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A GENERALIZATION OF ANDERSONS THEOREM ON
UNIMODAL FUNCTIONS

SOMESH DAS GUPTA1

Abstract. Anderson (1955) gave a definition of a unimodal function onÄ"
and obtained an inequality for integrals of a symmetric unimodal function
over translates of a symmetric convex set. Anderson's assumptions, espe-
cially the role of unimodality, are critically examined and generalizations of
his inequality are obtained in different directions. It is shown that a
marginal function of a unimodal function (even if it is symmetric) need not
be unimodal.

1. Introduction. A function /: R" = [0, oo) is said to be unimodal by
Anderson (1955) if
(1.1) D(u) = {x:f(x) > u]

is convex for all u, 0 < w < oo. The main result of this paper is a generaliza-
tion of the following theorem of Anderson (1955) on the integrals of a
symmetric unimodal function over translates of a symmetric convex set.

Theorem (Anderson). Let E be a symmetric (i.e., E = - E) convex set in
R" and f be a function on R" to [0, oo) such that f is symmetric (i.e.,
f(x) =/( — x)), unimodal, and /£/(x)lun(í¡íx) < oo, where p„ is the Lebesgue
measure on R". Then for any fixed y ER" and 0 < À < 1

(1.2) fEf(x + \y)p„(dx) >fEf(x + y)h(dx).

This result was extended by Mudholkar (1966) by replacing the condition
of symmetry with the condition of invariance under a linear Lebesgue
measure-preserving group G of transformations of R" onto R".

Theorem (Mudholkar). Let E be a convex, G-invariant set in R" and f be
a function on R" to [0, oo) such that f is G-invariant unimodal and
f Ef(x) p„(dx) < oo. Then for fixed y ER" and any y* in the convex hull of the
G-orbit of {y}
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(1.3) ff(x+y*)lín(dx)>(f(x+y)lin(dx).JE JE

Note that Anderson's theorem follows from Mudholkar's by taking G to be
the group of sign-change transformations.

Let us consider Anderson's theorem again and define

(1.4) h{y) = ( j{x+y)llÁdx)
JE

(1.5) = Jf(x+y)IExR„(x,y)lin(dx),
where / is the indicator function. It is shown in later sections that the
conclusions of Anderson's theorem, i.e.,
(1.6) h(y) = h(-y),    h(Xy) > h(y),       0 < X < 1,
still hold, if h(y) is defined by

(1-7) h(y) = ff(x,y)Ic(x,y)tin(dx),

where/is a symmetric unimodal function on R" X Rm and C is a symmetric
convex set in R"+m,y E Rm. Note that, for a fixedy, the section of C in the
«-space may not be symmetric. The conclusions (1.6) are shown to be valid
also if

(1-8) AO0-Í fxix,y)hix,y)i%idx),
JRn

where/, and/2 are symmetric unimodal functions on R" X Rm. Note now
that/,(.*, j>)/2(.x:,.y) may not be unimodal on R" X Rm. A further generaliza-
tion is given in Corollary 1. All these results are then extended by replacing
the symmetry condition by C7*-invariance for a suitable group G* of transfor-
mations. This is the main result in this paper and it is given in Theorem 1.
This generalizes Mudholkar's theorem. The question of replacing ¡xn by a
more general measure v is also studied.

A special case of our results shows that a marginal function (i.e., when a
subset of the variables are integrated out) of a symmetric unimodal function
is symmetric and "ray-unimodal" (i.e., (1.6) holds); however, some examples
are given to indicate that a marginal function of a unimodal function need
not be unimodal, even when the symmetry condition is assumed.

2. The main generalization of Anderson's theorem. Let (7, and G2 be groups
of measurable one-to-one transformations of R" —»onto R" and Rm —> onto
Rm, respectively. Let G* be a subgroup of C, X G2 satisfying the following:

Condition A. Given any g2 E G2 there exists gx E Gx such that (gx.
g2) e G*.

Furthermore, assume the following:
Condition B. The group C, is Lebesgue measure-preserving.

Theorem 1. Let/(jt, y) (i = 1, .... k) be G*'-invariant unimodal functions
on R" X Rm, x E R",y E Rm. Assume thai for each y,.yk in Rm
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k

(2.1) h(yx,...,yk) = (   \\fi(x,y¿pn(dx)<n.
JR"¡=\

Then

(2.2) h(gyx,...,gyk) = h(yl,...,yk)

for any g E G2, and

(2.3) h(yx*,...,y*k)> h(yx, . . . ,yk),
where

(2-4) y* = i Xjg2jyi,
7-1

g2j's are in G2, y is any positive integer, and (Xx, . . . , Xy) E P , the y-dimen-
sional probability simplex.

Proof. For 0 < u¡ < oo, define

(2.5) £>(",) = {(x,y):f,(x,y) > «,},
(2.6) D,(u„y)- {x:(x,y)EDi(ui)},
i = 1.k. By Fubini's theorem

(2.7)     h(yx, ...,yk)=f    ■ ■ •   f °°   f   JJ W)(*)M¿
J0 J0        JR" i=x

-v)
k
n du,
i=i

(2.8)

Note now

(2.9)

Jr oo /• c
n Jo pj n a(«,j,) dux, . . . , duk.

D D,{uity*) D 2 A,
i=i y=i

H Di(u¡,gyy,)
i = i

This follows from  the fact that the sets  D¡(u¡) are convex. Then,  from
Brunn-Minkowski's inequality, we get

(2.10)

(2.11)

ft, n D,(Ui,yr)i=i m« 2 M ilAKVi)
7-1       I/=1

>   min
1<7'<Y

ft H   O/K'e?^,)
1 = 1

By Condition A there exists gXjf E Gx such that (gXJ\ g2jx) E G*. Since/ is
G*-invariant,

(2.12)
and

(2.13)

c?,~'A(«,.c?2>v,)= D,(utty,)

tf' i-i = n ö,(«,^/)./=i
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Since G, is Lebesgue measure-preserving,

(2.14) fi A0..s*v/)
1 = 1

rh, n a(«/^/)
i-1

/ = 1, . . . , y. Now we get (2.3) from (2.8), (2.11) and (2.14). The result (2.2)
follows from (2.8) and (2.13).

Corollary 1. Let f(x, y) (i = \, . . . , k) be symmetric (about the origin)
unimodal functions on R" X Rm, x E R",y E Rm. Assume that (2.1) holds for
each y„ . . . ,yk in Rm. Then

(2.15) hiyx,...,yk) = h(-yx.- yk),

and

(2.16) h(Xyx,...,Xyk) > h(yx.yk),
0 < A < 1.

Proof. Define G, and G2 to be the groups of sign-change transformations
on R" and Rm, respectively. Define G* to be the subgroup of G, X G2
consisting of two elements (+1, +1), (—1, -1). Then any y*, defined in
(2.4), can be expressed as Xy¡, where |A| < 1. With these specializations the
desired results follow from Theorem 1.

Remark 1. Brunn-Minkowski's inequality states that for any two measur-
able sets Ax and A2 in R"

(2.17) MM. + M2) >[OxÚ/n(Ax) + 02tiy"(A2)]n,

where (0X, 62) E P2. We have used this inequality in (2.11). However, instead
of using the full strength of this inequality we have used the following
property of /t„:

(2.18) MMi + M2) > min[M^.).Mn(X2)]-

So Theorem 1 will hold if we replace ju„ by a measure v on R" such that v is
G,-invariant and for any two convex sets Ax, A2 in R"

(2.19) v(9xAx + 62A2) > min[v(Ax),v(A2)],

9 = (9X, 92) G P2.
Remark 2. It is seen from Corollary 1 that the unimodality assumption in

Anderson's theorem is greatly relaxed. It can be further relaxed by consider-
ing the integrand in (2.1) as a function / which is a positive linear combina-
tion of finite products of symmetric unimodal functions. The conclusions of
Corollary 1 will still hold. This leads essentially to a generalization of
Sherman's result (1955).

Remark 3. Consider a measure G on Rmk such that

(2.21)
Define

fh(y\.yk)Gidyx.dyk) < co.
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k

(2.22) /(*, \) =/ Il /#(*, Xy¡)G(dyx, ..., dyk).
1 = 1

Then, under the assumptions in Corollary 1, it follows that

(2.23) ff(x,X)iin(dx) >ff(x, l)pn(dx),
for 0 < À < 1. This leads to a generalization of Theorem 2 of Anderson
(1955).

Remark 4. Let

(2.24) G* = {gl E Gl:(gl,g2)e G* for some g2 E G2).

Then, instead of Condition B, it is sufficient to assume that ft is Gf-invariant
in order to prove Theorem 1.

3. Some special cases. In this section we derive some useful special cases of
Theorem 1 and study the marginal function of a unimodal function.

Theorem 2. Let G be a linear Lebesgue measure-preserving group of one-to-
one transformations of R" onto R". Let p¡(x) (i = 1, . . . , k) be G-invariant
unimodal functions on R". Assume that

s k

(3.1) h(yx, ... ,ys)={ Il Pi(x + y,)    \\    p,(x)pn(dx)
i=i i = j +1

for allyx, . . . ,ys in R", 0 < s < k. Then

(3.2) h(yx.ys) = h(gyx.gys)
for all g E G, and

(3.3) h(yf,...,y?) > h(yx, . . . ,ys),
where y * = 2j=1À^>'/, y is any positive integer, gfs are in G, and (Xx, . . . , X )

Proof. The result is obtained easily by specializing Theorem 1 as follows.

GX = G2=G,       G* = {(g,g):gE G) c G X G,

fi(x,y) =/7,(x +>>),        i=l,...,s,

= p¡(x), i = s + 1, . . ., k,
m = n.

Remark 5. Mudholkar's theorem follows from Theorem 2. To see this,
define

(3.5) A- = 2,    j-1,   px(x+y)=f(x+y),   p2(x) = IE(x).

Remark 6. Theorem 2 can be extended using the idea in Remark 2.

Corollary 2. Let f(x,y) be a symmetric unimodal function on R" X Rm,
x E R",y E Rm. Let C be a symmetric convex set in R" + m. Assume that

(3.6) fx(y)=( f(x,y)Ic(x,y)pn(dx)<
JRn

OO
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for ally G Rm. Then

(3.7)

and

(3.8)

forO < X < I,yE Rm.

fM-M-y),

/, (\V)  > /, (j),

Proof. This follows from Corollary 1, by taking k = 2, fx(x, y) = fix.y),
f2ix, y) = Icix, y).

Remark 7. Note that/p defined in (3.6), is a unimodal function if m = 1.
However, this result is not true if m > 1, as shown by Example 1, which is
basically due to Anderson (see Sherman (1955)). In general, /,, defined in
(3.6), need not be unimodal even when m = 1 if the symmetry condition is
dropped; this is shown in Example 2.

Example 1. For ix,y) E R2, define fix, y) = IA(x)IB(y)g(x + y), where

*(') =

3,    if |f,|< 1, |/2|< 1,
2,    if |i,|< 1, 1 <|<2|< 5>

. 0,    elsewhere,

' = Ci. h)> and

A = [x = (xx, x2): \xx\< 1, |x2| < 1},

b= {y = (y],y2Y- \yt\< 2,\y2\< 5}.

Then/is a symmetric unimodal function on R2 X R2. Define

/. (y) = Í f(x,y) dx = IB iy) f gix + y) dx.
JR2 JA

Note   now   /.(0.5, 4)=/,(l, 0) = 6,    but   /.(0.75, 2) < 6,   and   (0.75, 2) =
1,0). Thus/,

Example 2. For x,y in R\ define
1(0.5, 4) + 1(1, 0). Thus/, is not unimodal on R2.

f(x,y) =
3, 0 < x < y, 0 < y < 1,
2, 0 < x < >>, 1 < y < 2,
0,     elsewhere.

Then

My) = [   fix,y)dx=
J — oo

Note that /, is not unimodal on R ' although / is unimodal on R ' X /? '.

3.y, 0 < >- < 1,
2y, 1 < y < 2,
0,      elsewhere.
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