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DESIGNATING mi ms
NUMBER P P2

1 0 0

2 0 1

3 1 0

4 1 1

5 0 2

6 2 0

7 2 2

Selected ordinates for systematic and randomized procedures for these 7 pairs
of values are presented and compared in Table 1. It is seen that the tails of some
of the curves are much heavier than for case 1 (m; = m, = 0), indicating that
much larger values of F are required for significance. On the other hand, some
of the tails are lighter than for case 1 so that smaller F-values are indicative of
significance at the usual levels. Randomization is effective in some cases in giving
a distribution that is closer to the conventional F distribution than is the F
distribution for a systematic procedure.

It is easy to find the limiting values of the ratios of the ordinates of (2.12)
and (2.13) to the ordinates of the conventional F distribution as F approaches
0 and « (same). These limiting values are also indicated in Table 1.

When (2.13) is a greatly curtailed distribution making errors of the first kind
less probable than expected then the probability of errors of the second kind may
be greatly enhanced.
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A GENERALIZATION OF A THEOREM DUE TO MacNEISH!

By K. A. BusH

Champlain College, State University of New York, and University of North Carolina

1. Summary and introduction. In 1922 MacNeish [1] considered the problem
of orthogonal Latin squares and showed that if the number s is written in stand-
ard form:

n
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1 This note is a revision of one section of the author’s doctoral dissertation submitted to
the University of North Carolina at Chapel Hill.
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where po, p1, -, px are primes, and if
_ . no n ny
T——mlll(po ’plly"'ypk )’

then we can construct r — 1 orthogonal Latin squares of side s. An alternative
proof was also given by Mann [2]. At the April, 1950 meeting of the Institute
of Mathematical Statistics at Chapel Hill, North Carolina, R. C. Bose announced
an interesting generalization of this result [3] which is stated as a theorem in the
next section. The proof given here is simpler than Bose’s original proof and is
published at his suggestion.

2. Bose’s generalization of MacNeish’s theorem. Let us consider a matrix
A = (a;;), where each a;, represents one of the integers 0, 1, -+ ;s — 1 with N
columns and k rows. Consider all {-rowed submatrices of N columns which can
be formed from this array by choosing any ¢ rows. Each column of the submatrix
can be regarded as an ordered ¢-plet. The matrix A will be called an orthogonal
array (N, k, s, t) of size N, k constraints, s levels, strength ¢ and index X if each
of the C% t-rowed submatrices that may be formed from A contains every one
of the s’ possible ordered t-plets each repeated \ times. It is clear that we cannot
add rows indefinitely to the array and still preserve its orthogonal character.
We shall use the symbol f(N, s, t) to denote the maximum number of constraints
that are possible.

THEOREM. If N; is divisible by si fori = 1,2, --- , u, then

FJN\Ng -+« Ny, 8182 +* Su, t) = min (ky, ko, -+, ku),

where k; = f(N:, si, ).
Proor. Let N; = \:;s:. We shall proceed inductively, and we first establish
the relationship:

f(NlNz , S182, t) = min (kl y kg).

Let us denote the orthogonal array with N; columns and k; constraints by
A = (a;;) and the second array with N, columns and k. constraints by B = (bs;).
We may regard the elements of these two arrays as elements of two additive
Abelian groups. Accordingly we may form the direct sum of these two groups.
There are s;s; elements in this sum, and we may represent any element of this
new group by the symbol (a;; , bmn) Where a;; and bn. are elements of the two
modules. We now write the array with NN, columns in the form

(@ y b)) =<+ (@wyy ber) -+ (@1, bawy) * - (Grwy , biwy)

(au , bu) te (aw, , bu) te (au , bmz) te (awl , buv,),

where the elements of A are used for the first component for the first §; columns
and for the first k rows, where k¥ = min (ki, k2). The construction is completed
in a similar manner for the next group of N; columns (not indicated in the array
above) and so on until N, groups of N; columns have been written down sothat
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N = N;N:. On the other hand, the second component is taken direct'yfrom
the array B = (b;).

Now select any ¢ rows from the array so constructed. Any ¢-plet of the b ele-
ments is repeated N, times in each of A, groups. Within each of these groups of
N1 objects any particular ¢{-plet of the a elements occurs A, times so that each
t-plet which is constructed from the compound elements occurs A\, times. Thus
the new array is orthogonal.

We now adjoin the array (N;, ks, s3, t), where £ = min (k,, k2, k3), to the one
we have just constructed, by an analogous process. Continuing in this manner,
we reach our theorem. In particularif ¢ = 2, and \;, = 1fori =1,2,---, u
we secure the MacNeish theorem (cf. [1]).

As an example of the use of our theorem, we can state as an illustrative result

f(72,6,2) z 4

since f(3°, 3, 2) = 4, f(2°, 2, 2) = 7 in accordance with results established in [4].
In the absence of this extension of the MacNeish result, it might have been
supposed that there could be but three orthogonal rows for this case, since there
are no orthogonal Latin squares of side 6. We cannot, however, conclude that
the equality sign holds since counter examples have been given in [4].

b
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ON A LIMITING CASE FOR THE DISTRIBUTION OF EXCEEDANCES,
WITH AN APPLICATION TO LIFE-TESTING

By Lee B. Harris
General Electric Company

According to equation (4.12) of [1], the probability that in a future sample of
N observations, taken from an unknown distribution of a continuous variate,
less than x of them will exceed x,, , the mth highest observation in the trial sample
of n observations, is given by

<N>
W(n,m,N,x)=1—»x—_"_LFm(x-i—l,—n,——n—N—l-x—{—l,l),
N +n
<x+1>



