A GENERALIZATION OF ANDERSON'S THEOREM ON UNIMODAL FUNCTIONS

SOMESH DAS GUPTA ${ }^{1}$

Abstract

Anderson (1955) gave a definition of a unimodal function on R^{n} and obtained an inequality for integrals of a symmetric unimodal function over translates of a symmetric convex set. Anderson's assumptions, especially the role of unimodality, are critically examined and generalizations of his inequality are obtained in different directions. It is shown that a marginal function of a unimodal function (even if it is symmetric) need not be unimodal.

1. Introduction. A function $f: R^{n} \equiv[0, \infty)$ is said to be unimodal by Anderson (1955) if

$$
\begin{equation*}
D(u) \equiv\{x: f(x) \geqslant u\} \tag{1.1}
\end{equation*}
$$

is convex for all $u, 0<u<\infty$. The main result of this paper is a generalization of the following theorem of Anderson (1955) on the integrals of a symmetric unimodal function over translates of a symmetric convex set.

Theorem (Anderson). Let E be a symmetric (i.e., $E=-E$) convex set in R^{n} and f be a function on R^{n} to $[0, \infty)$ such that f is symmetric (i.e., $f(x)=f(-x)$), unimodal, and $\int_{E} f(x) \mu_{n}(d x)<\infty$, where μ_{n} is the Lebesgue measure on R^{n}. Then for any fixed $y \in R^{n}$ and $0 \leqslant \lambda \leqslant 1$

$$
\begin{equation*}
\int_{E} f(x+\lambda y) \mu_{n}(d x) \geqslant \int_{E} f(x+y) \mu_{n}(d x) \tag{1.2}
\end{equation*}
$$

This result was extended by Mudholkar (1966) by replacing the condition of symmetry with the condition of invariance under a linear Lebesgue measure-preserving group G of transformations of R^{n} onto R^{n}.

Theorem (Mudholkar). Let E be a convex, G-invariant set in R^{n} and f be a function on R^{n} to $[0, \infty)$ such that f is G-invariant unimodal and $\int_{E} f(x) \mu_{n}(d x)<\infty$. Then for fixed $y \in R^{n}$ and any y^{*} in the convex hull of the G-orbit of $\{y\}$

[^0]Key words and phrases. Unimodal function, convex set, invariance, marginal function, inequalities.
${ }^{1}$ This work was supported in part by U. S. Army Research Grant DA-AR0-D-31-124-70-G-102 at the University of Minnesota and in part by National Science Foundation Grant GS-39906 at the Institute for Mathematical Studies in the Social Sciences, Stanford University. The author wishes to thank Professor T. W. Anderson for some useful discussions.

$$
\begin{equation*}
\int_{E} f\left(x+y^{*}\right) \mu_{n}(d x) \geqslant \int_{E} f(x+y) \mu_{n}(d x) \tag{1.3}
\end{equation*}
$$

Note that Anderson's theorem follows from Mudholkar's by taking G to be the group of sign-change transformations.

Let us consider Anderson's theorem again and define

$$
\begin{align*}
h(y) & \equiv \int_{E} f(x+y) \mu_{n}(d x) \tag{1.4}\\
& =\int f(x+y) I_{E \times R^{n}}(x, y) \mu_{n}(d x) \tag{1.5}
\end{align*}
$$

where I is the indicator function. It is shown in later sections that the conclusions of Anderson's theorem, i.e.,

$$
\begin{equation*}
h(y)=h(-y), \quad h(\lambda y) \geqslant h(y), \quad 0 \leqslant \lambda \leqslant 1 \tag{1.6}
\end{equation*}
$$

still hold, if $h(y)$ is defined by

$$
\begin{equation*}
h(y)=\int_{R^{n}} f(x, y) I_{C}(x, y) \mu_{n}(d x) \tag{1.7}
\end{equation*}
$$

where f is a symmetric unimodal function on $R^{n} \times R^{m}$ and C is a symmetric convex set in $R^{n+m}, y \in R^{m}$. Note that, for a fixed y, the section of C in the n-space may not be symmetric. The conclusions (1.6) are shown to be valid also if

$$
\begin{equation*}
h(y)=\int_{R^{n}} f_{1}(x, y) f_{2}(x, y) \mu_{n}(d x) \tag{1.8}
\end{equation*}
$$

where f_{1} and f_{2} are symmetric unimodal functions on $R^{n} \times R^{m}$. Note now that $f_{1}(x, y) f_{2}(x, y)$ may not be unimodal on $R^{n} \times R^{m}$. A further generalization is given in Corollary 1. All these results are then extended by replacing the symmetry condition by G^{*}-invariance for a suitable group G^{*} of transformations. This is the main result in this paper and it is given in Theorem 1. This generalizes Mudholkar's theorem. The question of replacing μ_{n} by a more general measure ν is also studied.

A special case of our results shows that a marginal function (i.e.. when a subset of the variables are integrated out) of a symmetric unimodal function is symmetric and "ray-unimodal" (i.e., (1.6) holds); however, some examples are given to indicate that a marginal function of a unimodal function need not be unimodal, even when the symmetry condition is assumed.
2. The main generalization of Anderson's theorem. Let G_{1} and G_{2} be groups of measurable one-to-one transformations of $R^{n} \rightarrow$ onto R^{n} and $R^{m} \rightarrow$ onto R^{m}, respectively. Let G^{*} be a subgroup of $G_{1} \times G_{2}$ satisfying the following:

Condition A. Given any $g_{2} \in G_{2}$ there exists $g_{1} \in G_{1}$ such that (g_{1}, $\left.g_{2}\right) \in G^{*}$.

Furthermore, assume the following:
Condition B. The group G_{1} is Lebesgue measure-preserving.
Theorem 1. Let $f_{i}(x, y)(i=1, \ldots k)$ be G^{*}-incariant unimodal functions on $R^{n} \times R^{m}, x \in R^{n}, y \in R^{m}$. Assume that for each $y_{1}, \ldots y_{k}$ in R^{m}

$$
\begin{equation*}
h\left(y_{1}, \ldots, y_{k}\right) \equiv \int_{R^{n}} \prod_{i=1}^{k} f_{i}\left(x, y_{i}\right) \mu_{n}(d x)<\infty \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
h\left(g y_{1}, \ldots, g y_{k}\right)=h\left(y_{1}, \ldots, y_{k}\right) \tag{2.2}
\end{equation*}
$$

for any $g \in G_{2}$, and

$$
\begin{equation*}
h\left(y_{1}^{*}, \ldots, y_{k}^{*}\right) \geqslant h\left(y_{1}, \ldots, y_{k}\right) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{i}^{*}=\sum_{j=1}^{\gamma} \lambda_{j} g_{2 j} y_{i} \tag{2.4}
\end{equation*}
$$

$g_{2 j}$'s are in G_{2}, γ is any positive integer, and $\left(\lambda_{1}, \ldots, \lambda_{\gamma}\right) \in P_{\gamma}$, the γ-dimensional probability simplex.

Proof. For $0<u_{i}<\infty$, define

$$
\begin{gather*}
D_{i}\left(u_{i}\right)=\left\{(x, y): f_{i}(x, y) \geqslant u_{i}\right\} \tag{2.5}\\
D_{i}\left(u_{i}, y\right)=\left\{x:(x, y) \in D_{i}\left(u_{i}\right)\right\} \tag{2.6}
\end{gather*}
$$

$i=1, \ldots, k$. By Fubini's theorem

$$
\begin{align*}
& h\left(y_{1}, \ldots, y_{k}\right)=\int_{0}^{\infty} \cdots \int_{0}^{\infty}\left[\int_{R^{n}} \prod_{i=1}^{k} I_{D_{i}\left(u_{i} y_{i}\right)}(x) \mu_{n}(d x)\right] \prod_{i=1}^{k} d u_{i} \tag{2.7}\\
&=\int_{0}^{\infty} \cdots \int_{0}^{\infty}\left[\mu_{n}\left\{\bigcap_{i=1}^{k} D_{i}\left(u_{i}, y_{i}\right)\right\}\right] d u_{1}, \ldots, d u_{k} .
\end{align*}
$$

Note now

$$
\begin{equation*}
\bigcap_{i=1}^{k} D_{i}\left(u_{i}, y^{*}\right) \supset \sum_{j=1}^{\gamma} \lambda_{j}\left[\bigcap_{i=1}^{k} D_{i}\left(u_{i}, g_{2 j} y_{i}\right)\right] . \tag{2.9}
\end{equation*}
$$

This follows from the fact that the sets $D_{i}\left(u_{i}\right)$ are convex. Then, from Brunn-Minkowski's inequality, we get

$$
\begin{equation*}
\mu_{n}\left[\bigcap_{i=1}^{k} D_{i}\left(u_{i}, y_{i}^{*}\right)\right] \geqslant \mu_{n}\left[\sum_{j=1}^{\gamma} \lambda_{j}\left\{\bigcap_{i=1}^{k} D_{i}\left(u_{i}, g_{2 j} y_{i}\right)\right\}\right] \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\geqslant \min _{1<j<\gamma}\left[\mu_{n}\left\{\bigcap_{i=1}^{k} D_{i}\left(u_{i}, g_{2 j} y_{i}\right)\right\}\right] . \tag{2.11}
\end{equation*}
$$

By Condition A there exists $g_{1 j}^{-1} \in G_{1}$ such that $\left(g_{1 j}^{-1}, g_{2 j}^{-1}\right) \in G^{*}$. Since f_{i} is G^{*}-invariant,

$$
\begin{equation*}
g_{1 j}^{-1} D_{i}\left(u_{i}, g_{2 j} y_{i}\right)=D_{i}\left(u_{i}, v_{i}\right) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1 j}^{-1}\left[\bigcap_{i=1}^{k} D_{i}\left(u_{i}, g_{2 j} y_{i}\right)\right]=\bigcap_{i=1}^{k} D_{i}\left(u_{i}, y_{i}\right) . \tag{2.13}
\end{equation*}
$$

Since G_{1} is Lebesgue measure-preserving,

$$
\begin{equation*}
\mu_{n}\left[\bigcap_{i=1}^{k} D_{i}\left(u_{i}, g_{2 j} y_{i}\right)\right]=\mu_{n}\left[\bigcap_{i=1}^{k} D_{i}\left(u_{i}, y_{i}\right)\right], \tag{2.14}
\end{equation*}
$$

$j=1, \ldots, \gamma$. Now we get (2.3) from (2.8), (2.11) and (2.14). The result (2.2) follows from (2.8) and (2.13).

Corollary 1. Let $f_{i}(x, y)(i=1, \ldots, k)$ be symmetric (about the origin) unimodal functions on $R^{n} \times R^{m}, x \in R^{n}, y \in R^{m}$. Assume that (2.1) holds for each y_{1}, \ldots, y_{k} in R^{m}. Then

$$
\begin{equation*}
h\left(y_{1}, \ldots, y_{k}\right)=h\left(-y_{1}, \ldots,-y_{k}\right) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(\lambda y_{1}, \ldots, \lambda y_{k}\right) \geqslant h\left(y_{1}, \ldots, y_{k}\right) \tag{2.16}
\end{equation*}
$$

$0 \leqslant \lambda \leqslant 1$.
Proof. Define G_{1} and G_{2} to be the groups of sign-change transformations on R^{n} and R^{m}, respectively. Define G^{*} to be the subgroup of $G_{1} \times G_{2}$ consisting of two elements $(+1,+1),(-1,-1)$. Then any y_{i}^{*}, defined in (2.4), can be expressed as λy_{i}, where $|\lambda| \leqslant 1$. With these specializations the desired results follow from Theorem 1.

Remark 1. Brunn-Minkowski's inequality states that for any two measurable sets A_{1} and A_{2} in R^{n}

$$
\begin{equation*}
\mu_{n}\left(\theta_{1} A_{1}+\theta_{2} A_{2}\right) \geqslant\left[\theta_{1} \mu_{n}^{1 / n}\left(A_{1}\right)+\theta_{2} \mu_{n}^{1 / n}\left(A_{2}\right)\right]^{n} \tag{2.17}
\end{equation*}
$$

where $\left(\theta_{1}, \theta_{2}\right) \in P_{2}$. We have used this inequality in (2.11). However, instead of using the full strength of this inequality we have used the following property of μ_{n} :

$$
\begin{equation*}
\mu_{n}\left(\theta_{1} A_{1}+\theta_{2} A_{2}\right) \geqslant \min \left[\mu_{n}\left(A_{1}\right), \mu_{n}\left(A_{2}\right)\right] . \tag{2.18}
\end{equation*}
$$

So Theorem 1 will hold if we replace μ_{n} by a measure ν on R^{n} such that ν is G_{1}-invariant and for any two convex sets A_{1}, A_{2} in R^{n}

$$
\begin{equation*}
\nu\left(\theta_{1} A_{1}+\theta_{2} A_{2}\right) \geqslant \min \left[\nu\left(A_{1}\right), \nu\left(A_{2}\right)\right] . \tag{2.19}
\end{equation*}
$$

$\theta=\left(\theta_{1}, \theta_{2}\right) \in P_{2}$.
Remark 2. It is seen from Corollary 1 that the unimodality assumption in Anderson's theorem is greatly relaxed. It can be further relaxed by considering the integrand in (2.1) as a function f which is a positive linear combination of finite products of symmetric unimodal functions. The conclusions of Corollary 1 will still hold. This leads essentially to a generalization of Sherman's result (1955).

Remark 3. Consider a measure G on $R^{m k}$ such that

$$
\begin{equation*}
\int h\left(y_{1}, \ldots, y_{k}\right) G\left(d y_{1}, \ldots, d y_{k}\right)<\infty . \tag{2.21}
\end{equation*}
$$

Define

$$
\begin{equation*}
f(x, \lambda) \equiv \int \prod_{i=1}^{k} f_{i}\left(x, \lambda y_{i}\right) G\left(d y_{1}, \ldots, d y_{k}\right) \tag{2.22}
\end{equation*}
$$

Then, under the assumptions in Corollary 1, it follows that

$$
\begin{equation*}
\int f(x, \lambda) \mu_{n}(d x) \geqslant \int f(x, 1) \mu_{n}(d x) \tag{2.23}
\end{equation*}
$$

for $0 \leqslant \lambda \leqslant 1$. This leads to a generalization of Theorem 2 of Anderson (1955).

Remark 4. Let

$$
\begin{equation*}
G_{1}^{*} \equiv\left\{g_{1} \in G_{1}:\left(g_{1}, g_{2}\right) \in G^{*} \text { for some } g_{2} \in G_{2}\right\} \tag{2.24}
\end{equation*}
$$

Then, instead of Condition B, it is sufficient to assume that μ_{n} is G_{1}^{*}-invariant in order to prove Theorem 1.
3. Some special cases. In this section we derive some useful special cases of Theorem 1 and study the marginal function of a unimodal function.

Theorem 2. Let G be a linear Lebesgue measure-preserving group of one-toone transformations of R^{n} onto R^{n}. Let $p_{i}(x)(i=1, \ldots, k)$ be G-invariant unimodal functions on R^{n}. Assume that

$$
\begin{equation*}
h\left(y_{1}, \ldots, y_{s}\right) \equiv \int \prod_{i=1}^{s} p_{i}\left(x+y_{i}\right) \prod_{i=s+1}^{k} p_{i}(x) \mu_{n}(d x) \tag{3.1}
\end{equation*}
$$

for all y_{1}, \ldots, y_{s} in $R^{n}, 0<s \leqslant k$. Then

$$
\begin{equation*}
h\left(y_{1}, \ldots, y_{s}\right)=h\left(g y_{1}, \ldots, g y_{s}\right) \tag{3.2}
\end{equation*}
$$

for all $g \in G$, and

$$
\begin{equation*}
h\left(y_{1}^{*}, \ldots, y_{s}^{*}\right) \geqslant h\left(y_{1}, \ldots, y_{s}\right) \tag{3.3}
\end{equation*}
$$

where $y_{i}^{*}=\sum_{j=1}^{\gamma} \lambda_{j} g_{j} y_{i}, \gamma$ is any positive integer, g_{j}^{\prime} s are in G, and $\left(\lambda_{1}, \ldots, \lambda_{\gamma}\right)$ $\in P_{\gamma}$.

Proof. The result is obtained easily by specializing Theorem 1 as follows.

$$
\begin{align*}
& G_{1}=G_{2}=G, \quad G^{*}=\{(g, g): g \in G\} \subset G \times G, \\
& f_{i}(x, y)=p_{i}(x+y), \quad i=1, \ldots, s, \\
& =p_{i}(x), \quad i=s+1, \ldots, k, \tag{3.4}\\
& m=n .
\end{align*}
$$

Remark 5. Mudholkar's theorem follows from Theorem 2. To see this, define

$$
\begin{equation*}
k=2, \quad s=1, \quad p_{1}(x+y)=f(x+y), \quad p_{2}(x)=I_{E}(x) . \tag{3.5}
\end{equation*}
$$

Remark 6. Theorem 2 can be extended using the idea in Remark 2.
Corollary 2. Let $f(x, y)$ be a symmetric unimodal function on $R^{n} \times R^{m}$, $x \in R^{n}, y \in R^{m}$. Let C be a symmetric convex set in R^{n+m}. Assume that

$$
\begin{equation*}
f_{1}(y) \equiv \int_{R^{n}} f(x, y) I_{C}(x, y) \mu_{n}(d x)<\infty \tag{3.6}
\end{equation*}
$$

for all $y \in R^{m}$. Then

$$
\begin{equation*}
f_{1}(y)=f_{1}(-y) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}(\lambda y) \geqslant f_{1}(y) \tag{3.8}
\end{equation*}
$$

for $0 \leqslant \lambda \leqslant 1, y \in R^{m}$.
Proof. This follows from Corollary 1, by taking $k=2, f_{1}(x, y)=f(x, y)$, $f_{2}(x, y)=I_{C}(x, y)$.

Remark 7. Note that f_{1}, defined in (3.6), is a unimodal function if $m=1$. However, this result is not true if $m>1$, as shown by Example 1 , which is basically due to Anderson (see Sherman (1955)). In general, f_{1}, defined in (3.6), need not be unimodal even when $m=1$ if the symmetry condition is dropped; this is shown in Example 2.

Example 1. For $(x, y) \in R^{2}$, define $f(x, y)=I_{A}(x) I_{B}(y) g(x+y)$, where

$$
g(t)= \begin{cases}3, & \text { if }\left|t_{1}\right| \leqslant 1,\left|t_{2}\right| \leqslant 1 \\ 2, & \text { if }\left|t_{1}\right| \leqslant 1,1<\left|t_{2}\right| \leqslant 5 \\ 0, & \text { elsewhere }\end{cases}
$$

$t=\left(t_{1}, t_{2}\right)$, and

$$
\begin{aligned}
A & =\left\{x=\left(x_{1}, x_{2}\right):\left|x_{1}\right| \leqslant 1,\left|x_{2}\right| \leqslant 1\right\} \\
B & =\left\{y=\left(y_{1}, y_{2}\right):\left|y_{1}\right| \leqslant 2,\left|y_{2}\right| \leqslant 5\right\} .
\end{aligned}
$$

Then f is a symmetric unimodal function on $R^{2} \times R^{2}$. Define

$$
f_{1}(y)=\int_{R^{2}} f(x, y) d x=I_{B}(y) \int_{A} g(x+y) d x
$$

Note now $f_{1}(0.5,4)=f_{1}(1,0)=6$, but $f_{1}(0.75,2)<6$, and $(0.75,2)=$ $\frac{1}{2}(0.5,4)+\frac{1}{2}(1,0)$. Thus f_{1} is not unimodal on R^{2}.

Example 2. For x, y in R^{1}, define

$$
f(x, y)= \begin{cases}3, & 0 \leqslant x \leqslant y, 0 \leqslant y<1 \\ 2, & 0 \leqslant x \leqslant y, 1 \leqslant y \leqslant 2 \\ 0, & \text { elsewhere }\end{cases}
$$

Then

$$
f_{1}(y) \equiv \int_{-\infty}^{\infty} f(x, y) d x= \begin{cases}3 y, & 0 \leqslant y<1 \\ 2 y, & 1 \leqslant y \leqslant 2 \\ 0, & \text { elsewhere }\end{cases}
$$

Note that f_{1} is not unimodal on R^{1} although f is unimodal on $R^{1} \times R^{1}$.

References

T. W. Anderson (1955), The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc. 6, 170-176. MR 16, 1005.
G. S. Mudholkar (1966), The integral of an invariant unimodal function over an invariant convex set-An inequality and applications, Proc. Amer. Math. Soc. 17, 1327-1333. MR 34 \#7741.
S. Sherman (1955), A theorem on convex sets with applications, Ann. Math. Statist. 26, 763-767. MR 17, 655.

Institute for Mathematical Studies in Social Sciences, Stanford University, Stanford, California 94305

Current address: Department of Theoretical Statistics, University of Minnesota, Minneapolis, Minnesota 55455

[^0]: Received by the editors July 2, 1974.
 AMS (MOS) subject classifications (1970). Primary 26A69, 26A87, 52A40.

