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Abstract
Planning problems that involve learning a policy from a single training set of finite horizon tra-

jectories arise in both social science and medical fields. Weconsider Q-learning with function
approximation for this setting and derive an upper bound on the generalization error. This upper
bound is in terms of quantities minimized by a Q-learning algorithm, the complexity of the approx-
imation space and an approximation term due to the mismatch between Q-learning and the goal of
learning a policy that maximizes the value function.
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1. Introduction

In many areas of the medical and social sciences the following planning problem arises. A training
set or batch ofn trajectories ofT +1-decision epochs is available for estimating a policy. A decision
epoch at timet, t = 0,1, . . . ,T, is composed of information observed at timet, Ot , an action taken at
time t, At and a reward,Rt . For example there are currently a number of ongoing large clinical trials
for chronic disorders in which, each time an individual relapses, the individual is re-randomized
to one of several further treatments (Schneider et al., 2001; Fava et al.,2003; Thall et al., 2000).
These are finite horizon problems withT generally quite small,T = 2−4, with known exploration
policy. Scientists want to estimate the best “strategies,” i.e. policies, for managing the disorder.
Alternately the training set of n trajectories may be historical; for example data inwhich clinicians
and their patients are followed with i! nformation about disease process, treatment burden and treat-
ment decisions recorded through time. Again the goal is to estimate the best policy for managing
the disease. Alternately, consider either catalog merchandizing or charitable solicitation; informa-
tion about the client, and whether or not a solicitation is made and/or the form ofthe solicitation
is recorded through time (Simester, Peng and Tsitsiklis, 2003). The goal is toestimate the best
policy for deciding which clients should receive a mailing and the form of the mailing. These latter
planning problems can be viewed as infinite horizon problems but onlyT decision epochs per client
are recorded. IfT is large, the rewards are bounded and the dynamics are stationary Markovian then
this finite horizon problem provides an approximation to the discounted infinite horizon problem
(Kearns, Mansour and Ng, 2000).

These planning problems are characterized by unknown system dynamicsand thus can also be
viewed as learning problems as well. Note there is no access to a generativemodel nor an online
simulation model nor the ability to conduct offline simulation. All that is available is then tra-
jectories ofT + 1 decision epochs. One approach to learning a policy in this setting is Q-learning
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(Watkins, 1989) since the actions in the training set are chosen accordingto a (non-optimal) explo-
ration policy; Q-learning is an off-policy method (Sutton and Barto, 1998).When the observables
are vectors of continuous variables or are otherwise of high dimension, Q-learning must be com-
bined with function approximation.

The contributions of this paper are as follows. First a version of Q-learning with function ap-
proximation, suitable for learning a policy with one training set of finite horizontrajectories and a
large observation space, is introduced; this “batch”version of Q-learning processes the entire train-
ing set of trajectories prior to updating the approximations to the Q-functions.An incremental
implementation of batch Q-learning results in one-step Q-learning with function approximation.
Second performance guarantees for this version of Q-learning are provided. These performance
guarantees do not assume assume that the system dynamics are Markovian. The performance guar-
antees are upper bounds on the average difference in value functionsor more specifically the average
generalization error. Here the generalization error for batch Q-learning is defined analogous to the
generalization error in supervised learning (Schapire et al., 1998); it isthe average diffe! rence in
value when using the optimal policy as compared to using the greedy policy (from Q-learning) in
generating a separate test set. The performance guarantees are analogous to performance guarantees
available in supervised learning (Anthony and Bartlett, 1999).

The upper bounds on the average generalization error permit an additional contribution. These
upper bounds illuminate the mismatch between Q-learning with function approximation and the
goal of finding a policy maximizing the value function (see the remark following Lemma 2 and
the third remark following Theorem 2). This mismatch occurs because the Q-learning algorithm
with function approximation does not directly maximize the value function but rather this algorithm
approximates the optimal Q-function within the constraints of the approximation space in a least
squares sense; this point is discussed as some length in section 3 of Tsitsiklisand van Roy (1997).

In the process of providing an upper bound on the average generalization error, finite sample
bounds on the difference in average values resulting from different policies are derived. There are
three terms in the upper bounds. The first term is a function of the optimization criterion used in
batch Q-learning, the second term is due to the complexity of the approximation space and the last
term is an approximation error due to the above mentioned mismatch. The third termwhich is a
function of the complexity of the approximation space is similar in form to generalization error
bounds derived for supervised learning with neural networks as in Anthony and Bartlett (1999).
From the work of Kearns, Mansour, and Ng (1999, 2000) and Peshkin and Shelton (2002), we
expect and find as well here that the number of trajectories needed to guarantee a specified error
level is exponential in the horizon time,T. The upper bound does not depend on the dimension
of the observablesOt ’s. This is in contrast to the results of Fiechter (1994, 1997) in which the
upper bound on the average generalization error depends on the number of possible values for the
observables.

A further contribution is that the upper bound on the average generalization error provides a
mechanism for generalizing ideas from supervised learning to reinforcement learning. For example
if the optimal Q-function belongs to the approximation space, then the upper bounds imply that
batch Q-learning is a PAC reinforcement learning algorithm as in Feichter (1994, 1997); see the
first remark following Theorem 1. And second the upper bounds provide a starting point in using
structural risk minimization for model selection (see the second remark after Theorem 1).

In Section 2, we review the definition of the value function and Q-function for a (possibly non-
stationary, non-Markovian) finite horizon decision process. Next we review batch Q-learning with
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function approximation when the learning algorithm must use a training set ofn trajectories. In
Section 5 we provide the two main results, both of which provide the number of trajectories needed
to achieve a given error level with a specified level of certainty.

2. Preliminaries

In the following we use upper case letters, such asO andA, to denote random variables and lower
case letters, such aso and a, to denote instantiates or values of the random variables. Each of
the n trajectories is composed of the sequence{O0, A0, O1, . . . , AT , OT+1} whereT is a finite
constant. DefineOt = {O0, . . . ,Ot} and similarly forAt . Each actionAt takes values in finite,
discrete action spaceA and Ot takes values in the observation spaceO. The observation space
may be multidimensional and continuous. The arguments below will not require the Markovian
assumption with the value ofOt equal to the state at timet. The rewards areRt = rt(Ot ,At ,Ot+1)
for rt a reward function and for each 0≤ t ≤ T (if the Markov assumption holds then replaceOt

with Ot andAt with At). We assume that the rewards are bounded, taking values in the interval
[0,1].

We assume the trajectories are sampled at random according to a fixed distribution denoted by
P. Thus the trajectories are generated by one fixed distribution. This distribution is composed of
the unknown distribution of eachOt conditional on(Ot−1,At−1) (call these unknown conditional
densities{ f0, . . . fT}) and an exploration policy for generating the actions. Denote the exploration
policy by pT = {p0, . . . , pT} where the probability that actiona is taken given history{Ot ,At−1}
is pt(a|Ot ,At−1) (if the Markov assumption holds then, as before, replaceOt with Ot andAt−1

with At−1.) We assume thatpt(a|ot ,at−1) > 0 for each actiona ∈ A and for each possible value
(ot ,at−1); that is, at each time all actions are possible. Then the likelihood (underP) of the trajectory,
{o0,a0,o1, . . . ,aT ,oT+1} is

f0(o0)p0(a0|o0)
T

∏
t=1

ft(ot |ot−1,at−1)pt(at |ot ,at−1) fT+1(oT+1|oT ,aT). (1)

Denote expectations with respect to the distributionP by anE.
Define a deterministic, but possibly non-stationary and non-Markovian, policy, π, as a sequence

of decision rules,{π1, . . . ,πT}, where the output of the timet decision rule,πt(ot ,at−1), is an action.
Let the distributionPπ denote the distribution of a trajectory whereby the policyπ is used to generate
the actions. Then the likelihood (underPπ) of the trajectory{o0,a0,o1, . . . ,aT ,oT+1} is

f0(o0)1a0=π0(o0)

T

∏
j=1

f j(o j |o j−1,a j−1)1a j=π j (o j ,a j−1) fT+1(oT+1|oT ,aT) (2)

where for a predicateW, 1W is 1 if W is true and is 0 otherwise. Denote expectations with respect
to the distributionPπ by anEπ.

Note that since (1) and (2) differ only in regard to the policy for generating actions, an expec-
tation with respect to eitherP or Pπ that does not involve integration over the policy results in the
same quantity. For example,E [Rt |Ot ,At ] = Eπ [Rt |Ot ,At ], for any policyπ.

Let Π be the collection of all policies. In a finite horizon planning problem (permitting non-
stationary, non-Markovian policies) the goal is to estimate a policy that maximizesEπ[∑T

j=1Rj |O0 =

o0] overπ ∈Π. If the system dynamics are Markovian and eachr j(o j ,a j ,o j+1) = γ j r(o j ,a j ,o j+1)
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for r a bounded reward function andγ ∈ (0,1) a discount factor, then this finite horizon problem
provides an approximation to the discounted infinite horizon problem (Kearns Mansour and Ng,
2000) forT large.

Given a policy,π, the value function for an observation,o0, is

Vπ(o0) = Eπ

[
T

∑
j=1

Rj

∣∣∣∣O0 = o0

]
.

Thet-value function for policyπ is the value of the rewards summed from timet on and is

Vπ,t(ot ,at−1) = Eπ

[
T

∑
j=t

Rj

∣∣∣∣Ot = ot ,At−1 = at−1

]
.

If the Markovian assumption holds then(ot ,at−1) in the definition ofVπ,t is replaced byot . Note that
the time 0 value function is simply the value function (Vπ,0 = Vπ). For convenience, setVπ,T+1 = 0.
Then the value functions satisfy the following relationship:

Vπ,t(ot ,at−1) = Eπ [Rt +Vπ,t+1(Ot+1,At)|Ot = ot ,At−1 = at−1]

for t = 0, . . . ,T. The timet Q-function for policyπ is

Qπ,t(ot ,at) = E[Rt +Vπ,t+1(Ot+1,At)|Ot = ot ,At = at ].

(The subscript,π, can be omitted as this expectation is with respect to the distribution ofOt+1 given
(Ot ,At), ft+1; this conditional distribution does not depend on the policy.) In Section 4 we express
the difference in value functions for policỹπ and policyπ in terms of the advantages (as defined in
Baird, 1993). The timet advantage is

µπ,t(ot ,at) = Qπ,t(ot ,at)−Vπ,t(ot ,at−1).

The advantage can be interpreted as the gain in performance obtained by following actionat at time
t and thereafter policyπ as compared to following policyπ from timet on.

The optimal value functionV∗(o) for an observationo is

V∗(o) = max
π∈Π

Vπ(o)

and the optimalt-value function for history(ot ,at−1) is

V∗t (ot ,at−1) = max
π∈Π

Vπ,t(ot ,at−1).

As is well-known, the optimal value functions satisfy the Bellman equations (Bellman, 1957)

V∗t (ot ,at−1) = max
at∈A

E[Rt +V∗t+1(Ot+1,At)|Ot = ot ,At = at ].

Optimal, deterministic, timet decision rules must satisfy

π∗t (ot ,at−1) ∈ argmax
at∈A

E[Rt +V∗t+1(Ot+1,At)|Ot = ot ,At = at ].

The optimal timet Q-function is

Q∗t (ot ,at) = E[Rt +V∗t+1(Ot+1,At)|Ot = ot ,At = at ],

and thus the optimal timet advantage, which is given by

µ∗t (ot ,at) = Q∗t (ot ,at)−V∗t (ot ,at−1),

is always nonpositive and furthermore it is maximized inat atat = π∗t (ot ,at−1).
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3. Batch Q-Learning

We consider a version of Q-learning for use in learning a non-stationary, non-Markovian policy
with one training set of finite horizon trajectories. The term “batch”Q-learning is used to emphasize
that learning occurs only after the collection of the training set. The Q-functions are estimated
using an approximator (i.e. neural networks, decision-trees etc.) (Bertsekas and Tsitsiklis, 1996;
Tsitsiklis and van Roy, 1997) and then the estimated decision rules are the argmax of the estimated
Q functions. LetQt be the approximation space for thetth Q-function, e.g.Qt = {Qt(ot ,at ;θ) :
θ ∈ Θ}; θ is a vector of parameters taking values in a parameter spaceΘ which is a subset of a
Euclidean space. For convenience setQT+1 equal to zero and writeEn f for the expectation of an
arbitrary function,f , of a trajectory with respect to the probability obtained by choosing a trajectory
uniformly from the training set ofn trajectories (for example,En [ f (Ot)] = 1/n∑n

i=1 f (Oit ) for Oit

the tth observation in theith trajectory). In batch Q-learning using dynamic programming and
function approximation solve the following backwards through timet =!T,T−1, . . . ,1 to obtain

θt ∈ argmin
θ

En

[
Rt +max

at+1
Qt+1(Ot+1,At ,at+1;θt+1)−Qt(Ot ,At ;θ)

]2

. (3)

Suppose that Q-functions are approximated by linear combinations ofp features (Qt = {θTqt(ot ,at) :
θ ∈ Rp}) then to achieve (3) solve backwards through time,t = T,T−1, . . . ,0,

0 = En

[(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1;θt+1)−Qt(Ot ,At ;θt)

)
qt(Ot ,At)

T
]

(4)

for θt .
An incremental implementation with updates between trajectories of (3) and (4) results in one-

step Q-learning (Sutton and Barto, 1998, pg. 148, putγ = 1, assume the Markov property and no
need for function approximation). This is not surprising as Q-learning can be viewed as approxi-
mating least squares value iteration (Tsitsiklis and van Roy, 1996). To see the connection consider
the following generic derivation of an incremental update. Denote theith example in a training set
by Xi . Defineθ̂n to be a solution of∑n

i=1 f (Xi ,θ) = 0 for f a givenp dimensional vector of functions
and each integern. Using a Taylor series, expand∑n+1

i=1 f (Xi , θ̂(n+1)) in θ̂(n+1) aboutθ̂(n) to obtain a
between-example update toθ̂(n):

θ̂(n+1)← θ̂(n) +
1

n+1

(
En+1

(
−∂ f (X, θ̂n)

∂θ̂n

))−1

f (Xn+1, θ̂n).

Replace 1
n+1

(
En+1

(
− ∂ f (X,θ̂n)

∂θ̂n

))−1
by a step-sizeαn (αn→ 0 asn→∞) to obtain a general formula

for the incremental implementation. Now consider an incremental implementation of (4) for each
t = 0, . . . ,T. Then for eacht, X = (Ot+1,At), θ = θt and

f (X,θt) =

(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1; θ̂(n+1)

t+1 )−Qt(Ot ,At ;θt)

)
qt(Ot ,At)

T

is a vector of dimensionp. The incremental update is

θ̂(n+1)
t ← θ̂(n)

t +αn

(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1; θ̂(n+1)

t+1 )−Qt(Ot ,At ; θ̂(n)
t )

)
qt(Ot ,At)

T)
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for t = 0, . . . ,T. This is the one-step update of Sutton and Barto (1998, pg. 148) withγ = 1 and
generalized to permit function approximation and nonstationary Q-functionsand is analogous to
the TD(0) update of Tsitsiklis and van Roy (1997) permitting non-Markovian, nonstationary value
functions.

Denote the estimator of the optimal Q-functions based on the training data byQ̂t for t = 0, . . . ,T
(for simplicity, θ is omitted). The estimated policy,π̂, satisfieŝπt(ot ,at−1) ∈ argmaxat Q̂t(ot ,at) for
eacht. Note that members of the approximation spaceQt need not be “Q-functions” for any policy.
For example the Q-functions corresponding to the use of a policyπ (Qπ,t , t = 0, . . . ,T) must satisfy

E[Rt +Vπ,t+1(Ot+1,At)|Ot ,At ] = Qπ,t(Ot ,At)

whereVπ,t+1(Ot+1,At) = Qπ,t+1(Ot+1,At ,at+1) with at+1 set equal toπt+1(Ot+1,At). Q-learning
does not impose this restriction on{Q̂t , t = 0, . . . ,T}; indeed it may be that no member of the
approximation space can satisfy this restriction. None-the-less we refer tothe Q̂t ’s as estimated
Q-functions. Note also that the approximation for the Q-functions combined with the definition
of the estimated decision rules as the argmax of the estimated Q functions places implicit re-
strictions on the set of policies that will be considered. In effect the space of interesting po-
lices is no longerΠ but ratherΠQ = {πθ,θ ∈ Θ} whereπθ = {π1,θ, . . . ,πT,θ} and where each
πt,θ(ot ,at−1) ∈ argmaxat Qt(ot ,at ;θ) for someQt ∈ Qt .

4. Generalization Error

Define the generalization error of a policyπ at an observationo0 as the average difference between
the optimal value function and the value function resulting from the use of policy π in generating a
separate test set. The generalization error of policyπ at observationo0 can be written as

V∗(o0)−Vπ(o0) =−Eπ

[
T

∑
t=0

µ∗t (Ot ,At)
∣∣∣O0 = o0

]
(5)

whereEπ denotes the expectation using the likelihood (2). So the generalization errorcan be ex-
pressed in terms of the optimal advantages evaluated at actions determined bypolicy π; that is when
eachAt = πt(Ot ,At−1). Thus the closer each optimal advantage,µ∗t (Ot ,At) for At = πt(Ot ,At−1) is
to zero, the smaller the generalization error. Recall that the optimal advantage, µ∗t (Ot ,At), is zero
whenAt = π∗t (Ot ,At−1). The display in (5) follows from Kakade’s (ch. 5, 2003) expression for the
difference between the value functions for two policies.
Lemma 1

Given policiesπ̃ andπ,

Vπ̃(o0)−Vπ(o0) =−Eπ

[
T

∑
t=0

µπ̃,t(Ot ,At)
∣∣∣O0 = o0

]
.

Setπ̃ = π∗ to obtain (5). An alternate to Kakade’s (2003) proof is as follows.
Proof. First note

Vπ(o0) = Eπ

[
T

∑
t=0

Rt

∣∣∣O0 = o0

]
= Eπ

[
Eπ

[
T

∑
t=0

Rt

∣∣∣OT ,AT

]∣∣∣∣O0 = o0

]
. (6)
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And Eπ

[
∑T

t=0Rt

∣∣∣OT ,AT

]
is the expectation with respect to the distribution ofOT+1 given the his-

tory (OT ,AT); this is the densityfT+1 from Section 2 andfT+1 is independent of the policy used
to choose the actions. Thus we may subscriptE by eitherπ or π̃ without changing the expectation;

Eπ

[
∑T

t=0Rt

∣∣∣OT ,AT

]
= Eπ̃

[
∑T

t=0Rt

∣∣∣OT ,AT

]
= ∑T−1

t=0 Rt +Qπ̃,T(OT ,AT). The conditional expecta-

tion can be written in a telescoping sum as

Eπ

[
T

∑
t=0

Rt

∣∣∣OT ,AT

]
=

T

∑
t=0

Qπ̃,t(Ot ,At)−Vπ̃,t(Ot ,At−1)

+
T

∑
t=1

Rt−1 +Vπ̃,t(Ot ,At−1)−Qπ̃,t−1(Ot−1,At−1)

+Vπ̃,0(O0)

The first sum is the sum of the advantages. The second sum is a sum of temporal-difference errors;
integrating the temporal-difference error with respect to the conditional distribution of Ot given
(Ot−1,At−1), denoted byft in Section 2, we obtain zero,

E [Rt−1 +Vπ̃,t(Ot ,At−1)|Ot−1,At−1] = Qπ̃,t−1(Ot−1,At−1)

(as beforeE denotes expectation with respect to (1); recall that expectations that do not integrate
over the policy can be written either with anE or anEπ). Substitute the telescoping sum into (6)
and note thatVπ̃,0(o0) = Vπ̃(o0) to obtain the result.

In the following Lemma the difference between value functions corresponding to two policies,
π̃ andπ, is expressed in terms of both theL1 andL2 distances between the optimal Q-functions
andany functions{Q0,Q1, . . . ,QT} satisfyingπt(ot ,at−1) ∈ argmaxat Qt(ot ,at), t = 0, . . . ,T and
any functions{Q̃0,Q̃1, . . . ,Q̃T} satisfyingπ̃t(ot ,at−1) ∈ argmaxat Q̃t(ot ,at), t = 0, . . . ,T. We as-
sume that there exists a positive constant,L for which pt(at |ot ,at−1)≥ L−1 for eacht and all pairs
(ot ,at−1); if the stochastic decision rule,pt , were uniform thenL would be the size of the action
space.
Lemma 2
For all functions,Qt satisfyingπt(ot ,at−1) ∈ argmaxat Qt(ot ,at), t = 0, . . . ,T, and all functionsQ̃t

satisfyingπ̃t(ot ,at−1) ∈ argmaxat Q̃t(ot ,at), t = 0, . . . ,T we have,

|Vπ̃(o0)−Vπ(o0)| ≤
T

∑
t=0

2Lt+1E
[
|Qt(Ot ,At)− Q̃t(Ot ,At)|

∣∣∣O0 = o0

]

+
T

∑
t=0

2Lt+1E
[
|Q̃t(Ot ,At)−Qπ̃,t(Ot ,At)|

∣∣∣O0 = o
]

and

|Vπ̃(o0)−Vπ(o0)| ≤
T

∑
t=0

2L(t+1)/2

√
E
[(

Qt(Ot ,At)− Q̃t(Ot ,At)
)2
∣∣∣O0 = o0

]

+
T

∑
t=0

2L(t+1)/2

√
E
[(

Q̃t(Ot ,At)−Qπ̃,t(Ot ,At)
)2
∣∣∣O0 = o

]
,

whereE denotes expectation with respect to the distribution generating the training sample (1).
Remark:
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1. Note that in general argmaxat Qπ̃,t(ot ,at) may not beπ̃t thus we can not choosẽQt = Qπ̃,t .
However if π̃ = π∗ then we can choosẽQt = Q∗t (= Qπ∗,t by definition) and the second term
in both upper bounds is equal to zero.

2. This result can be used to emphasize one aspect of the mismatch between estimating the opti-
mal Q function and the goal of learning a policy that maximizes the value function. Suppose
Q̃t = Q∗t , π̃ = π∗. The generalization error is

V∗(o0)−Vπ(o0)≤
T

∑
t=0

2L(t+1)/2

√
E
[
(Qt(Ot ,At)−Q∗t (Ot ,At))2

∣∣∣O0 = o0

]

for Qt any function satisfyingπt(ot ,at−1) ∈ argmaxat Qt(ot ,at). Absent restrictions on the
Qts, this inequality cannot be improved in the sense that choosing eachQt = Q∗t andπt = π∗t
yields 0 on both sides of the inequality. However an inequality in the opposite direction
is not possible, since as was seen in Lemma 1,V∗(o0)−Vπ(o0) involves theQ functions
only through the advantages (see also (7) below withπ̃ = π∗). Thus for the difference in
value functions to be small, the average difference betweenQt(ot ,at)−maxat Qt(ot ,at) and
Q∗t (ot ,at)−maxat Q∗t (ot ,at) must be small; this does not require that the average difference
betweenQt(ot ,at) andQ∗t (ot ,at) is small. The mismatch is not unexpected. For example,
Baxter and Bartlett (2001) provide an example in which the approximation space for the
value function includes a value function for which the greedy policy is optimal,yet the greedy
policy found by temporal difference learning (TD(1! )) function performs very poorly.

Proof. Defineµt(ot ,at) = Qt(ot ,at)−maxat Qt(ot ,at) for eacht; note thatµt(ot ,at) evaluated at
at = πt(ot ,at−1) is zero. Start with the result of Lemma 1. Then note the difference between the
value functions can be expressed as

Vπ̃(o0)−Vπ(o0) =
T

∑
t=0

Eπ

[
µt(Ot ,At)−µπ̃,t(Ot ,At)

∣∣∣O0 = o0

]
. (7)

sincePπ putsat = πt(ot ,at−1) andµt(ot ,at) = 0 for this value ofat . When it is clear from the context
µt (µπ̃,t) is used as abbreviation forµt(Ot ,At) (µπ̃,t(Ot ,At)) in the following. AlsoQπ̃,t(Ot ,At−1,at)
with at replaced bỹπt(Ot ,At−1) is written asQπ̃,t(Ot ,At−1, π̃t). Consider the absolute value of the
tth integrand in (7):

|µt −µπ̃,t |
= |Qt(Ot ,At)−max

at
Qt(Ot ,At−1,at)−Qπ̃,t(Ot ,At)+Qπ̃,t(Ot ,At−1, π̃t)|

≤ |Qt(Ot ,At)−Qπ̃,t(Ot ,At)|+ |max
at

Qt(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1, π̃t)|.

Since maxat Q̃t(Ot ,At−1,at) = Q̃t(Ot ,At−1, π̃t) and for any functions,h and h′, |maxat h(at)−
maxat h′(at)| ≤maxat |h(at)−h′(at)|,

∣∣∣∣max
at

Qt(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1, π̃t)

∣∣∣∣
≤max

at

∣∣Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)
∣∣

+
∣∣Q̃t(Ot ,At−1, π̃t)−Qπ̃,t(Ot ,At−1, π̃t)

∣∣ .
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We obtain|µt −µπ̃,t |

≤ 2max
at
|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|

+2max
at
|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)| (8)

≤ 2L∑
at

|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|pt(at |Ot ,At−1)

+2L∑
at

|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|pt(at |Ot ,At−1).

Insert the above into (7) and use Lemma A1 to obtain|Vπ̃(o0)−Vπ(o0)|

≤ 2L
T

∑
t=0

Eπ

[

∑
at

|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|pt(at |Ot ,At−1)
∣∣∣O0 = o0

]

+Eπ

[

∑
at

|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|pt(at |Ot ,At−1)
∣∣∣O0 = o0

]

= 2L
T

∑
t=0

E

[(
t−1

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)
∣∣Qt − Q̃t

∣∣
∣∣∣∣O0 = o0

]

+E

[(
t−1

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)
∣∣Q̃t −Qπ̃,t

∣∣
∣∣∣∣O0 = o0

]

≤ 2
T

∑
t=0

Lt+1E

[∣∣Qt − Q̃t
∣∣
∣∣∣∣O0 = o0

]
+2

T

∑
t=0

Lt+1E

[∣∣Q̃t −Qπ̃,t
∣∣
∣∣∣∣O0 = o0

]

(Qt , Qπ̃,t is used as abbreviation forQt(Ot ,At), respectivelyQπ̃,t(Ot ,At)). This completes the proof
of the first result.

Start from (8) and use Ḧolder’s inequality to obtain,|Vπ̃(o0)−Vπ(o0)|

≤ 2
T

∑
t=0

Eπ

[
max

at
|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|

∣∣∣O0 = o0

]

+Eπ

[
max

at
|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|

∣∣∣O0 = o0

]

≤ 2
T

∑
t=0

√
Eπ

[
max

at
|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|2

∣∣∣O0 = o0

]

+

√
Eπ

[
max

at
|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|2

∣∣∣O0 = o0

]

≤ 2
T

∑
t=0

√√√√LEπ

[

∑
at

|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|2pt(at |Ot ,At−1)
∣∣∣O0 = o0

]

+2
T

∑
t=0

√√√√LEπ

[

∑
at

|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|2pt(at |Ot ,At−1)
∣∣∣O0 = o0

]
.
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Now use Lemma A1 and the lower bound on thept ’s to obtain the result,

|Vπ̃(o0)−Vπ(o0)| ≤ 2
T

∑
t=0

√√√√LE

[
t−1

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

(
Qt − Q̃t

)2
∣∣∣O0 = o0

]

+

√√√√LE

[
t−1

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

(
Q̃t −Qπ̃,t

)2
∣∣∣O0 = o0

]

≤ 2L(t+1)/2
T

∑
t=0

√
E
[(

Qt − Q̃t
)2
∣∣∣O0 = o0

]

+

√
E
[(

Q̃t −Qπ̃,t
)2
∣∣∣O0 = o0

]
.

5. Finite Sample Upper Bounds on the Average Generalization Error

Traditionally the performance of a policyπ is evaluated in terms of maximum generalization er-
ror: maxo[V∗(o)−Vπ(o)] (Bertsekas and Tsitsiklis, 1996). However here we consider an average
generalization error as in Kakade (2003) (see also Fiechter, 1997; Kearns, Mansour and Ng, 2000;
Peshkin and Shelton, 2002); that is

R

o[V
∗(o)−Vπ(o)]dF(o) for a specified distributionF on the

observation space. The choice ofF with density f = f0 ( f0 is the density ofO0 in likelihoods (1)
and (2)) is particularly appealing in the development of a policy in many medicaland social science
applications. In these cases,f0 represents the distribution of initial observations corresponding to a
particular population of subjects. The goal is to produce a good policy forthis population of sub-
jects. In general as in Kakade (2003)F may be chosen to incorporate domain knowledge concerning
the steady state dis! tribution of a good policy. If only a training set of trajectories is available for
learning and we are unwilling to assume that the system dynamics are Markovian, then the choice
of F is constrained by the following consideration. If the distribution ofO0 in the training set (f0)
assigns mass zero to an observationo′, then the training data will not be able to tell us anything
aboutVπ(o′). Similarly if f0 assigns a very small positive mass too′ then only an exceptionally
large training set will permit an accurate estimate ofVπ(o′). Of course this will not be a problem
for the average generalization error, as long asF also assigns very low mass too′. Consequently in
our construction of the finite sample error bounds for theaveragegeneralization error, we will only
consider distributionsF for which the density ofF , say f , satisfies supo | f (o)

f0(o) | ≤M for some finite
constantM. In this case the average generalization error is bounded above by

Z

V∗(o)−Vπ(o)dF(o) ≤ ME [V∗(O0)−Vπ(O0)]

= −MEπ

[
T

∑
t=0

µ∗t (Ot ,At)

]
.

The second line is a consequence of (5) and the fact that the distribution of O0 is the same under
likelihoods (1) and (2).

In the following theorem a non-asymptotic upper bound on the average generalization error is
provided; this upper bound depends on the number of trajectories in the training set (n), the per-
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formance of the approximation on the training set, the complexity of the approximation space and
of course on the confidence (δ) and accuracy (ε) demanded. The batch Q-learning algorithm min-
imizes quadratic forms (see (3)); thus we represent the performance offunctions{Q0,Q1, . . . ,QT}
on the training set by these quadratic forms,

Errn,Qt+1(Qt) = En

[
Rt +max

at+1
Qt+1(Ot+1,At ,at+1)−Qt(Ot ,At)

]2

for eachj (recallQT+1 is set to zero andEn represents the expectation with respect to the probability
obtained by choosing a trajectory uniformly from the training set).

The complexity of eachQt space can be represented by it’s covering number (Anthony and
Bartlett, 1999, pg 148). SupposeF is a class of functions from a space,X, to R. For a sequence
x = (x1, . . . ,xn) ∈ Xn, defineF|x to be a subset ofRn given byF|x = {( f (x1), . . . , f (xn)) : f ∈ F }.
Define the metricdp on R

n by dp(z,y) = (1/n∑n
i=1 |zi−yi |p)1/p for p a positive integer (forp = ∞,

defined∞(z,y) = maxn
i=1 |zi − yi |). ThenN (ε,F|x,dp) is defined as the minimum cardinality of an

ε-covering ofF|x with respect to the metricdp. Next givenε > 0, positive integern, metricdp and
function class,F , the covering number forF is defined as

Np(ε,F ,n) = max{N (ε,F|x,dp) : x∈ Xn}.

In the following theorem,F = {maxat+1 Qt+1(ot+1,at)−Qt(ot ,at) : Qt ∈ Qt , t = 0, . . . ,T} and
(x)+ is x if x > 0 and zero otherwise.
Theorem 1
Assume that the functions inQt , t ∈ 0, . . . ,T are uniformly bounded. Suppose that there exists a pos-
itive constant, sayL, for which pt(at |ot ,at)≥ L−1 for all (ot ,at) pairs, 0≤ t ≤ T. Then forε > 0 and
with probability at least 1−δ, over the random choice of the training set, every choice of functions,
Q j ∈ Q j , j = 0, . . . ,T with associated policyπ defined byπ j(o j ,a j−1) = argmaxa j Q j(o j ,a j) and
every choice of functions̃Q j ∈ Q j , j = 0, . . . ,T with associated policỹπ defined byπ̃ j(o j ,a j−1) =
argmaxa j Q̃ j(o j ,a j) the following bound is satisfied,

R |Vπ̃(o)−Vπ(o)|dF(o)

≤ 6ML1/2
T

∑
t=0

[ T

∑
i=t

(16)i−tLi (Errn,Qi+1(Qi)−Errn,Qi+1(Q̃i)
)+
]1/2

+ 12ML1/2ε

+ 6ML1/2
T

∑
t=0

T

∑
i=t

(16)(i−t)/2Li/2
√

E[Q̃i(Oi ,Ai)−Qπ̃,i(Oi ,Ai)]2.

for n satisfying

4(T +1)N1

(
ε2

32M′(16L)(T+2)
,F ,2n

)
exp

{
− ε4n

32(M′)2(16L)2(T+2)

}
≤ δ (9)

and whereM′ is a uniform upper bound on the absolute value off ∈ F andE represents the expec-
tation with respect to the distribution (1) generating the training set.

Remarks:

1083



MURPHY

1. Suppose thatQ∗t ∈ Qt for eacht. SelectQ̃t = Q∗t and Q̂t = argminQt∈Qt Errn,Q̂t+1
(Qt), t =

T,T −1, . . . ,0 (recallQT+1, Q̂T+1 are identically zero). Then with probability greater than
1−δ, we obtain,

Z

V∗(o)−V̂π(o)dF(o)≤ 12ML1/2ε (10)

for all n satisfying (9). Thus, as long as the covering numbers for eachQt and thus forF
do not grow too fast, estimating eachQt by minimizing Errn,Q̂t+1

(Qt) yields a policy that
consistently achieves the optimal value. Suppose the approximation spacesQt , t = 0, . . . ,T
are feed-forward neural networks as in remark 4 below. In this case the training set sizen
sufficient for (10) to hold need only be polynomial in(1/δ,1/ε) and batch Q-learning is a
probably approximate correct (PAC) reinforcement learning algorithm as defined by Fiechter
(1997). As shown by Fiechter (1997) this algorithm can be converted to an efficient on-line
reinforcement learning algorithm (here the word on-line implies updating the policy between
trajectories).

2. Even whenQ∗t does not belong toQt we can add the optimalQ function at each time,t, to
the approximation space,Qt with a cost of no more than an increase of 1 to the covering

numberN1

(
ε2

32M′(16L)(T+2) ,F ,2n
)

. If we do this the result continues to hold when we setπ̃ to

an optimal policyπ∗ and setQ̃t = Q∗t for eacht; the generalization error is

Z

V∗(o)−Vπ(o)dF(o) ≤ 6ML1/2
T

∑
t=0

[ T

∑
i=t

(16)i−tLiErrn,Qi+1(Qi)

]1/2

+ 12ML1/2ε

for all n satisfying (9). This upper bound is consistent with the practice of using a policy π̂
for which π̂t(ot ,at−1) ∈ argmaxat Q̂t(ot ,at) andQ̂t ∈ argminQt∈Qt Errn,Q̂t+1

(Qt). Given that
the covering numbers for the approximation space can be expressed in a sufficiently simple
form (as in remark 4 below), this upper bound can be used to carry out model selection
using structural risk minimization (Vapnik, 1982). That is, one might consider a variety of
approximation spaces and use structural risk minimization to use the training datato choose
which approximation space is best. The resulting upper bound on the average generalization
error can be found by using the above result and Lemma 15.5 of Anthony and Bartlett (1999).

3. The restriction onn in (9) is due to the complexity associated with the approximation space
(e.g. theQt ’s). The restriction is crude; to see this, note that if there were only a finite number
of functions inF thenn need only satisfy

2(T +1)|F |exp

{
− 2ε4n

(3M′)2(16L)2(T+2)

}
= δ

(use Hoeffding’s inequality; see Anthony and Bartlett, pg 361, 1999) and thus for a given
(ε,δ) we may set the number of trajectories in the training setn equal to

(3M′)2(16L)2(T+2)

2ε4 ln

(
2(T +1)|F |

δ

)
.
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This complexity term appears similar to that achieved by learning algorithms (e.g.see An-
thony and Bartlett, 1999, pg. 21) or in reinforcement learning (e.g. Peshkin and Shelton,
2002) however note thatn is of the orderε−4 rather than the usualε−2. Theε−4 term (instead
of ε−2) is attributable to the fact thatErrQt+1(Qt) is not only a function ofQt but also ofQt+1.
However further assumptions on the approximation space permit an improvedresult. See
Theorem 2 below for one possible refinement. Note the needed training setsizen depends
exponentially on the horizon timeT but not on the dimension of the observation space. Thi!
s is not unexpected as the upper bounds on the generalization error of both Kearns, Man-
sour and Ng (2000) and Peshkin and Shelton’s (2002) policy search methods (the latter using
a training set and importance sampling weights) also depend exponentially on the horizon
time.

4. WhenF is infinite, we use covering numbers for the approximation spaceQt and then appeal
to Lemma A2 in the appendix to derive a covering number forF ; this results in

N1(ε,F ,n)≤ (T +1) max
t=0,...,T

N1

(
ε

2|A | ,Qt , |A |n
)2

.

One possible approximation space is based on feed-forward neural networks. From Anthony
and Bartlett (1999) we have that if eachQ j is the class of functions computed by a feed-
forward network withW weights andk computation units arranged inL layers and each com-
putation unit has a fixed piecewise-polynomial activation function withq pieces and degree

no more thaǹ, thenN1(ε,Qt ,n)≤ e(d+1)
(

2eM′
ε

)d
whered = 2(W+1)(L+1) log2(4(W+

1)(L+1)q(k+1)/ ln2)+2(W +1)(L+1)2 log2(`+1)+2(L+1). To see this combine An-
thony and Bartlett’s Theorems 8.8, 14.1 and 18.4. They provide covering numbers for func-
tions computed by other types of neural networks as well. A particularly simpleneural net-
work is an affine combination of a given set ofp input features; i.e.f (x) = ω0 + ∑p−1

i=1 ωixi

for (1,x) a vector ofp real valued features and eachωi ∈ R. Suppose eachQt is a class of
functions computed by this network. Then Theorems 11.6 and 18.4 of Anthony and Bartlett

imply thatN1(ε,Qt ,n)≤ e(p+1)
(

2eM′
ε

)p
. In this case

n≥ 32(M′)4(16L)2(T+2)

ε4 log

(
4(T +1)2e2(p+1)2

(
128e|A |(M′)2(16L)T+2

)2p

δε4p

)
.

This number will be large for any reasonable accuracy,ε and confidence,δ.

Proof of Theorem 1. An upper bound on the average difference in value functions can be obtained
from Lemma 2 by using Jensen’s inequality and the assumption that the the density of F ( f ) satisfies
supo | f (o)

f0(o) | ≤M for some finite constantM:

Z

|Vπ̃(o)−Vπ(o)|dF(o) ≤ M
T

∑
t=0

2L(t+1)/2
√

E
[
Qt(Oi ,Ai)− Q̃t(Oi ,Ai)

]2

+M
T

∑
t=0

2L(t+1)/2
√

E
[
Q̃t −Qπ̃,t

]2
(11)
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whereQ̃t , Qπ̃,t is used as abbreviation for̃Qt(Ot ,At), respectivelyQπ̃,t(Ot ,At). In the following an

upper bound on eachE
[
Qt − Q̃t

]2
is constructed.

The performance of the approximation on an infinite training set can be represented by

ErrQt+1(Qt) = E

[
Rt +max

at+1
Qt+1(Ot+1,At ,at+1)−Qt

]2

for eacht (recallQT+1 = 0, also we abbreviateQt(Ot ,At) by Qt whenever no confusion may arise).
The errors,Err ’s, can be used to provide an upper bound on theL2 norms on the Q-functions by the
following argument. ConsiderErrQt+1(Qt)−ErrQt+1(Q̃t) for eacht. Within each of these quadratic
forms add and subtract

Qπ̃,t+1(Ot+1,At , π̃t+1)−Qπ̃,t −E

[
max
at+1

Qt+1(Ot+1,At ,at+1)−Qπ̃,t+1(Ot+1,At , π̃t+1)|Ot ,At

]
.

In the aboveQπ̃,t+1(Ot+1,At , π̃t+1) is defined asQπ̃,t+1(Ot+1,At ,at+1) with at+1 replaced bỹπt+1(Ot+1,
At). Expand each quadratic form and use the fact thatE [Rt +Qπ̃,t+1(Ot+1,At , π̃t+1)|Ot ,At ] = Qπ̃,t .
Cancelling common terms yields

E

[
Qπ̃,t −Qt +E

[
max
at+1

Qt+1(Ot+1,At ,at+1)−Qπ̃,t+1(Ot+1,At , π̃t+1)|Ot ,At

]]2

−E

[
Qπ̃,t − Q̃t +E

[
max
at+1

Qt+1(Ot+1,At ,at+1)−Qπ̃,t+1(Ot+1,At , π̃t+1)|Ot ,At

]]2

.

Add and subtract̃Qt in the first quadratic form and expand. This yields

ErrQt+1(Qt)−ErrQt+1(Q̃t) =

E
[
Q̃t −Qt

]2
+2E

[
Q̃t −Qt

][
Q̃t −Qπ̃,t

]

+2E

[
(Q̃t −Qt)

(
max
at+1

Qt+1(Ot+1,At ,at+1)−max
at+1

Q̃t+1(Ot+1,At ,at+1)

)]

+2E

[
(Q̃t −Qt)

(
max
at+1

Q̃t+1(Ot+1,At ,at+1)−Qπ̃,t+1(Ot+1,At , π̃t+1)

)]
. (12)

Using the arguments similar to those used around Equation (8) and using the fact that(x+ y)2 ≤
2x2 +2y2 we obtain,

ErrQt+1(Qt)−ErrQt+1(Q̃t)≥ E
[
Qt − Q̃t

]2

−4
(

E[Qt − Q̃t ]
2
(

E
[
Q̃t −Qπ̃,t

]2
+LE

[
Qt+1− Q̃t+1

]2
+LE

[
Q̃t+1−Qπ̃,t+1

]2))1/2
.

Using this inequality we can now derive an upper bound on eachE
[
Qt − Q̃t

]2
in terms of theErr ’s

and theE
[
Q̃t+1−Qπ̃,t+1

]
’s. Define

mt = L−(T−t)E
[
Q̃t −Qπ̃,t

]2
andbt = L−(T−t)E

[
Qt − Q̃t

]2

and
et = L−(T−t) (ErrQt+1(Qt)−ErrQt+1(Q̃t)

)
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for t ≤ T andbT+1 = mT+1 = eT+1 = 0. We obtain

et ≥ bt −4
√

bt(mt +bt+1 +mt+1).

Completing the square, reordering terms, squaring once again and using the inequality(x+ y)2 ≤
2x2 +2y2 yieldsbt ≤ 16(bt+1 +mt +mt+1)+2et for t ≤ T. We obtain

bT−t ≤ 2
t

∑
i=0

(16)ieT−t+i +
t

∑
i=1

(16)i(16+1)mT−t+i +16mT−t .

Inserting the definitions ofbT−t , eT−t+i and reordering, yields

E
[
Qt − Q̃t

]2 ≤ 2
T

∑
i=t

(16L)i−t (ErrQi+1(Qi)−ErrQi+1(Q̃i)
)

+
T

∑
i=t+1

(16)i−t(16+1)LT−tmi +LT−tmt . (13)

As an aside we can start from (12) and derive the upper bound,

ErrQt+1(Qt)−ErrQt+1(Q̃t)≤ E
[
Qt − Q̃t

]2

+4L(T−t)

√
L−(T−t)E

[
Qt − Q̃t

]2(
mt +L−(T−t−1)E

[
Qt+1− Q̃t+1

]2
+mt+1

)
.

This combined with (13) implies that minimizing eachErrQt+1(Qt)−ErrQt+1(Q̃t) in Qt is equivalent

to minimizing eachE
[
Qt − Q̃t

]2
in Qt modulo the approximation termsmt for t = 0, . . . ,T.

Returning to the proof next note that

ErrQt+1(Qt)−ErrQt+1(Q̃t) ≤
∣∣ErrQt+1(Qt)−Errn,Qt+1(Qt)

∣∣
+
∣∣ErrQt+1(Q̃t)−Errn,Qt+1(Q̃t)

∣∣

+
(
Errn,Qt+1(Qt)−Errn,Qt+1(Q̃t)

)+

where(x)+ is equal tox if x≥ 0 and is equal to 0 otherwise. Note that if eachQt minimizesErrn,Qt+1

as in (3) then the third term is zero. Substituting into (13), we obtain

E
[
Qt − Q̃t

]2 ≤ 2
T

∑
i=t

(16L)i−t
(∣∣ErrQi+1(Qi)−Errn,Qi+1(Qi)

∣∣

+
∣∣ErrQi+1(Q̃i)−Errn,Qi+1(Q̃i)

∣∣

+
(
Errn,Qi+1(Qi)−Errn,Qi+1(Q̃i)

)+
)

+
T

∑
i=t+1

(16)i−t(16+1)Li−tE[Q̃i−Qπ̃,i ]
2 +E[Q̃t−Qπ̃,t ]

2.

Combine this inequality with (11); simplify the sums and use the fact that forx,y both nonneg-
ative

√
x+y≤√x+

√
y to obtain

R |Vπ̃(o)−Vπ(o)|dF(o)

≤ 6ML1/2
T

∑
t=0

[ T

∑
i=t

(16)i−tLi (Errn,Qi+1(Qi)−Errn,Qi+1(Q̃i)
)+
]1/2
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+ 12ML1/2(16L)(T+2)/2
√

max
t

sup
Qt ,Qt+1

∣∣ErrQt+1(Qt)−Errn,Qt+1(Qt)
∣∣

+ 6ML1/2
T

∑
t=0

T

∑
i=t

(16)(i−t)/2Li/2
√

E[Q̃i−Qπ̃,i ]2.

All that remains is to provide an upper bound on

P

[
T

[

i=0

{
for someQt∈Qt , t=0,...,T

∣∣ErrQt+1(Qi)−Errn,Qi+1(Qi))
∣∣> ε′

}
]

.

This probability is in turn bounded above by

T

∑
i=0

P
[

for someQt∈Qt , t=0,...,T
∣∣ErrQi+1(Qi)−Errn,Qi+1(Qi)

∣∣> ε′
]
.

Anthony and Bartlett (1999, pg. 241) use Hoeffding’s inequality along with the classical techniques
of symmetrization and permutation to provide the upper bound (see also van der Vaart and Wellner,
1996),

P
[

for someQt∈Qt , t=0,...,T
∣∣ErrQi+1(Qi)−Errn,Qi+1(Qi)

∣∣> ε′
]

≤ 4N1

(
ε′

32M′
,F ,2n

)
exp

{
− (ε′)2n

32(M′)2

}
.

Putε = (16L)(T+2)/2
√

ε′ to obtain the results of the theorem.
Suppose the Q functions are approximated by linear combinations ofp features; for eacht =

0, . . . ,T, denote the feature vector byqt(ot ,at). The approximation space is then,

Qt = {Qt(ot ,at) = θTqt(ot ,at) : θ ∈Θ}

whereΘ is a subset ofRp. In this case, the batch Q-learning algorithm may be based on (4); we
represent the performance of the functions{Q0, . . . ,Qt} on the training set by

Ẽrrn,Qt+1(Qt) = En

[(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1)−Qt(Ot ,At)

)
qt(Ot ,At)

]

for t = 0, . . . ,T (recall En represents the expectation with respect to the probability obtained by
choosing a trajectory uniformly from the training set). In this theorem

F ′ =
p

[

i=1

T
[

t=1

{(
rt +max

at+1
Qt+1(ot+1,at+1;θt+1)−Qt(ot ,at ;θt)

)
qti(ot ,at) : θt ,θt+1 ∈Θ

}
.

Define the functions{Q̄0, . . . ,Q̄T}, and the policy,̄π, as follows. First definēQT(OT ,AT) to be the
projection ofE [RT |OT ,AT ] on the space spanned byqT . Then set̄πT(oT ,aT−1)∈argmaxaT Q̄T(oT ,aT).
Next for t = T−1, . . . ,0, setQ̄t(Ot ,At) as the projection ofE

[
Rt + Q̄t+1(Ot+1,At , π̄t+1)|Ot ,At

]
on

the space spanned byqt (recall Q̄t+1(Ot+1,At , π̄t+1) is defined asQ̄t+1(Ot+1,At ,at+1) with at+1

replaced bȳπt+1(Ot+1,At)). And setπ̄t(ot ,at−1) ∈ argmaxat Q̄t(ot ,at). These projections are with
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respect toP, the distribution which generated the trajectories in the training set (the likelihood is in
(1)).
Theorem 2
Suppose that there exists a positive constant, sayL, for which pt(at |ot ,at−1)≥ L−1 for all (ot ,at−1),
0≤ t ≤ T. Suppose that for eacht, x∈ Rp, xTEqtqT

t x > η||x||2 whereη > 0 (|| · || is the Euclidean
norm). Also assume thatΘ is a closed subset of{x∈ Rp : ||x|| ≤MΘ} and for all (t, i), the ith
component in the vectorqt is pointwise bounded;|qti | ≤ MQ for MQ a constant. Then forε > 0,
with probability at least 1−δ, over the random choice of the training set, every choice of functions,
Qt ∈ Qt and functionsQ̃t , t = 0, . . . ,T with associated policies defined byπ with πt(ot ,at−1 ∈
argmaxat Qt(ot ,at) andπ̃ with π̃t(ot ,at−1) ∈ argmaxat Q̃t(ot ,at) respectively, the following bounds
are satisfied,

T

∑
t=0

L(t+1)E|Q̄t(Ot ,At)−Qt(Ot ,At)| ≤
√

pMQ /η
T

∑
t=0

L(t+1)
T

∑
j=t

(
LpM2

Q /η
) j−t ||Ẽrrn,Q j+1(Q j)||

+ 4ε.

for t = 0, . . . ,T, whereE represents the expectation with respect to the distribution (1) generating
the training set and

Z

|Vπ̃(o)−Vπ(o)|dF(o) ≤ 2M
√

pMQ /η
T

∑
t=0

L(t+1)
T

∑
j=t

(
LpM2

Q /η
) j−t ||Ẽrrn,Q j+1(Q j)||

+ 8Mε

+2M
T

∑
t=0

L(t+1)E
∣∣Q̄t(Ot ,At)− Q̃t(Ot ,At)

∣∣

+2M
T

∑
t=0

L(t+1)E
∣∣Q̃t(Ot ,At)−Qπ̃,t(Ot ,At)

∣∣

for n larger than

(
C
ε

)2

log

(
B
δ

)
(14)

whereC = 4
√

2M′pT+1/2M2T+1
Q η−(T+1)LT+1, M′ is a uniform upper bound on the absolute value

on all f ∈ F ′ andB = ε−2p46p+3p2T p+p+3(T +1)2e2p+2(M′)4p|A |pM(2T+1)2p
Q η−2p(T+1) L2p(T+1)

Remarks:

1. DefineQ̂t as a zero of̃Errn,Q̂t+1
(Qt), t = T,T−1, . . . ,0 (recall thatQ̂T+1 is identically zero).

Suppose thatQ∗t ∈ Qt for eacht; in this caseQ̄t = Q∗t for all t (we ignore sets of measure zero
in this discussion). Then with probability greater than 1−δ andπ̃ = π∗, Q̃t = Q∗t we obtain

Z

V∗(o)−V̂π(o)dF(o)≤ 8Mε

for all n satisfying (14). Thus estimating eachQt by solvingẼrrn,Qt+1(Qt) = 0, t = T, . . . ,0,
yields a policy that consistently achieves the optimal value.

1089



MURPHY

2. Again defineQ̂t as a zero of̃Errn,Q̂t+1
(Qt), t = T,T −1, . . . ,0. Given twoT + 1 vectors of

functionsQ′ = {Q′0, . . . ,Q′T} andQ = {Q0, . . . ,QT} define

`(Q′,Q) =
T

∑
t=0

Lt+1E
∣∣Q′t(Ot ,At)−Qt(Ot ,At)

∣∣ .

Then the first result of Theorem 2 implies that`(Q̄,Q̂) converges in probability to zero.
From Lemma 2 we have that

R |Vπ̃(o)−Vπ(o)|dF(o) ≤ 2M`(Q,Q̃)+ 2M`(Qπ̃,Q̃) and thus
R |Vπ̃(o)−V̂π(o)|dF(o) is with high probability bounded above by 2M`(Q̄,Q̃)+2M`(Qπ̃,Q̃).
Consequently the presence of the third and fourth terms in Theorem 2 is notsurprising. It is
unclear whether the “go-between”Q̃t is necessary.

3. Recall the space of policies implied by the approximation spaces for the Q-functions is
given by ΠQ = {πθ,θ ∈ Θ} where πθ = {π1,θ, . . . ,πT,θ} and where eachπt,θ(ot ,at−1) ∈
argmaxat Qt(ot ,at ;θ) for someQt ∈ Qt . Suppose that maxπ∈ΠQ

R

Vπ(o)dF(o) is achieved by
some member ofΠQ andπ̃∈ argmaxπ∈ΠQ

R

Vπ(o)dF(o). Ideally Q-learning would provide a
policy that achieves the highest value as compared to other policies inΠQ (as is the case with
π̃). This is not necessarily the case. As discussed in the above remark batch Q-learning yields
estimated Q-functions for which̀(Q̄,Q̂) converges to zero. The policȳπ may not produce a
maximal value; that is

R

Vπ̃(o)−Vπ̄(o)dF(o) need not be zero (see also the remark following
Lemma 2). Recall from Lemma 2 that 2M`(Q̄,Q̃)+ 2M`(Q̃,Qπ̃) is an upper bound on this
difference. It is not hard to see that`(Q̃,Qπ̃) is zero if and only ifπ̃ is the optimal policy;
indeed the optimal Q-function would belong to the approximation space. The Q-learning al-
gorithm does not directly maximize the value function. As remarked in Tsitsiklis and van Roy
(1997) the goal of the Q-learning algorithm is to construct an approximationto the optimal
Q-function within the constraints imposed by the app! roximation space; this approximation
is a projection when the approximation space is linear. Approximating the Q-function yields
an optimal policy if the approximating class is sufficiently rich. Ormoneit and Sen(2002)
consider a sequence of approximation spaces (kernel based spacesindexed by a bandwidth)
and make assumptions on the optimal value function which guarantee that this sequence of
approximations spaces is sufficient rich (as the bandwidth decreases withincreasing training
set size) so as to approximate the optimal value function to any desired degree.

4. Again defineQ̂t as a zero of̃Errn,Q̂t+1
(Qt), t = T,T −1, . . . ,0. Since`(Q̄,Q̂) converges in

probability to zero, one might think that
R |Vπ̄(o)− V̂π(o)|dF(o) should be small as well.

Referring to Lemma 1, we have that the difference in value functions
R |Vπ̄(o)−V̂π(o)|dF(o)

can be expressed as the sum overt of the expectation ofQπ̄,t(Ot ,At−1, π̂t)−Qπ̄,t(Ot ,At−1, π̄t).
However`(Q̄,Q̂) small does not imply that̂π and π̄ will be close nor does it imply that
Qπ̄,t(Ot ,At−1, π̂t)−Qπ̄,t(Ot ,At−1, π̄t) will be small. To see the former consider an action
space with 10 actions, 1, . . . ,10 andQ̂t(ot ,at) = 1 for a = 1, . . . ,9, Q̂t(ot ,10) = 1+1/2ε and
Q̄t(ot ,at) = 1−1/2ε for a = 2, . . . ,10, Q̄t(ot ,1) = 1. SoQ̄t andQ̂t are uniformly less thanε
apart yet the argument of their maxima are 1 and 10.

Proof of Theorem 2. Fix Qt = θT
t qt , θ ∈ Θ for t = 0, . . . ,T. Define an infinite training sample

version ofẼrrn as

ẼrrQt+1(Qt) = E

[(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1)−Qt

)
qt

]
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= E

[(
Q̄t +max

at+1
Qt+1(Ot+1,At ,at+1)− Q̄t+1(Ot+1,At , π̄t+1)−Qt

)
qt

]

whereQt is an abbreviation forQt(Ot ,At). To derive the last equality recall that̄Qt(Ot ,At) is the
projection of
E
[
Rt + Q̄t+1(Ot+1,At , π̄t+1)|Ot ,At

]
on the space spanned byqt . SinceQ̄t is a projection we can

write Q̄t = θT
π̄,tqt for someθπ̄,t ∈ Θ. Also we can writeQt = θT

t qt for someθt ∈ Θ. The Ẽrr ’s
provide a pointwise upper bound on the differences,|Q̄t −Qt |, as follows. Rearrange the terms in
ẼrrQt+1 using the fact thatEqtqT

t is invertible to obtain

(θπ̄,t −θt) =
(
Eqtq

T
t

)−1
ẼrrQt+1(Qt)

−
(
Eqtq

T
t

)−1
E

[(
max
at+1

Qt+1(Ot+1,At ,at+1)− Q̄t+1(Ot+1,At , π̄t+1)

)
qt

]
.

Denote the Euclidean norm of ap dimensional vectorx by ||x||. Then

∣∣(θπ̄,t −θt)
Tqt
∣∣ ≤ (1/η)

∣∣∣
∣∣∣ẼrrQt+1(Qt)

∣∣∣
∣∣∣ ||qt ||+

(1/η)E

[∣∣∣∣max
at+1

Qt+1(Ot+1,At ,at+1)− Q̄t+1(Ot+1,At , π̄t+1)

∣∣∣∣ ||qt ||
]
||qt ||

≤ (1/η)
∣∣∣
∣∣∣ẼrrQt+1(Qt)

∣∣∣
∣∣∣ ||qt ||+(1/η)LE

[∣∣Qt+1− Q̄t+1
∣∣ ||qt ||

]
||qt ||

≤ (1/η)
√

pMQ

∣∣∣
∣∣∣ẼrrQt+1(Qt)

∣∣∣
∣∣∣+(1/η)LpM2

Q E
[∣∣Qt+1− Q̄t+1

∣∣]

for t ≤ T. To summarize

E
∣∣Q̄t −Qt

∣∣ ≤ (1/η)
√

pMQ

∣∣∣
∣∣∣ẼrrQt+1(Qt)

∣∣∣
∣∣∣+(1/η)LpM2

Q E
[∣∣Qt+1− Q̄t+1

∣∣]

whereQt , Q̄t is an abbreviation forQt(Ot ,At), respectivelyQ̄t(Ot ,At), for eacht.
As in the proof of Theorem 1, these inequalities can be solved for each E

∣∣Q̄t −Qt
∣∣ to yield

E
∣∣Q̄t −Qt

∣∣ ≤ (
√

pMQ /η)
T

∑
j=t

(LpM2
Q /η) j−t

∣∣∣
∣∣∣ẼrrQ j+1(Q j)

∣∣∣
∣∣∣

≤ (
√

pMQ /η)
T

∑
j=t

(LpM2
Q /η) j−t

∣∣∣
∣∣∣Ẽrrn,Q j+1(Q j)− ẼrrQ j+1(Q j)

∣∣∣
∣∣∣

+(
√

pMQ /η)
T

∑
j=t

(LpM2
Q /η) j−t

∣∣∣
∣∣∣Ẽrrn,Q j+1(Q j)

∣∣∣
∣∣∣ .

Simplifying terms we obtain

T

∑
t=0

L(t+1)E|Q̄t −Qt | ≤
√

pMQ /η
T

∑
t=0

L(t+1)
T

∑
j=t

(
LpM2

Q /η
) j−t ||Ẽrrn,Q j+1(Q j)||

+ 4pT+1/2M2T+1
Q η−(T+1)LT+1max

t

∣∣∣
∣∣∣Ẽrrn,Qt+1(Qt)− ẼrrQt+1(Qt)

∣∣∣
∣∣∣ .
(15)
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Consider each component of each of theT +1, pdimensional vectors,̃Errn,Qi+1(Qi))−ẼrrQi+1(Qi)
for anε′ > 0:

P

[
T

[

i=0

p
[

j=1

{
for someθi ,θi+1∈Θ,qi∈Qi ,qi+1∈Qi+1

∣∣∣Ẽrrn,Qi+1(Qi) j − ẼrrQi+1(Qi)) j

∣∣∣> ε′
}]

.

This probability is in turn bounded above by

T

∑
i=0

p

∑
j=1

P
[
for someθi ,θi+1∈Θ,qi∈Qi ,qi+1∈Qi+1

∣∣∣Ẽrrn,Qi+1(Qi) j − ẼrrQi+1(Qi)) j

∣∣∣> ε′
]
.

In Lemmas 17.2, 17.3, 17.5, Anthony and Bartlett (1999) provide an upperbound on the probability

P
[

for somef ∈ F has|En(` f )−E(` f )| ≥ ε′
]

where` f (x,y) = (y− f (x))2. These same lemmas (based on the classical arguments of symmetriza-
tion, permutation and reduction to a finite set) can be used forf ∈ F ′ since the functions inF ′ are
uniformly bounded. Hence for eachj = 1, . . . , p andt = 0, . . . ,T

P
[

for someθt ,θt+1 ∈Θ,qt ∈ Qt ,qt+1 ∈ Qt+1 has
∣∣∣Ẽrrn,Qt+1(Qt) j − ẼrrQt+1(Qt) j

∣∣∣> ε′
]

≤ 4N1

(
ε′

16M′
,F ′,2n

)
exp

{
− (ε′)2n

32(M′)2

}
.

Setε = pT+1/2M2T+1
Q η−(T+1)LT+1ε′. Thus forn satisfying

4p(T +1)N1

(
ε

16M′pT+1/2M2T+1
Q η−(T+1)LT+1

,F ′,2n

)

exp




− ε2n

32(M′)2
(

pT+1/2M2T+1
Q η−(T+1)LT+1

)2




≤ δ, (16)

the first result of the theorem holds.
To simplify the constraint onn, we derive a covering number forF ′ from covering numbers for

theQt ’s. Apply Lemma A2 part 1, to obtain

N1(ε,Vt+1,n)≤N1

(
ε
|A | ,Qt+1, |A |n

)

for Vt+1 =
{

maxat+1 Qt+1(ot+1,at+1) : Qt+1 ∈ Qt+1
}

. Next apply Lemma A2, parts 2 and 3, to
obtain

N1(ε,F ′,n)≤
T−1

∑
t=0

N1

(
ε

2|A |M′ ,Qt+1, |A |n
)

N1

( ε
2M′

,Qt ,n
)

+N1

( ε
M′

,QT ,n
)

.
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Theorems 11.6 and 18.4 of Anthony and Bartlett imply thatN1(ε,Qt ,n) ≤ e(p+1)
(

2e
ε
)p

for each
t. Combining this upper bound with (16) and simplifying the algebra yields (14).

Next Lemma 2 implies:

Z

|Vπ̃(o)−Vπ(o)|dF(o) ≤ M
T

∑
t=0

2L(t+1)E
∣∣Qt − Q̄t

∣∣

+M
T

∑
t=0

2L(t+1)E
∣∣Q̄t − Q̃t

∣∣ +M
T

∑
t=0

2L(t+1)E
∣∣Q̃t −Qπ̃,t

∣∣ .

This combined with the first result of the theorem implies the second result.

6. Discussion

Planning problems involving a single training set of trajectories are not unusual and can be expected
to increase due to the widespread use of policies in the social and behavioral/medical sciences (see,
for example, Rush et al., 2003; Altfeld and Walker, 2001; Brooner, andKidorf, 2002); at this time
these policies are formulated using expert opinion, clinical experience and/or theoretical models.
However there is growing interest in formulating these policies using empiricalstudies (training
sets). These training sets are collected under fixed exploration policies and thus while they allow
exploration they do not allow exploitation, that is, online choice of the actions.If subjects are
recruited into the study at a much slower rate than the calendar duration of thehorizon, then it is
possible to permit some exploitation; some of this occurs in the field of cancer research (Thall, Sung
and Estey, 2002).

This paper considers the use of Q-learning with dynamic programming and function approxima-
tion for this planning purpose. However the mismatch between Q-learning andthe goal of learning
a policy that maximizes the value function has serious consequences and emphasizes the need to use
all available science in choosing the approximation space. Often the availablebehaviorial or psycho-
social theories provide qualitative information concerning the importance ofdifferent observations.
In addition these theories are often represented graphically via directed acyclic graphs. However in-
formation at the level of the form of the conditional distributions connecting the nodes in the graphs
is mostly unavailable. Also due to the complexity of the problems there are oftenunknownmiss-
ing common causes of different nodes in the graphs. See http://neuromancer.eecs.umich.edu/dtr for
more information and references. Methods that can use this qualitative information to minimize t!
he mismatch are needed.
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Appendix A.

Recall that the distributions,P andPπ differ only with regards to the policy (see (1) and (2)). Thus
the following result is unsurprising. Letf (OT+1,AT) be a (measurable) nonnegative function; then
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Eπ f can be expressed in terms of an expectation with respect to the distributionP if we assume that
pt(at |ot ,at−1) > 0 for each(ot ,at) pair and eacht. The presence of thep js in denominator below
represent the price we pay because we only have access to training trajectories with distributionP;
we do not have access to trajectories from distributionPπ.
Lemma A1 Assume thatPπ[p0(A0|S0) > 0] = 1 andPπ[pt(At |Ot ,At−1) > 0] = 1 for t = 1, . . . ,T.
For any (measurable) nonnegative function ofg(Ot ,At), theP-probability that

Eπ [g(Ot ,At)|S0] = E

[(
t

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)
g(Ot ,At)

∣∣∣∣S0

]

is one fort = 0, . . . ,T.
Proof: We need only prove that

E [h(S0)Eπ [g(Ot ,At)|S0]] = E

[
h(S0)E

[(
t

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)
g(Ot ,At)

∣∣∣∣S0

]]

for any (measurable) nonnegative function,h. Consider the two likelihoods ((1) and (2)) for a
trajectory up to timet. Denote the dominating measure for the two likelihoods for the trajectory up
to timet asλt . By assumption,

Z

h(s0)g(ot ,at)

(
T

∏̀
=0

1A`=π`

p`(a`|o`,a`−1)

)
f0(s0)p0(a0|s0)

t

∏
j=1

f j(sj |o j−1,a j−1)p j(a j |o j ,a j−1)dλt(ot ,at)

=
Z

h(s0)g(ot ,at) f0(s0)1a0=π0(s0)

t

∏
j=1

f j(sj |o j−1,a j−1)1a j=π j (o j ,a j−1) dλt(ot ,at).

By definition the left hand side isE
[
h(S0)g(Ot ,At)

(
∏ j

`=0
1A`=π`

p`(A`|O`,A`−1)

)]
and the right hand side

is Eπ[h(S0)g(Ot ,At)]. Expressing both sides as the expectation of a conditional expectation, we
obtain,

Eπ[h(S0)Eπ[g(Ot ,At)|S0]] = E

[
h(S0)E

[
g(Ot ,At)

(
t

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)∣∣∣∣S0

]]
.

Note that the distribution ofS0 is the same regardless of how the actions are chosen, that is the
distribution ofS0 is the same under bothP andPπ. Thus

E[h(S0)Eπ[g(Ot ,At)|S0]] = E

[
h(S0)E

[
g(Ot ,At)

(
t

∏̀
=0

1A`=π`

p`(A`|A`,A`−1)

)∣∣∣∣S0

]]
.

Lemma A2 For p, q, r, s, N positive integers andMF , MG , MΘ positive reals, define the following
classes of real valued functions,

H ⊆ {h(x,a) : x∈ R
p, a∈ {1, . . . ,N}}

F ⊆
{

f (x) : x∈ R
q, sup

x
| f (x)| ≤MF

}

G ⊆
{

g(x,y) : x∈ R
q, y∈ R

r , sup
x,y
|g(x,y)| ≤MG

}
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and

Θ⊆
{

θ ∈ R
s : max

i=1,...,s
|θi | ≤MΘ

}
.

The following hold.

1. If V =
{

maxah(x,a) : h∈H
}

thenN1(ε,V ,n)≤N1(ε/N,H ,Nn).

2. For|a| ≤ 1, |b| ≤ 1, if V = {a f(x)+bg(x,y) : f ∈ F , g∈ G}
thenN1(ε,V,n)≤N1(ε/2,F ,n)N1(ε/2,G ,n).

3. If V = F ∪G thenN1(ε,V ,n)≤N1(ε,F ,n)+N1(ε,G ,n).

4. If V = {θ1 f1(x)+ . . .+θs fs(x) : fi ∈ F , (θ1, . . . ,θs) ∈Θ}
thenN1(ε,V ,n)≤ e(s+1)

(
4esMΘMF

ε

)s
N∞

(
ε

4sMΘ
,F ,n

)s
.

Proof. We prove 1. and 4.; the proofs of 2. and 3. are straightforward and are omitted. Consider 1.
Given(x1, . . . ,xn), theε-covering number for the class of points inR

Nn,{
(h(xi ,a) : i = 1, . . . ,n,a = 1, . . .N) ;h∈H

}
is bounded above byN1(ε,H ,Nn). Note that for

(zia, i = 1, . . . ,n, a = 1, . . . ,N),

1/n
n

∑
i=1

∣∣∣∣ max
a=1,...,N

h(xi ,a)− max
a=1,...,N

zia

∣∣∣∣ ≤ 1/n
n

∑
i=1

max
a=1,...,N

|h(xi ,a)−zia|

≤ 1/n
n

∑
i=1

N

∑
a=1

|h(xi ,a)−zia| .

Thus theε-covering number for the class of points inR
n, {
(
maxN

a=1h(xi ,a) : i = 1, . . . ,n
)

; h∈H } is
bounded above byN1(ε,H ,Nn). Using the definition of covering numbers for classes of functions
we obtainN1(ε,V ,n)≤N1

( ε
N ,H ,Nn

)
.

Next consider 4. Putx = (x1, . . . ,xn) (eachxi ∈ R
q) and f (xi) = ( f1(xi), . . . , fs(xi))

T . Then there
exists{z1, . . . ,zN }, (N = N∞(ε/(4sMΘ),F ,n); zj ∈ R

n) that form the centers of anε/(4sMΘ)-cover
for F . To eachzj we can associate anf ∈ F , say f ∗j so that{ f ∗1 , . . . , f ∗

N
} form the centers of an

ε/(2sMΘ)-cover forF . Then given{ f1, . . . , fs} ∈ F there existsj∗ ∈ {1, . . . ,N } for j = 1, . . . ,s,
so that max1≤ j≤smax1≤i≤n | f j(xi)− f ∗j∗(xi)| ≤ ε/(2sMΘ). Then

(1/n)
n

∑
i=1

∣∣∣∣∣
s

∑
j=1

θ j f j(xi)−θ j f ∗j∗(xi)

∣∣∣∣∣≤ ε/2.

DefineF ′ =
{

∑s
j=1 θ j f ∗j∗ : θ j ∈Θ

}
. Theorems 11.6 and 18.4 of Anthony and Bartlett (1996) imply

thatN1(ε/2,F ′,n)≤ e(s+1)
(

4esMΘMF

ε

)s
These two combine to yield the result.
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