A GENERALIZATION AND PROOF OF THE AANDERAA-ROSENBERG CONJECTURET

Ronald L. Rivest
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Jean Vuillemin
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

Abstract: We investigate the maximum number

C(P) of arguments of P that must be tested in
order to compute P, a Boolean function of d
Boolean arguments. We present evidence for the

eneral conjecture that C(P)=d whenever

P(0d) #P(1d) and P is left imvariant by a tran-
sitive permutation group acting on the arguments.
A non-constructive argument (not based on the con-
struction of an "oracle") proves the generalized
conjecture for d a prime power. We use this
result to prove the Aanderag-Rosenberg conjecture
by showing that at least v2/9 entries of the
adjacency matrixz of a V-vertex undirected graph G
must be examined in the worst case to determine if
G has any given non-trivial monotone graph
property.

1. INTRODUCTION

A fundamental problem of computer science is
to determine the relative efficiencies of different
data structures for representing a given problem.
For example, Hopcroft and Tarjan [4] mention that
determining if a v-vertex graph is planar from its
adjacency matrix requires Q(v?) operations;
this should be contrasted with Tarjan's [11] linear
0(v)-time algorithm for planarity based on an adja-
cency-1ist representation of graphs. Similarly,
Holt and Reingold [3] have shown that
(v+1)(v-1)/4 inspections of the adjacency matrix
of a directed graph G are required in the worst
case to determine if G contains a directed cycle.

Motivated by these results, Arnold Rosenberg
conjectured [10] that, for any nontrivial graph
property, representing a graph by an adjacency
matrix forces an algorithm which recognizes the
property to make Q(vZ) inspections of the matrix
in the worst case. Aanderaa disproved this conjec-
ture by showing that Tess than 3v inspections
are needed to determine if a directed v-vertex
graph contains a vertex with in-degree v-1 and
out-degree 0 (a "sink"). To revive the conjec-
ture, Aanderaa suggests that the graph properties
should be constrained to be "monotone": If the
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e use the "omega" notation for Tower bounds as
the inverse of the "big-0" notation for upper
bounds: f(v)=0(v2) means vZ=0(f(v)) or equi-
valently (3c >0)(¥v)f(v) >cv2.

property holds for a graph G=(V,E) it must also
hold for all graphs G'=(V,E') such that E CE'.
This eliminates the "sink" counterexample, and
this paper provides a proof to the:

Aanderaa-Rosenberg Conjecture [10]: In the
worst case, QUV?) operations are required to
determine from the adjacency matrix of a graph G
whether it has a property P which is (1) nontri-
vial, (i1) monotone, (iii) independent of the
labellings of the vertices, and (iv) independent of
the existence of self-loops (see [61).

There is in fact no evidence to contradict the
stronger conjecture that each of the v(v-1)/2
entries of the adjacency matrix of an undirected
graph (v(v-1) entries for a directed graph) must
be examined in the worst case. In [1], [5], and
[7], many properties satisfying (i)-(iv) above are
shown to require ©Q(v2) operations, and
Kirkpatrick [5] shows that (v log,(v)) opera-
tions are always required, giving support to the
original conjecture. These results are all
obtained by oracle construction techniques, with
the exception of Best, Van Emde Boas, and Lenstra
[1], who independently discovered the approach we
will use here.

In this paper we present a generalization of
the Aanderaa-Rosenberg Conjecture, prove this
generalized conjecture for Boolean properties hav-
ing a prime-power number of arguments. We use this
result to prove the original Aanderaa-Rosenberg
conjecture.

2. DEFINITIONS

Functions and Vectors

Let P(X1s...,X % be a Boolean function {pro-
perty) mapping {0,1? onto {0,1}, denoted

P: {0,139 {0,1}. We say "P(x) holds" or "x has
property P* iff P(x)=1. Let” x<y de(r:'\ote~
xj<yj for 1<ic<d, with x, y e {0,139, Let 0
(respectively 1) represent the d-bit vector of”
zeros (respectively ones). We say that P is
monotone if x<y implies P(x)<P(y) for all

x> y in {0,TH. The weight “w(x) of a vector x
is the number of ones in x. - -

Permutation Groups

We denote permutations and permutation groups
by lower and upper case Greek letters, respectively.



The symmetric group of all permutations of degree
d is denoted by r4. Let |Ir| denote the order
of agroup T, and T,<T, means that I'; 1Js a
subgroup of T,. A permutation group T acting

on the set {1,...,d} 1is transitive if, for each
pair i, j of integers in {1,...,d}, there is a
permutation oeT such that o(i)=j.

If P: {0,1}d » {0,1}, then T(P) denotes
the stabilizer of P:

I(P) = {oezg| (¥xe{0,139)P(xqy,...,xq)
= P(xo(]),...,xa(d))}

For xe{0,1} and r<zy let xr represent
the orbit of x under the action of T on {0,1}%:

_ d : _
xI' = {ye {0,119 (HOEF)(\“E{]""’d})xi_yo(i)}'

For example, note that yexT'(P) implies that
P(x) =P(y), but not conversely in general.

Graphs

An undirected graph G= (V,E) consists gf a
vertex set Y of size v, and a set EC V(
of edges (V denotes the set of 2-subsets of
V). Thus "multiple edges" and "self-Toops" are
specifically excluded. The adjacency matrix for
G is a Boolean vector of le?ggh 127, with one
position for each edge in V\Z/, which is 1 iff
that e? e is in E. The complete graph K, is
(v,v(2 ?, the empty graph E, 1is (V,9).

Let 2(2) denote the permutation group act-
ing on V(2 induced by the symmetric group I,
acting on V so that o({i,j})={c(i),0(j)} for
each i, jeV wusing transparent notation. Two
graphs G=(V,E) and G'=(V,E') are isomorphic,
writ 59 G=G', 1if there exists a permutation
oazg such that ({i,j}eE) @ (c({i,j})eE").

A Boolean function P: {0,134 = {0,1}, where
d= (¥) is a graph property if E&z) < r(P). 1In-
tuitively, this means that P does not depend upon
the labelling of the vertices, or, equivalently
that (6 2 G') = (P(G)=P(G')). (We use P(G)

to mea? P(x), where x is the adjacency matrix
of G.

Algorithms

We consider “decision-tree" algorithms for
computing P(x). For a given function
P: {0,134 +» {0,1}, and an input vector

Xe {0,114, a decision-tree computes P(x) by
successively examining the various components
(coordinates) xj of x. As an example, the
fo]]owing tree determines whether a vector

has exactly two ones:

xe {0,1}

The algorithm is a binary tree T whose internal
nodes are labelled with the indices i of the x;
to be tested. Testing begins with the x; speci-
fied at the root, if it is zero, the algorithm con-
tinues with the x; specified at the root of the
left subtree, otherwise it proceeds to the right.
The leaf which is eventually reached specifies the
value of P for the input vector. Let c(T,x)
denote the number of tests made using T to com-
pute P(x). In our example ¢(T,000)=2 and
¢(T,101)=3. The depth of a leaf is the number of
tests made in order to arrive at that leaf (the
path length from the root).

Let c(T) denote the maximum value of c(T,x)
for any xe {0,134, and let C(P), the argument
complexity of P, be the minimum value of c(T)
of all trees T which compute P. Thus C(P) is
the minimum number of arguments which must be exa-
mined in the worst-case, independent of the algor-
jthm used. If C(P)=d we say that P is
exhaustive. Note that C(P) 1is a lower bound on
the time any algorithm recognizing P must take
in the worst case, on any model of machine where
no two operations can take place at the same time.

3. THE ARGUMENT COMPLEXITY OF ARBITRARY FUNCTIONS

Before attacking the Aanderaa-Rosenberg con-
jecture directly, let us step back and try to see
what are the important parts of the problem. The
fact that we are considering graph properties is
not essential to the conjecture: matroid or hyper-
graph properties work as well. Requiring P to be
a graph property only means that T(P) must
have a "nice" structure.

Considering P, an arbitrary {0,1}d B {0,1}
function, and ignoring for the moment restrictions
on T(P), what can we say about . C{P)?

Note that a Teaf L at depth k in a tree
T for P is reached by exactly those 2d-K
vectors which vary in all possible ways in the d-k
untested positions and which have specified values
in the k tested positions. The value of P for
each of these vectors is the same. If every leaf
LeT has depth less than d, say

ky = max{depth(L)) < d then 2d’k0 must divide
T

Le
[{ge {0,1}d[ P(x)=1}|. From this simple observa-
tion, it follows that:

Lemma 1. 1f |{x| P(x)=1}| is odd, then P
must be exhaustive.

Proof. An odd number is not the sum of even
numbers. [

In order to strengthen this result let
the weight polynomial P'{z) of P be defined
as:

P](z) = wi(P)ozi

0<i«d
with wi(P) = [{x] (P(x)=T1)A(w(x)=1)}],
so that the coefficient of 2z' is the number of
vectors x of weight i such that P(x)=1. The

contribution of a leaf L, at depth k specifying
avalue 1 for P ds zJ(1+z)d-k, if j



of the k tests on the path to L gave one as an
answer,
Theorem 1. If C(P) <k, then (1+z)d'k
divides PV(Z). -
Proof. 1In the optima1 tree T for P, each
leaf L spec1fﬁ Eg ?r P contributes a mul-
tiple of (1+z) to Pi(z). O

Taking k=d-1 "and, z=1 in Theoreg
yields Lemma 1, since PI(1) = [{x e {0,1}
P(x)=11}]. Theorem 1 also implies that, if
c(P)<d-1, then P1(-1)=0, which means that the
numbers of even- and odd-weight vectors for which
P is true, are equal. Using this observation, it
is easy to derive:

COro]]aY 1. 4s d»w, almost all functions
P: {0,T}9 » {0,1} are exhaustive.

Proof. The number of functions P: {O,I}d -
{0,1} having

[{x] P(x) ~ (w(x) odd)}|
= x| P(x) A (w(x) even)}| =

d-1
(2 K )2, so that we have

is

Prob(P non-exhaustive)

d d-1 d .d
-2 2 2 “27¢2
<2 D e )= d-1)
d-1 2
0<k<2
= (re2d-1y172

which goes very rapidly to 0 as d-w. O

Since most functions are exhaustive, it seems
reasonable to expect that there are large classes
of functions, such as those for which T(P) has a
nice structure, which are uniformly exhaustive.

4. THE GENERALIZED AANDERAA-ROSENBERG CONJECTURE

The next question to ask éi If we restrict
P to be a graph property, S <T(P)), what are
the characteristics of Zy that might enab]e us
to show that P is exhaustive?

The most noticeable feature of 2(2), aside
from the fact that it is a represen%at1on of I
is that it acts transitively on Vv Each edge
in Vv is equivalent to_{ban be mapped into)
any other edge, so the testing a]gor1thm has no

way of selecting an initial edge which is prefer-
able for testing to any other edge.

Is it possible that the transitivity of 2(2)
is sufficient? What can be said about funct1ons P
such that T(P) 1is transitive?

Lemma 2. If T(P) <is transitive, then
w(x)«[xr(P)| = d-b(x) (1
Iy exr(P)] yy =13

) Proof. Let M denote the IXF(P)I by d
matrix whose rows are the vectors in xr(P}. The

where b(x) =

left side of (1) counts the number of ones in M

by rows, the right side by columns. By transiti-
vity each column contains (x) ones, since a per-
mutation of the columns of M by an element
oeT(P) 1s equivalent to a permutation of the rows
of M,

Corollary 2. If d=p% for some prime p

and integer a, T(P) is transitive, and
xe (0,130, x#0, x#1, then p divides |xT(P)|.

Proof. Immediate.

[Ir(PYT =1 always.

This yields the following result:

Note that [Or(P)| =

Theorem 2. For P: {0,134 + {0,1} if T(P)
is transitive, d is a prime power and P(Q) #
P(1), then P is exhaustive.

Proof. Consider evaluating P](-l) mod p,
where we calculate the number of vectors x of
even and odd weight for which P(x) =1 on an orbit
by orbit basis. From Corollary 2 the only o bits
of interest are Or(P) and 1T(P). Thus PI!(-1)

= 1 mod p, ?1ess P(1)=1 and p is odd, in
wh1ch case P'(-1) = -1 mod p. In either case,
PI(-1)#0 and the result follows by Theorem 1. 01

Note that P{Q) #P(1) 1is true whenever P is
a nontrivial monotone function. Examination of
many small cases has led us to the following.

The Generalized Aanderaa-Rosenberg Conjecture.
£ P: {0,119 = {0,1} Zs such that T(P) is transi-
tive and P(0)#P(1), then P <4s exhaustive.

By the above remarks the generalized conjec-
ture implies the original Aanderaa-Rosenberg con-
Jjecture and Theorem 2 lends support to the general-
ized conjecture by proving that it holds whenever
d 1is a prime power.

A proof of the generalized conjecture cannot
be obtained by a simple extension of the proof of
Theorem 2, for the reason that if d 1is composite,
the sizes of the orbits may be any one of many
sizes. The result is that there exist functions P
satisfying the cond1t1ons of the generalized con-
jecture having p! (-1)=0, so that the proof tech-
nique fails. For the record, we note the smallest
such P discovered: Take d=12, and P(x) =
(IyeS)(x>y) where S contains all vectors %
the 0rb1ts uEder the cycl1ﬁ grgup Ci2 of 130)3,
1702129, and 0 For graphs a
similar s1tuat1on oceurs 1f P(G) is the function:
G s not a subgraph of any of the graphs |]||].,
AMA, or OY:, for 9-vertex graphs. Both of
these funciions are monotonic. Using ad-hoc argu-
ments based upon Theorem 3 below, they can however
be shown to be exhaustive; we know of no counter-
examples to the generalized conjecture.

While there are functions which are exhaustive
and yet have (1%z)|P1(z) (that is, with PI(-1)
0), he authors do not know of any satisfying

(1+z) |p'( This is made relevant by the
following:
Theorem 3. If P: {0, 1} » {0,1} s a non-

exhau%tzve funetion with F(P) transitive, then
(1+42) iP (z).



Proof. Let Q(x) be the Mgbius inverse of
P(x), so that P(x) = J Q(x), implying that

O<y<x
a(x) = I P(x)(- 1)W(X€B¥T by Mobius inversion,
0<y<x
where X®y is component-wise "exclusive-or".

Since P 1s not exhaustive, by Theorem 1 Q(1) =
P1(-1) = 0. By the transitivity of T(P), each of
the restricted functions P; (x = P(x[x :=0) for
1<i<d must be non-exhaustive, since 1t makes no
difference which argument is tested f1rst This
implies similarly that Q(1'~ 1 = Pi(-l) =0
for each 1. Thus

T op(x)-2)
O<x<1

= 2 z Q(X)ZW(X)
0kl Ocyex
-7 W adn)
O<y<1
implying the theorem. More generally, if T(P) is
k-transitive and P 1is not exhaustive then

(1+2)%*1 divides P'(z). O

Pl(z) =

A proof of the general conjecture might be
obtainable by showing that if P sat1sf1§s the
conditions of the conjecture, then (1+z)¢ does
not divide P! (z). Theorem 2 is a very strong con-
dition a function must meet to be non-exhaustive.
Unfortunately we have to date been unable to apply
this result successfully to the general conjecture.

Although Theorem 1 is as we have noted insuf-
ficient to prove the general conjecture, it can be
used to prove interesting subcases, where we
require T(P) to have more structure than merely
be transitive:

Theorem 4. 1F P: {0,139 » (0,1} such that
P(0) # P(]; and T(P) <s transitive and Abelian,
and dc E” (defined below) then P is exhaustive.
The set E s the smallest set of natural num?ers
such that 1eE and (neE)(q prime) A (q>2""
=nq ek for all natural numbers K.

Proof. Let d=ngK. The group F(P) has a
normal Sylow subgroup © of order |0]=gK. By
considering the quotient group T(P)/0, we esta-
blish a 1-1 correspondence between the orbits whose
size is not a multiple of q, and those of a smal-
ler function Q: {0,1}"» {0,1}, sat1sfy1ng the
h{pothesis, thus T( 1)# 0. Singe Pl(-1) =

) mod q and [Q!(-1)]< 2M-1, the conc]¥s1on
1( 1)#0 fo]]ows from deE, i.e., gq> 2"

The set E contains all prime powers and many
composite numbers (having an arbitrary number of
prime factors) but not all natural numbers; it's
density in the natural numbers is not significantly
greater than that of the primes.

5. THE AANDERAA-ROSENBERG CONJECTURE

We return to the Aanderaa-Rosenberg conjecture
and apply the results _of the preceding section to
show that C(P) = Q(v2) if P 1is a monotone non-
trivial 9raph property. While we believe that
c(P) = (3) is always the case, the results of the

preceding sections do not directly apply since (%)
is never a prime power unless v=2 or v=3. MWe
have to reduce the problem to one we can handle, at
some loss in the strength of results.

It is not difficult to verify that C(P) = (2)
for 2<v<6 by hand; we have also shown this to
be true for v=7, 11, and 13. For the latter
cases it suffices to note that |[xI'(P)| = 0 mod v
unless x represents a graph with cyclic symmetry
(that js, invariant under a cyclic permutation of
the vertices). This Yeduces the calculation of the
possible values of P!(-1) (mod v) to a manageable
task.

When v is prime, the remark that |xr(P)|
= 0mod v unless x represents a graph with
cyclic symmetry allows one to state the following

Lemma 3. If V is prime and P <is a mono-
tone nontrivial graph property on V-vertex graphs
such that P(H,)=1 (where H, s a v-vertex
Hamiltonian ctrcuzt) then P 1s exhaustive.

Proof. Calculate P (<1) {(mod v). If a non-
empty graph has cyclic symme?ry it contains
Hy as a subgraph. Thus = -1 mod v,
since E, is the on]y orbit w1th size ¥ 0 (mod v)
not counted in P! (-1). O

The reced1ng gives some cases for which
c(P) = § E. Brove the weaker result
that ¢ Q(vé) we proceed in tw

steps: (1) we show that C(P) = Q(vg) for v a
power of 2, and (2) show that C(P) 1is more or
tess monotone increasing with v.

We say that a graph G 1is point (resp. line)
-symmetric if for any pair of points (resp 1ines)
there is an automorphism of G mapping the first
into the second. Let nG denote n disjoint
copies of a graph G, Gq+Gp, the graph consis-
ting of a copy of Gy and a (disjoint) copy of
G2, and let Gyx 62 denote the graph G]-+Gg
with every po1nt in" Gy Jjoined to every point in
G2-

Suppose v=2", and let H; denote 2"~ i
(that is, 2n-1 cop1es of the comp]ete graph on
21 points), so that Hy=E,, H,=K,, and H; Iis
a subgraph of Hjiq for 0<i<n (denoted
Hj <Hj4+1). Since P is nontrivial, there is a j
such that P(HJ) 0 and P(HJ+1) —1 Let J; be

the graph 21 1K s, S0 that H1 J.;+J., and
furthermore His J xJdj Thus we hdve

(J jtd;) = 0 ané P(JJ XJ = 1 by monotonicity
of P

To show that C(P) > v /4 we will count only
the edges that must be examined in (J5%Jj
(Jj+J-), assuming that the algorithm can &eterm1ne
"free"of charge" that the input graph contains a
subgraph isomorphic to J;+J;. More precisely,
let G=(V,E) denote the unkiown graph (input to
the al or1thm) where |V|=2N, V =VjuUVp, with
[Vl = ?V | =2"='. Since restricting the possibili-
ties for G can at most decrease C(P) (it can
only "help" the alg E}thm)’ we consider the Ease
that Gy = (V Erwv? ) and Gy = (Vo,ENV
are both 1som ?h1c E? ;. Now P as a funct1on
of E' = ? 1g still nontrivial by our



choice of j. Furthermore |E'| = 22"2 s a
prime power, so we are almost ready to apply Theo-
rem2 to P as a function of E' (call this func-
tion P').

To show that P' must be left invariant by a
transitive permutation group acting on E', we
note that Jj is point-symmetric. Thus for any
pair of edgeS e={vy,vp} and e'={vj,vj} in

V(2)_V](2) —Véz) (where vy, vi eVys Vo, véevz)
there is an automorphism of Gy carrying vy into
vi and an automorphism of Gp carrying vy into
vy, thus an automorphism of "~ Gy xGy carrying e
into e'. ?’ ce P is invariant under permuta-
tion?Z}" 3¢/, it is invariant under any subgroup
of £3°/, an& in particular the automorphism group
of xGy. Thus P as a function of the edges in
(J%><3j) -(J%-+Jj is left invariant by the tran-
sitive permutation group Xv/2 XEV/Z' (Here Zv/2

(resp. Iy,o) is the symmetric group on V, (resp.
Vp), and’ “(0,1){vq.vp} = {o(vy),T(v)} for
vieVy, vpeVsp, (0,T§ £ zv/2 XZQ/Z’ o€ ZV/Z’

T € ZQ/Z') We can then apply Theorem 2 to obtain

Theorem 5. If v= 2" and P is a monotone
nontrivigl graph property on V-vertex graphs, then
C(P) > ve/4.

It remains to treat the cases where v is not
a power of two. Let C(v) denote the minimum
value of C{P) as P ranges over all nontrivial
monotone properties of v-vertex graphs.

Lemma 4. C(v) > min(C(v-1),22%"2), where
2k <V < 2k+1.
Proof. Consider a monotone property P of

v-vertex graphs. Then either

(]) P(K] +Kv-]) =1,
(i4) P(K] XEV_]) =0, or
(iii) neither of the above.

Cases (i) and (ii) directly imply that

C(v) > C(v-1) since the algorithm can obtain
"free" the information that some vertex is either
isolated or connected to all other vertices, and
P restricted to the remaining edges is still a

monotone nontrivial graph pﬁoperty. Case (iii)
implies, using u for 2k=1." that

P(Ev_ui-Ku) =0
since (i) fails, P 1is monotone, and Ev_u+Ku <
K14:Kv-]' Also P(Ev_ux Ku) =1, since (ii) fails,
P~ is monotone, and K;xE , <K xE _ . Now we

may apply Theorem 2 directly as in the proof of
Theorem 5, after "giving away" to the algorithm
that the input graph contains a subgraph isomor-
phic to E,_,*K,, and force it to ask for

all the 22k-2 edges linking the two copies of
Ky (it is easy to see the transitivity require-
ment is also met for the restricted function).
Thus we have proved by Lemma 4 and
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Theorem 6. I1f P is a nontrivial monotone
graph prgperty of v-vertex graphs, then
C(P) > v&/16.

Dan_Kleitman has improved this bound to
c(P) 3_v2/9 by pEoving an equivalent of Theorem 5
showing C(P) > v¢/3 for v of the form 3-2"
and then modifying Lemma 4 slightly as well.

6. CONCLUSIONS

The technique introduced in this paper is a
new means for establishing the worst-case complex-
ity of Boolean functions, measured in terms of the
number of arguments examined. It is not based on
the construction of oracles, or on information-
theoretic considerations, but rather on a strong
necessary condition for C(P) <d to occur. Our
generalized conjecture states the minimal condi-
tions that we believe necessary to ensure that
C(P) = d: namely that P(Q) # P(1) and T(P) be
transitive. A proof of our generalized conjecture
in the case that d 1is a prime power allows us to
settle the Aanderaa-Rosenberg conjecture in the
affirmative.
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