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A GENERALIZATION OF ANDERSON’S THEOREM ON
UNIMODAL FUNCTIONS

SOMESH DAS GUPTA'

ABSTRACT. Anderson (1955) gave a definition of a unimodal function on R”
and obtained an inequality for integrals of a symmetric unimodal function
over translates of a symmetric convex set. Anderson’s assumptions, espe-
cially the role of unimodality, are critically examined and generalizations of
his inequality are obtained in different directions. It is shown that a
marginal function of a unimodal function (even if it is symmetric) need not
be unimodal.

1. Introduction. A function f: R"” =[0, ) is said to be unimodal by
Anderson (1955) if

(1.1 D(u) ={x:f(x) > u}
is convex for all u, 0 < u < oo. The main result of this paper is a generaliza-

tion of the following theorem of Anderson (1955) on the integrals of a
symmetric unimodal function over translates of a symmetric convex set.

THEOREM (ANDERSON). Let E be a symmetric (i.e., E = — FE) convex set in
R" and f be a function on R" to [0, o0) such that f is symmetric (i.e.,
f(x) = f(—x)), unimodal, and {gf(x)p,(dx) < oo, where u, is the Lebesgue
measure on R". Then for any fixed y € R" and 0 < A < 1

(12) J I+ W) () > J G+ 2 ().

This result was extended by Mudholkar (1966) by replacing the condition
of symmetry with the condition of invariance under a linear Lebesgue
measure-preserving group G of transformations of R” onto R".

THEOREM (MUDHOLKARY). Let E be a convex, G-invariant set in R" and f be
a function on R" to [0, o) such that f is G-incvariant unimodal and
[ef(x) p,(dx) < oo. Then for fixed y € R" and any y* in the convex hull of the
G-orbit of { y}
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(13) J I () > [ S+ ) (@)

Note that Anderson’s theorem follows from Mudholkar’s by taking G to be
the group of sign-change transformations.
Let us consider Anderson’s theorem again and define

(14) h(y) = fE £(x + ) po(dx)

(1.5) = [ f(x + W)pxrr (x.9) o (dx),
where I is the indicator function. It is shown in later sections that the
conclusions of Anderson’s theorem, i.e.,

(1.6) h(y) = h(=y), h(Ay) > h(y). 0<AKL,
still hold, if A(y) is defined by
(1.7) h(y) =fRnf(x,y)1c (%, ¥) #a(dx),

where f is a symmetric unimodal function on R” X R™ and C is a symmetric
convex set in R"*™, y € R™. Note that, for a fixed y, the section of C in the
n-space may not be symmetric. The conclusions (1.6) are shown to be valid
also if

(18) hO) = [ 550 (5 ) (),

where f; and f, are symmetric unimodal functions on R” X R™. Note now
that fi(x, y) f,(x, y) may not be unimodal on R” X R™. A further generaliza-
tion is given in Corollary 1. All these results are then extended by replacing
the symmetry condition by G*-invariance for a suitable group G* of transfor-
mations. This is the main result in this paper and it is given in Theorem 1.
This generalizes Mudholkar’s theorem. The question of replacing p, by a
more general measure » is also studied.

A special case of our results shows that a marginal function (i.e., when a
subset of the variables are integrated out) of a symmetric unimodal function
is symmetric and “ray-unimodal” (i.e., (1.6) holds); however, some examples
are given to indicate that a marginal function of a unimodal function need
not be unimodal, even when the symmetry condition is assumed.

2. The main generalization of Anderson’s theorem. Let G, and G, be groups
of measurable one-to-one transformations of R” — onto R" and R™ — onto
R™, respectively. Let G* be a subgroup of G, X G, satisfying the following:

ConpITION A. Given any g, € G, there exists g, € G, such that (g,.
8) € G*.

Furthermore, assume the following:

ConbITiON B. The group G, is Lebesgue measure-preserving,.

THEOREM 1. Let fi(x, p) (i = 1, ..., k) be G*-incariant unimodal functions
on R" X R™ x € R", y € R™. Assume that for each y,. . . .. vy, in R™
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k
@1) hw -0 = [T E ) m(de) < 0.
i=1
Then
(22) h(gry -« @) = h(yp -5 0)
for any g € G,, and
2.3) Ryt o o8 2 k(Y- )
where
v
29 vt = 2 }\jgz,-yi,
J=1

s

8y'S are in Gy, vy is any positive integer, and (A, .. ., \,) € P,, the y-dimen-
sional probability simplex.
ProoOF. For 0 < u; < oo, define
(2.5) D, (u) = {(x,»): fi(x.7) > w},
(2.6) Di(u,y) = {x:(x,) € D;(u)},
i=1,...,k. By Fubini’s theorem

© . k k
@) k)= [T f [ /. HHID,M(x)u,.(dx)} 1T a,
im=]

jw=]
o0 oo k
(2.8) =f0 fo [Mn{i=lD,.(u,.,y,.)}}du,,...,duk.
Note now
k y k
(2.9) N D;(u,y*) > Z N N Dy (u, gz,yi)}-
i=1 Jj=1 i=1

This follows from the fact that the sets D,(u;) are convex. Then, from
Brunn-Minkowski’s inequality, we get

k y k
(2.10) bl M Di(ui’yi*)} > H’n{ 2 >\j M D;(u; ngyi)]J
i=1 j=1 i=1
k
(.11 > min If‘n[ M D;(u;. g2jyi)} .
I<j<y i=1

By Condition A there exists g;;' € G, such that (g;;', g') € G*. Since f, is
G*-invariant,

(2.12) gl;lDi(ui* 8 = Di(u. y)
and

k

() D, (u;. 820

i=1

k
= () D; (4. p,).

i=1

(2.13) gl;l
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Since G, is Lebesgue measure-preserving,
k

(M D; (u; 8Yi)
i=1
j=1,...,v. Now we get (2.3) from (2.8), (2.11) and (2.14). The result (2.2)
follows from (2.8) and (2.13).

K
(2.19) By =t M Di(ui’yi)J’

i=1

CorOLLARY 1. Let fi(x,y) (i = 1,..., k) be symmetric (about the origin)
unimodal functions on R" X R™, x € R", y € R™. Assume that (2.1) holds for
eachy,,...,y, in R™. Then

(2.15) h(}’]w--,)’k):h(_)’]s--w = Vi)
and

(2.16) A, ) 2 Ry s
0<AKL

Proofr. Define G, and G, to be the groups of sign-change transformations
on R" and R"™, respectively. Define G* to be the subgroup of G, X G,
consisting of two elements (+1, +1), (=1, —1). Then any y*, defined in
(2.4), can be expressed as Ay;, where |A| < 1. With these specializations the
desired results follow from Theorem 1.

REMARK 1. Brunn-Minkowski’s inequality states that for any two measur-
able sets 4, and 4, in R"

(2.17) (0,4, + 6,4,) >{0| .“r:/"(Al) + 02.“«’:/"(’42)]"-
where (8,, 8,) € P,. We have used this inequality in (2.11). However, instead

of using the full strength of this inequality we have used the following
property of p,,:

(2.18) (1A + 8,45) > min[ ,(A}). p,(A4)].

So Theorem 1 will hold if we replace y, by a measure » on R” such that » is
G -invariant and for any two convex sets 4,, 4, in R”"

(2.19) v(0,4, + 0,4,) > mi“[”("‘l)* "(Az)]~

6=(,86, € P,

REMARK 2. It is seen from Corollary 1 that the unimodality assumption in
Anderson’s theorem is greatly relaxed. It can be further relaxed by consider-
ing the integrand in (2.1) as a function f which is a positive linear combina-
tion of finite products of symmetric unimodal functions. The conclusions of
Corollary 1 will still hold. This leads essentially to a generalization of
Sherman’s result (1955).

RemMARK 3. Consider a measure G on R™ such that

(2.21) [h(yi o )G (dyy . ... dy) < oo.
Define
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k
(222) fN=[ 11 £ M)G(dyy, ..., dyy).
i=1
Then, under the assumptions in Corollary 1, it follows that
(223) [ 16N (@) > [ £(x, 1) (),
for 0 < A < 1. This leads to a generalization of Theorem 2 of Anderson
(1955).
REMARK 4. Let
(229) Gt ={g € G:(8,,8,) € G*forsome g, € G, }.

Then, instead of Condition B, it is sufficient to assume that g, is G¥-invariant
in order to prove Theorem 1.

3. Some special cases. In this section we derive some useful special cases of
Theorem 1 and study the marginal function of a unimodal function.

THEOREM 2. Let G be a linear Lebesgue measure-preserving group of one-to-
one transformations of R" onto R". Let p,(x) (i =1, ..., k) be G-invariant
unimodal functions on R". Assume that

5 k
(3.1) Ay =1L pix +2) 1T pi(x) m(dx)
i=1

i=s+1
Jorally, ...,y in R", 0 < s < k. Then
(3.2) h(py oy = h(gyn ... gy,)
for all g € G, and
(3.3) Ryt oopf) 2 Ry Ye)s
where y* = 27_ N8> Y is any positive integer, g'sarein G,and (A, . . ., A)
€ Py.

ProOF. The result is obtained easily by specializing Theorem 1 as follows.
G =G,=G, G*={(g8)gEG}CGXG,

fi(xy) = p(x + ), i=1...,s,

(34 = pi(x), i=s+1,...,k
m = n.

REMARK 5. Mudholkar’s theorem follows from Theorem 2. To see this,
define

(B3) k=2 s=1L px+y)=Ff(x+r) pyx)=1Ig(x)
REMARK 6. Theorem 2 can be extended using the idea in Remark 2.

COROLLARY 2. Let f(x, y) be a symmetric unimodal function on R" X R™,
x € R",y € R™. Let C be a symmetric convex set in R"*™. Assume that

(3.6) KO)= [ T0on) (2,9) p(d) < o0
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for ally € R™. Then

3.7 L) =f(—»),
and
(38) L) 2 fi(»)

for0 <A< 1,y €R™

Proor. This follows from Corollary 1, by taking k = 2, fi(x, y) = f(x, y),
fz(x9 y) = IC(x9 y)
REMARK 7. Note that f, defined in (3.6), is a unimodal function if m = 1.

However, this result is not true if m > 1, as shown by Example 1, which is
basically due to Anderson (see Sherman (1955)). In general, f,, defined in

(3.6), need not be unimodal even when m = 1 if the symmetry condition is
dropped; this is shown in Example 2.
ExampLE 1. For (x, y) € R?, define f(x, y) = L,(x)Iz(y)g(x + y), where

w

, if < Ly <],
g(t) =12, if||< L 1<|py<s,
0, elsewhere,
t = (1, t,), and
A= {x=(x, %) |x|< L |x|< 1}
<

B = {)’ = (ypr2) |)’1| 2, |)’2|< 5}~

Then f is a symmetric unimodal function on R? X RZ Define
L) = [ fx)dx =I5 [ g(x +) dx.
R? A

Note now f,(0.5, 4y=f,(1, 0)=6, but £(0.75, 2) <6, and (075, 2) =
1(05, 4) + (1, 0). Thus f, is not unimodal on R
ExampLE 2. For x, y in R!, define

3, 0<x<y,0<y<l,
f(x,y)=12, 0<x<y,1<y<2,
0, elsewhere.

Then

" 3y, 0<y<l,
AO)=[" fxy)yde=12y, 1<y <2,
I 0, elsewhere.

Note that £, is not unimodal on R' although f is unimodal on R' X R
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