 
are needed to determine i f  a directed v-vertex 
graph contains a vertex with in-degree v-I and 
out-degree 0 (a "sink").  To revive the conjec- 
ture, Aanderaa suggests that the graph properties 
should be constrained to be "monotone": I f  the 
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ftWe use the "omega" notation for lower bounds as 
the inverse of the "big-O" notation for upper 
bounds: f(v) =~(v 2) means v 2=O(f(v)) or equi- 
valently (3c>O)(Vv) f (v)~cv 2. 

property holds for a graph G = (V,E) i t  must also 
hold for all graphs G'= (V,E') such that E c E' 
This eliminates the "sink" counterexample, and- 
this paper provides a proof to the: 

Aanderaa-Rosenberg Conjecture [I0]: In the 

worst case, Q(V z) operations are required to 

determine from the adjacency matrix of a graph G 

whether it has a property P which is (i) nontri- 

vial, (ii) monotone, (iii) independent of the 

labellings of the vertices, and (iv)independent of 

the existence of self-loops (see [6]). 

There is in fact no evidence to contradict the 
stronger conjecture that each of the v ( v - l ) / 2  
entries of the adjacency matrix of an undirected 
graph (v (v - l )  entries for a directed graph) must 
be examined in the worst case. In [ I ] ,  [5 ] ,  and 
[7] ,  many properties sat isfy ing ( i ) - ( i v )  above are 
shown to require ~(v 2) operations, and 
Kirkpatrick [5] shows that ~(v log2(v)) opera- 
tions are always required, giving support to the 
original conjecture. These results are a l l  
obtained by oracle construction techniques, with 
the exception of Best, Van Emde Boas, and Lenstra 
[ I ] ,  who independently discovered the approach we 
w i l l  use here. 

In this paper we present a generalization of 
the Aanderaa-Rosenberg Conjecture, prove this 
generalized conjecture for Boolean properties hav- 
ing a prime-power number of arguments. We use this 
resul t  to prove the or iginal Aanderaa-Rosenberg 
conjecture. 

2. DEFINITIONS 

Functions and Vectors 

Let P(xl . . . . .  xH~ be a Boolean function (pro- 
perty) mapping {O,l~a onto { 0 , I } ,  denoted 
P: {0 , I }  a ~ {0 , I } .  We say "P(x) holds" or "x has 
property P" i f f  P ( x ) = l .  Let ~ x < y  de~ote ~ 
x i < Y  i for l < i < B ,  with x, ~~E-~O,I} a. Let 0 
(re%pectively -I) -represent~the d-b i t  vector of ~ 
zeros (respectively ones). We say that P is 
monotone i f  x<£ implies P(x)<P(~) for a l l  
x, £ Tn { 0 , I ~ .  The weight ~w~) of a vector 
is the number of ones in x. 

Permutation Groups 

We denote permutations and permutation groups 
by lower and upper case Greek le t te rs ,  respect ivel~ 



The symmetric group of al l  permutations of degree 
d is denoted by E d. Let IFI denote the order 
of a group F, and FI <F2 means that FI is a 
subgroup of F2. A per~tation group F acting 
on the set {l . . . . .  d} is transitive i~, for each 
pair i ,  j of integers in {l . . . . .  d}, there is a 
permutation aEF such that  a ( i ) = j .  

I f  P: { 0 , I }  d ~ { 0 , I } ,  then F(P) denotes 
the s t a b i l i z e r  of  P: 

?(P) : {aE%dl (VxE{O, l }d )p (x  I . . . . .  x d) 

= P(Xa(1) . . . . .  Xa(d))}  

For x E { O , l }  d and F~2d l e t  xF represeDt 
the o rb i t  o f  x under the act lon of F on {0,1}u:  

x? = { yE {0 ,1 }d l  (3OEF) (V iE { I  . . . . .  d})x i =ya ( i )  }. 

For example, note that £ExF(P) implies that  
P (x )=P(£ ) ,  but not conversely in general. 

Graphs 

An undirected graph G = (V,E) consists i~ ~ a 
vertex s e T y 2 - - ~ z s i z e  v, and a set E C V~ j 
of  edges ( V ( - )  denotes the set of  2-subsets of 
V). Thus "mul t ip le  edges" and "se l f - loops"  are 
spec i f i ca l l y  excluded. The adjacency matrix fo r  
G is a Boolean vector of l e ~ h  (~), with one 
position for each edge in V~L), which is 1 i f f  
that edqe is in E. The complete ~ K v is 
(V,V(2)~, the empty graph E v i s ~ B ) .  

Let E~ 2) denote the permutation group act- 

ing on V(2; fSZ~r induced by the symmetric group 
acting on V so that a ( { i , j } ) : { a ( i ) , a ( j ) }  
each i ,  jEV using transparent notation. Two 
graphs G = iV,E) and G'=(V,E') are isomorphic, 
w r i t ~  G~G', i f  there exists a permutation 
aEZ~ ~I such that ( { i , j }~E)  ~ (a ( { i , j } )~E ' ) .  

A Boolean function P: {O,l}d,~,{O,l}, where 
= (~) is a 9raph property i f  z~ L} s t (P ! .  In- 

zuit ively, this means that P does not depena upon 
the labelling of the vertices, or, equivalently 
that (G ~ G') ~ (P(G) =P(G')). (We use P(G) 
to mean P(x), where x is the adjacency matrix 
of G.) 

Algorithms 

We consider "decision-tree" algorithms for 
computing P(x). For a given function 
P: {O,l} a ~ {O,l}, and an input vector 

E{O,l} d, a decision-tree computes P(x) by 
successively examining the various components 
(coordinates) x i of x. As an example, the 
following tree determines whether a vector 

E{O,l} ~ has exactly two ones: 

The algorithm is a binary tree T whose internal 
nodes are labelled with the indices i of the x i 
to be tested. Testing begins with the x i speci- 
fied at the root, i f  i t  is zero, the algorithm con- 
tinues with the x i specified at the root of the 
le f t  subtree, otherwise i t  proceeds to the right. 
The leaf which is eventually reached specifies the 
value of P for the input vector. Let c(T,x) 
denote the number of tests made using T to com- 
pute P(x). In our example c(T,O00) =2 and 
c(T,lOl) ~3. The depth of a leaf is the number of 
tests made in order to arrive at that leaf (the 
path length from the root). 

Let c(T) denote the maximum value of c(T,x) 
for  any x E { 0 , 1 }  d, and l e t  C(P), the 
complexity of  P, be the minimum value of c(T} 
of  a l l  t rees T which compute P. Thus C(P) is 
the minimum number of arguments which must be exa- 
mined in the worst-case, independent of  the algor-  
ithm used. I f  C(P)=d we say that  P is 
exhaustive. Note that C(P) is a lower bound on 
the time any algori thm recognizing P must take 
in the worst case, on any model of  machine where 
no two operations can take place at the same time. 

3. THE ARGUMENT COMPLEXITY OF ARBITRARY FUNCTIONS 

Before attacking the Aanderaa-Rosenberg con- 
jecture directly, let  us step back and try to see 
what are the important parts of the problem. The 
fact that we are considering graph properties is 
not essential to the conjecture: matroid or hyper- 
graph properties work as well. Requiring P to be 
a graph property only means that F(P) must 
have a "nice" structure. 

Considering P, an arbitrary {O,l} d ~ {O,l} 
function, and ignoring for the moment restrictions 
on F(P), what can we say about. O(P)? 

Note that a leaf L at depth k in a tree 
T for P is reached by exactly those 2 d~k 
vectors which vary in al l  possible ways in the d-k 
untested positions and which have specified values 
in the k tested positions. The value of P for 
each of these vectors is the same. I f  every leaf 
LET has depth less than d, say 

k o = max(depth(L)) < d then 2 d'ko must divide 
LET 

I{xE{O,l}d[ P(x) = l }  I. From this simple observa- 
tion, i t  follows that: 

Lemma I. I f  I{~l P(~) =l} l  i~  odd, then P 

must be exhaustive. 

Proof. An odd number is not the sum of even 
numbers. [] 

In order to strengthen this result let  
the weight polynomial PJ(z) of P be defined 
as: 

Pl(z) O<!<dWi(P) "zi 
m - -  

with wi(P) = I{~I (P(~) =l )~(w(x)  = i ) }  I, 

so that the coefficient of z I is the number of 
vectors x of weight i such that P(x) = l .  The 
contribution of a leaf L at depth k specifying 
a value l for P is zJ(l+z) d-k, i f  j 



of the k tests on the path to L gave one as an 
answer. 

Theorem I. I f  C(P)~.k, then (l+z) d-k 
divides PI(z). 

Proof. In the optimal tree T for P, each 
leaf L specifying l f9r P contributes a mul- 
t ip le of (l+z) -K to P~(z). [] 

Taking k =d- I  and z = l  in Theore~ 1 
y ie lds  Lemma I ,  since p l (1)  = l { x ~ { 0 , 1 } d l  
P(~) = I }  I. Theorem 1 also impl ies tha t ,  i f  
c(P) < d - l ,  then P I ( - I ) = O ,  which means tha t  the 
numbers of  even- and odd-weight vectors for  which 
P is t rue ,  are equal. Using th is  observat ion,  i t  
is  easy to der ive:  

Coro l lary  1 As d +(~ almost all functions 

P: {O~l} d ~ {O,li are exhaustive. 

Proof. The number of functions P: {O,l} d ÷ 
{O,l} having 

l{~I P(~) ̂  (w(x) odd)} I 

= i{~i P(~) ̂  (w(x) even)} i = k 

2d-l 
is ( k )2, so that we have 

Prob(P non-exhaustive) 

2-2 d 2 d-l )2= 2 d 
Z [ k 2"2d [2d-I ] 

O<k<2 d-I  

( ~ . 2 d - l ) - I / 2  

which goes very rapidly to 0 as d÷~. [] 

Since most functions are exhaustive, i t  seems 
reasonable to expect that there are large classes 
of functions, such as those for which F(P) has a 
nice structure, which are uniformly exhaustive. 

4. THE GENERALIZED AANDERAA-ROSENBERG CONJECTURE 

The next question to ask,i@: I f  we restr ict  
P to be a graph property,.~(Z~ z) ~r(P)), what are 
the characteristics of ~}L) that might enabl.e us 
to show that P is exhau!~tive? 

(2) 
The most noticeable feature of Zv ' aside 

from the fact that i t  is a representation of Z v, 
is that i t  acts transit ivelvon V ~ .  Each edge 
in V(2) is e q u ~ ~ )  ~can be mapped into) 
any other edge, so the testing algorithm has no 
wax of selecting an in i t i a l  edge which is prefer- 
apse for testing to any other edge. 

Is i t  possible that the t rans i t iv i ty  of Z52) 
is sufficient? What can be said about functions P 
such that F(P) is transitive? 

Lemma 2. I f  F(P~ is transitive, then 

w(x)'Ixr(P) I : d.b(x) (1) 

where b(x) = I{Y~xF(P)I Yl = I } I "  

Proof. Let M denote the IxF(P)I by d 
matrix whose rows are the vectors in xF(P). The 

le f t  side of (I) counts the number of ones in M 
by rows, the right side by columns. By t ransi t i -  
v i ty  each column contains b(x) ones, since a per- 
mutation of the columns of M by an element 
o~F(P) is equivalent to a permutation of the rows 
of M. [] 

Corollary2. If d = p~ for some prime p 
and integer ~, F(P) is transitive, and 

~ {0,I }a, ~Q, ~k, then pdivides IxF(P) i. 

Proof. Immediate. Note that  10F(P)I : 
I!?(PT~ : 1 always. 

This y ie lds  the fo l lowing resu l t :  

Theorem 2. For P: { 0 , I }  d ÷ { 0 , I }  i f  P(P) 
is transitive, d is a prime power and P(O) 
P(1), then P is exhaustive. 

Proof. Consider evaluating Pl(- l )  mod p, 
where we calculate the number of vectors x of 
even and odd weight for which P(x) = l on~an orbit 
by orbit basis. From Corollary 2~the only orbits 
of interest are Or(P) and IF(P). Thus P1(-l) 

l mod p, u~les~ P(1)=l and p is odd, in 
which case P' ( - l )  z -1 mod p. In either case, 
Pl(- l )#O and the result follows by Theorem I. [] 

Note that P(Q) #P(!) is true whenever P is 
a nontrivial monotone function. Examination of 
many small cases has led us to the following. 

The Generalized Aanderaa-RosenberQ Conjecture. 
If P:" {0,I} d ÷ {0,I} is such that F(P~ is transi- 
tive and P(O) ~ P(1), then P is exhaustive. 

By the above remarks the generalized conjec- 
ture implies the original Aanderaa-Rosenberg con- 
jecture and Theorem 2 lends support to the general- 
ized conjecture by proving that i t  holds whenever 
d is a prime power. 

A proofS'of the generalized conjecture cannot 
be obtained by a simple extension of the proof of 
Theorem 2, for the reason that i f  d is composite, 
the sizes of the orbits may be any one of many 
sizes. The result is that there exist functions P 
satisfying the conditions of the generalized con- 
jecture having Pl(- l )=O, so that the proof tech- 
nique fa i ls .  For the record, we note the smallest 
such P discovered: Take d =12, and P(x) = 
~3£ES!(x~£) where S contains al l  vectors in 
ne o~Dits u~de~ the cycli§ ~rRu p Cl2 of (130) 3, 

IIOLlZO, (ILo) ~, and (l~O~) ~. For graphs a 
similar situation occurs i f  P(G) is the function: 
G is not a subgraph of any of the graphs l l i l . ,  
AAA, or [] '~:, for 9-vertex graphs. Both of 
these functions are monotonic. Using ad-hoc argu- 
ments based upon Theorem 3 below, they can however 
be shown to be exhaustive; we know of no counter- 
examples to the generalized conjecture. 

While there are functions which are exhaustive 
and yet have (l%z)iPl(z) (that is, with Pl(- l )  
= 0), 2 the authors do not know of any satisfying 
(l+z) IPi(z). This is made relevant by the 
following: 

Theorem 3. If P: {0,I} d ~ {0,I} is a non- 

exhaustive function with F(P) transitive, then 

(I+z)LJP i ( z ) .  



Proof. Let Q(x) be the M~bius inverse of 
P(x), so that  P(x) : Z Q(~), implying that 

O<_y<x 

Q(x) = ~ P(x)(- l )  w(~)~-~ by M~bius inversion, 

where xe~ is component-wise "exclusive-or". 
Since P ~s not exhaustive, by Theorem l Q(!) = 
p ] ( - l )  = O. By the t r ans i t i v i t y  of F(P), each of 
the restricted functions Pi(x) = P(xlxi=O) for 
I < 1 < d must be non-exhaustive, s~nce i t  makes no 
difference which argument is tested f i r s t .  7his 

implies s imi lar ly  that Q ( l i ' l o l  d ' i )  = P~(-l) = 0 
for each i .  Thus 

Pl(z) = Z P(~) "zw(~) 
O<x<l 

= ~C-- ~ e(£) zw(~) 
O<x<l O~<x 

: 

~<z<_! 

implying the theorem. More general ly ,  i f  F(P) is 
k - t r ans i t i ve  and P is not exhaustive then 

(l+z) k+l divides Pl(z).  [] 

A proof of the general conjecture might be 
obtainable by showing that i f  P sat isf ies the 
conditions of the conjecture, then (l+z) L does 
not divide Pl(z). Theorem 2 is a very strong con- 
dit ion a function must meet to be non-exhaustive. 
Unfortunately we have to date been unable to apply 
this result successfully to the general conjecture. 

Although Theorem l is as we have noted insuf- 
f i c ien t  to prove the general conjecture, i t  can be 
used to prove interesting subcases, where we 
require F(P) to have more structure than merely 
be transi t ive:  

Theorem 4. z f  P: {O,l} d ~ {O,l} such that 
P(O) ~ P(1) and F(P) is transitive and Abelian, 

and d ~ E ~ (defined below) then P is exhaustive. 

The set E is the smallest set of natural numbers 

such that l ~ E and (n ~ E)(q prime) ^ (q > 2 n" ) 
: n q  k ~ E for all natural numbers k. - 

Proof. Let d=nq k. The group riP). has a 
normal Sylow subgroup 0 of order I01 = qK. By 
considering the quotient group F(P)/O, we esta- 
blish a l - l  correspondence between the orbits whose 
size is not a multiple of q, and those of a smal- 
ler  function Q: {O~l} n ~ {O, l} ,  satisfying the 
hypothesis, thus Qi( : l )~O. Singe P l ( - l )  z 
Ql( - l )  mod q and IQL(-I)I < 2 n- l ,  the concIvsion 
P l ( - l )#O follows from d~E, i . e . ,  q ~2  n-l .  [] 

The set E contains a l l  prime powers and many 
composite numbers (having an arbi trary number of 
prime factors) but not a l l  natural numbers; i t ' s  
density in the natural numbers is not s igni f icant ly  
greater than that of the primes. 

5. THE AANDERAA-ROSENBERG CONJECTURE 

We return to the Aanderaa-Rosenberg conjecture 
and apply the results of the preceding section to 
show that C(P) = ~(v 2) i f  P is a monotone non- 
t r i v i a l  ~raph property. While we believe that 
C(P) = (2) is always the case, the results of the 

preceding sections do not d i rect ly  apply since (~) 
is never a prime power unless v = 2 or v = 3. We 
have to reduce the problem to one we can handle, at 
some loss in the strength of results. 

I t  is not d i f f i c u l t  to ver i fy  that C(P) = (~) 
for 2<v<6 by hand; we have also shown this to 
be t rue - f~  v =7, I I ,  and 13. For the la t te r  
cases i t  suffices to note that IxF(p)I z 0 mod v 
unless ~ represents a graph with cyclic symmetry 
(that is, invariant under a cyclic permutation of 
the vertices). This reduces the calculation of the 
possible values of P~(-l) (mod v) to a manageable 
task~ 

When v is prime, the remark that Ix?(P)l 
z 0 mod v unless x represents a graph with 
cyclic symmetry allows one to state the following 

Lemma 3. If v is prime and P is a mono- 

tone nontrivial graph property on v-vertex graphs 

such that P(Hv) = l (where H v is a v-vertex 

Hamiltonian circuit), then P is exhaustive. 

Proof. Calculate P l ( - l )  (mod v). I f  a non- 
empty g ~ h  has cyclic symmetry i t  contains 
H v as a subgraph. Thus P-~(-l) z - l  mod v, 
since E v is the, only orbi t  with size ~ 0 (mod v) 
not counted in P i ( - l ) .  [] 

The preceding gives some cases for which 
C(P) = (3). To prove the weaker result 
that C(P) = ~(v Z) we proceed in tw~ 
steps: (1) we show that O(P) = ~(v ) for v a 
power of 2, and (2) show that g(P) is more or 
l~ss monotone increasing with v. 

We say that a graph G is point (resp. l ine) 
-symmetric i f  for any pair of points (resp. l ~ )  
there is an automorphism of G papping the f i r s t  
into the second. Let nG denote n dis joint  
copies of a graph G, G l+G 2, the graph consis- 
ting of a copy of G l and a (disjoint) copy of 
G~, and le t  G l xG denote the graph G l+G 2 
wlth every po in t i n  2 G 1 joined to every point in 

G 2 • 

Suppose y =2 n, and le t  H i denote 2n-IK2 i 
(that is ,  2 n-1 copies of the complete graph on 
21 points), so that H n=E v, H n =K V, and H i is 
a subgraph of Hi+ l for O~ i < n (aenoted - 
H i <H i+ l ) .  Since P is non-trivial, there is a j 
su~ that P(Hj) =0 and P(Hj+ l )  = l .  Let Ji be 

the graph 2n-1-1K~i, so that H i = J~+J~, and 
furthermore Hi+l ~ Ji ×Ji .  Thus'we have " 
P(Jj+Jj) = 0 and - P ( J j x j j )  = l by monotonicity 
of P. 

To show that O(P) > v2/4 we wi l l  count only 
the edges that must be e~amined in (j~ x j~) - 
(Jj+Jj), assuming that the algorithm ~an ~etermine 
"free of charge" that the input graph contains a 
subgraph isomorphic to J j+J j .  More precisely, 
le t  G = (V,E) denote the unknown graph (input to 
the algorithm),~where IVI =2 n, V = V IUv  2, with 
IVll =|V21 =2 n-i .  Since restr ict ing the possib i l i -  
t ies for G can at most decrease C(P) ( i t  can 
only "help" the algg~thm), we consider the,~se 
that G l = (VI,EnV~ J) and G 2 = (V2,EnV~ J) 
are both isomg~hici~ ~ J~. Now P as a f~nction 
of E' = E-V~ ~j-V~ : j  i~ s t i l l  nontrivial by our 



choice of j .  Furthermore IE'I = 22n-2 is a 
prime power, so we are almost ready to apply Theo- 
rem 2 to P as a function of E' (call this func- 
tion P'). 

To show that P' must be le f t  invariant by a 
transitive permutation group acting on E', we 
note that Jj is point-symmetric. Thus for any 
pair of edges e = { v l , v  2} and e '=  {v~,v~} in 

V (2 ) -v~  2 ) - v l  2) (where v I ,  v~ ~Vl;  v 2, v ~ V  2) 
t~ere i~ an automorphism of G 1 carrying v I into 
v I and an automorphism of G 2 carrying v 2 into 
v~, thus an automorphism o f G  1 xG 2 carrying e 
i~to e ' .  ~Qce P is invariant under permuta- 
tion~ in ~ J, i t  is invariant under any subgroup 
of ~ 2 ) ,  an~ in par t icu lar  the automorphism group 
of G I×G 2. Thus P as a function of the edges in 
( j i x J j ) -  (Ji +J j )  is l e f t  invariant by the tran- 
s i t i ve  permutation group Zv/2X2v/2" (Here ~ / 2  

(resp. ~ / 2  ) is the %nn~etric group on V 1 (resp. 
V2), ana" (o ,T){v l ,v  p} = {o(v1),%(v2)} f6r 

v I ~V I ,  v 2cv 2, (s ,~  E Zvl 2×z~I 2, o c ~v12' 

E ~ /2 . )  We can then apply Theorem 2 to obtain 

Theorem 5. I f  v = 2 n and P is a monotone 

nontrivi~l graph property on v-vertex graphs, then 

C(P) ~ v~14. 

I t  remains to t reat  the cases where v is not 
a power of two. Let C(v) denote the minimum 
value of C(P) as P ranges over al l  nontr iv ia l  
monotone properties of v-vertex graphs. 

Lemma 4. C(v) ~min(C(v-1),22k-2),  where 

2 k < v < 2 k+l. 

Proof. Consider a monotone property P of 
v-vertex graphs. Then ei ther  

( i )  P(K l+Kv_ I)  = I ,  

( i i )  P(K 1XEv_l) = O, or 

( i i i )  neither of the above. 

Cases ( i )  and ( i i )  d i rec t l y  imply that 
C(v) > C(v-l) since the algorithm can obtain 
" f reeT the  information "that some vertex is e i ther  
isolated or connected to al l  other vert ices, and 
P rest r ic ted to the remaining edges is s t i l l  a 
monotone nontr iv ia l  graph, pToperty. Case ( i i i )  
implies, using u for 2 K-~, that 

P(Ev_ u+K u) = 0 

since ( i )  f a i l s ,  P is monotone, and E +K < 
V-U U -- 

Kl+Kv_ I. Also P(Ev_uXKu ) = l, since (ii) fails, 

x E Now we P is monotone, and Kl × Ev-l < Ku v-u" 

may apply Theorem 2 directly as in the proof of 
Theorem 5, after "giving away" to the algorithm 
that the input graph contains a subgraph isomor- 
phic to Ev_ u+K u, ~nd force i t  to ask for 

al l  the 22k-2 edges linking the two copies of 
K u ( i t  is easy to see the t rans i t iv i ty  require- 
ment is also met for the restricted function). 
Thus we have proved by Lemma 44 and, 

Theorem 6. If P is a nontrivial monotone 

graph property of v-vertex graphs, then 

C(P) ~ vLll6. 

Dan Kleitman has improved this bound to 
C(P) > v2/9 by p~oving an equivalent of Theorem 5 
showing C(P) ~v~ /3  for v of the form 3-2 n 
and then modifying Lemma 4 s l i gh t l y  as wel l .  

6. CONCLUSIONS 

The technique introduced in this paper is a 
new means for establishing the worst-case complex- 
i t y  of Boolean functions, measured in terms of the 
number of arguments examined. I t  is not based on 
the construction of oracles, or on information- 
theoret ic considerations, but rather on a strong 
necessary condition for C(P) < d to occur. Our 
generalized conjecture states the minimal condi- 
tions that we believe necessary to ensure that 
C(P) = d: namely that P(O) ~ P(!) and ?(P) be 
transitive. A proof of our generalized conjecture 
in the case that d is a prime power allows us to 
settle the Aanderaa-Rosenberg conjecture in the 
affirmative. 
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