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1. Introduction and Preliminaries

In 1994, Matthews [22] introduced the notion of a partial metric space in such a way that each object
doesn’t necessarily have to have a zero distance from itself. Also, Matthews [22] studied the Banach’s
contraction principle in such space. After then, many authors studied many fixed point results in partial
metric spaces ( see [1–5,17,19–25,27]).
In this section, we give the necessarily definitions and lemmas for the partial metric spaces.

Definition 1.1. [22] A partial metric on a nonempty set X is a function p : X ×X → R+ such that for all
x, y, z ∈ X :

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
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(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

Each partial metric p on X generates a T0 topology τp on X. The set {Bp(x, ε) : x ∈ X, ε > 0}, where
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0 forms the base of τp

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1.1)

is a metric on X.

Definition 1.2. [22] Let (X, p) be a partial metric space. Then:

1. A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and only if p(x, x) =
limn→∞ p(x, xn).

2. A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is
finite) limn,m→∞ p(xn, xm).

3. A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm)

The following lemma plays a major role in proving our main results.

Lemma 1.3. [22] Let (X, p) be a partial metric space.

1. {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).

2. A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete. Further-
more, limn→∞ p

s(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Lemma 1.4. [20] Let xn → z as n → +∞ in a partial metric space (X, p) where p(z, z) = 0, then
limn→+∞ p(xn, y) = p(z, y) for every y ∈ X.

Ćirić is one of the pioneer workers in the field of fixed point theory. Ćirić established and studied many
fixed point theorems for mappings satisfying different contractive conditions in complete metric spaces, for
example see [8]-[16]. Then after, many authors studied many fixed point theorems by using the different
types of Ćirić contractions, for example see [6, 7, 27].

In this paper, we establish some fixed point results for strong Ćirić type quasi contractions in the setting
of a complete partial metric space. Also, we introduce an example to support the useability of our results.

2. The Main Result

We start our work by giving a fixed point theorem for nonlinear contraction in a partial metric space.

Theorem 2.1. Let (X, p) be a complete partial metric space and T : X → X be a mapping satisfying

p(Tx, Ty) ≤ max{p(x, y), p(x, Tx), p(y, Ty),
1

2
[p(x, Ty) + p(Tx, y)]}

−ψ(p(x, y), p(x, Tx)), ∀x, y ∈ X, (2.1)

where ψ : [0,∞)× [0,+∞)→ [0,∞) is a continuous mapping such that ψ(t, s) = 0 if and only if t = s = 0.
Then T has a unique fixed point.
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Proof. Let x0 be an arbitrary point in X. We choose x1 ∈ X such that x1 = Tx0. By continuing in the
same way, we construct a sequence (xn) in X such that

xn+1 = Txn, n = 0, 1, 2, 3, · · · .

If there exists n ∈ N such that p(xn, xn+1) = 0, then by (p1) and (p2) we have xn = xn+1 = Txn. Hence xn
is a fixed point of T . Now, we assume that p(xn, xn+1) 6= 0 for all n ≥ 0. Thus, by (2.1), we have

p(xn+1, xn+2)

= p(Txn, Txn+1)

≤ max{p(xn, xn+1), p(xn, Txn), p(xn+1, Txn+1),
1

2
[p(xn, Txn+1) + p(Txn, xn+1)]}

−ψ(p(xn, xn+1), p(xn, Txn))

= max{p(xn, xn+1), p(xn+1, xn+2),
1

2
[p(xn, xn+2) + p(xn+1, xn+1)]}

−ψ(p(xn, xn+1), p(xn, xn+1)). (2.2)

By (p4), we have
p(xn, xn+2) + p(xn+1, xn+1) ≤ p(xn, xn+1) + p(xn+1, xn+2).

Therefore,

max{p(xn, xn+1), p(xn+1, xn+2),
1

2
[p(xn, xn+2) + p(xn+1, xn+1)]}

≤ max{p(xn, xn+1), p(xn+1, xn+2)}. (2.3)

By (2.2) and (2.3), we have

p(xn+1, xn+2) ≤ max{p(xn, xn+1), p(xn+1, xn+2)} − ψ(p(xn, xn+1), p(xn, xn+1)).

(2.4)

If max{p(xn, xn+1), p(xn+1, xn+2)} = p(xn+1, xn+2), then from (2.15), we have

p(xn+1, xn+2) ≤ p(xn+1, xn+2)− ψ(p(xn, xn+1), p(xn, xn+1)) < p(xn+1, xn+2).

(2.5)

which is a contradiction since ψ(p(xn, xn+1), p(xn, xn+1)) = 0 and so p(xn, xn+1) = 0, that xn = xn+1.
Therefore, we have max{p(xn, xn+1), p(xn+1, xn+2)} = p(xn, xn+1) and hence

p(xn+1, xn+2) ≤ p(xn, xn+1)− ψ(p(xn, xn+1), p(xn, xn+1)) ≤ p(xn, xn+1).

(2.6)

By (2.6), we have {p(xn, xn+1)} is a non-increasing sequence of positive real numbers. Thus, there exists
r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r. (2.7)

Letting n→∞ in (2.6) and using (2.7) and the properties of ψ, we have
r ≤ r − ψ(r, r). Thus ψ(r, r) = 0 and hence r = 0. Therefore

lim
n→∞

p(xn, xn+1) = 0. (2.8)

Our next step is to prove that
lim

n,m→∞
p(xn, xm) = 0.

Suppose the contrary, that is,
lim

n,m→∞
p(xn, xm) 6= 0.
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Then there exists ε > 0 for which we can find two subsequences
{
xm(k)

}
,
{
xn(k)

}
of {xn} such that n(k) is

the smallest index for which
n(k) > m(k) > k, p(xn(k), xm(k)) ≥ ε. (2.9)

This means that
p(xn(k)−1, xm(k)) < ε. (2.10)

From (2.9) and (2.10), we have

ε ≤ p(xn(k), xm(k)) ≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))− p(xn(k)−1, xn(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))

< ε+ p(xn(k), xn(k)−1)

Taking k →∞ and using (2.8), we get

lim
k→∞

p(xn(k), xm(k)) = ε (2.11)

By (p3) and (p4), we have

p(xn(k), xm(k))

≤ p(xn(k), xn(k)+1) + p(xn(k)+1, xm(k))− p(xn(k)+1, xn(k)+1)

≤ p(xn(k), xn(k)+1) + p(xn(k)+1, xm(k))

≤ p(xn(k), xn(k)+1) + p(xn(k)+1, xm(k)+1) + p(xm(k)+1, xm(k))− p(xm(k)+1, xm(k)+1)

≤ p(xn(k), xn(k)+1) + p(xn(k)+1, xm(k)+1) + p(xm(k)+1, xm(k))

≤ 2p(xn(k), xn(k)+1) + p(xn(k), xm(k)+1) + p(xm(k)+1, xm(k))− p(xn(k), xn(k))
≤ 2p(xn(k), xn(k)+1) + p(xn(k), xm(k)+1) + p(xm(k)+1, xm(k))

≤ 2p(xn(k), xn(k)+1) + p(xn(k), xm(k)) + 2p(xm(k)+1, xm(k))− p(xm(k), xm(k))

≤ 2p(xn(k), xn(k)+1) + p(xn(k), xm(k)) + 2p(xm(k)+1, xm(k))

Taking k →∞ in the above inequalities and using (2.8), (2.11), we get that

lim
k→∞

p(xn(k), xm(k)) = lim
k→∞

p(xn(k)+1, xm(k))

= lim
k→∞

p(xn(k), xm(k)+1) = lim
k→∞

p(xn(k)+1, xm(k)+1) = ε (2.12)

Now, from (2.1), we have

p(xm(k)+1, xn(k)+1) = p(Txm(k), Txn(k))

≤ max{p(xm(k), xn(k)), p(xm(k), Txm(k)), p(xn(k), Txn(k)),

1

2
(p(xm(k), Txn(k)) + p(Txm(k), xn(k)))} − ψ(p(xm(k), xn(k)), p(xm(k), Txm(k)))

= max{p(xm(k), xn(k)), p(xm(k), xm(k)+1), p(xn(k), xn(k)+1),

1

2
(p(xm(k), xn(k)+1) + p(xm(k)+1, xn(k)))} − ψ(p(xm(k), xn(k)), p(xm(k), xm(k)+1))

(2.13)

On letting k →∞ in (2.13) and using (2.8), (2.12) and the properties of ψ, we have

ε ≤ ε− ψ(ε, ε) < ε

which is a contradiction. So, we have
lim

n,m→∞
p(xn, xm) = 0.

Since limn,m→∞ p(xn, xm) exists and finite, we conclude that (xn) is a Cauchy sequence in (X, p).
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By (1.1), we have ps(xn, xm) ≤ 2p(xn, xm). Therefore

lim
n,m→∞

ps(xn, xm) = 0. (2.14)

Thus, by Lemma 1.3, {xn} is a Cauchy sequence in both (X, ps) and (X, p). Thus, there exists x ∈ X such
that limn→∞ p

s(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = 0.

Now, we prove that x is a fixed point of T . From (2.1), we have

p(Tx, xn+1) = p(Tx, Txn)

≤ max{p(x, xn), p(x, Tx), p(xn, Txn),
1

2
(p(Tx, xn) + p(x, Txn)} − ψ(p(x, xn), p(x, Tx))

= max{p(x, xn), p(x, Tx), p(xn, xn+1),
1

2
(p(Tx, xn) + p(x, xn+1)} − ψ(p(x, xn), p(x, Tx)).

Letting n→∞ in the above inequality, and using Lemma (1.4) we obtain

p(x, Tx) ≤ p(x, Tx)− ψ(0, p(x, Tx)).

Hence ψ(0, p(x, Tx)) = 0. Thus p(x, Tx) = 0. By (p1) and (p2), we have Tx = x. Therefore x is a fixed
point of T . To prove the uniqueness of the fixed point. Suppose that y is another fixed point of T . From
(2.1), we have

p(x, y) = p(Tx, Ty) ≤ max{p(x, y), p(x, x), p(y, y)} − ψ(p(x, y), p(x, x)).

Thus, we have ψ(p(x, y), p(x, x)) = 0. Hence p(x, y) = p(x, x) = 0. By (p2), we have p(y, y) = 0. Therefore
by (p1), we get that x = y.

By taking ψ : [0,+∞)× [0,+∞) → [0,+∞) via ψ(s, t) = (1− r) max{s, t} where r ∈ [0, 1) in Theorem
(2.1), we have the following result:

Corollary 2.2. Let (X, p) be a complete partial metric space and T : X → X be a mapping satisfying

p(Tx, Ty) ≤ rmax{p(x, y), p(x, Tx), p(y, Ty),
1

2
[p(x, Ty) + p(Tx, y)]}

for all x, y ∈ X. If r ∈ [0, 1), then T has a unique fixed point.

As a special case of Corollary (2.2), we have the following result of Matthews.

Corollary 2.3. [22] Let (X, p) be a complete partial metric space and T : X → X be a mapping satisfying
p(Tx, Ty) ≤ rp(x, y) for all x, y ∈ X. If r ∈ [0, 1), then T has a unique fixed point.

As a direct result of Theorem 2.1, we have the following result.

Corollary 2.4. Let (X, p) be a complete partial metric space and T : X → X be a mapping satisfying

p(Tx, Ty) ≤ max{p(x, Tx), p(y, Ty),
1

2
[p(x, Ty) + p(Tx, y)]}

−ψ(p(x, y), p(x, Tx)), ∀x, y ∈ X, (2.15)

where ψ : [0,∞)× [0,+∞)→ [0,∞) is a continuous mapping such that ψ(t, s) = 0 if and only if t = s = 0.
Then T has a unique fixed point.

Now, we introduced an example to support the useability of our results.
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Example 2.5. Let X = [0,+∞). Define the partial metric space on X by p(x, y) = max{x, y}. Also,

define the mapping T : X → X by T (x) = x2

1+x and the function ψ : [0,+∞) × [0,+∞) → [0,+∞) by

ψ(s, t) = s+t
2+s+t . Then

1. (X, p) is a complete partial metric space.

2. T satisfies (2.15) of Corollary 2.4.

3. If we replace p by ps in (2.15) of Corollary 2.4, then T does not satisfy (2.15) of Corollary 2.4.

Proof. For (1) see Ref. [1]. To prove (2), suppose y ≤ x. Then

p(Tx, Ty) = max

{
x2

1 + x
,
y2

1 + y

}
=

x2

1 + x
,

max{p(x, Tx), p(y, Ty)} = max{x, y} = x

and

ψ(p(x, y), p(x, Tx)) = ψ(x, x) =
2x

2 + 2x
.

Since
x2

1 + x
≤ x− 2x

2 + 2x
=

x2

1 + x
,

we have T satisfies (2.15) of Corollary 2.4.

To prove (3), notice that

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) = 2 max{x, y} − x− y = |x− y|.

Now, take x = 1 and y = 0. Then

ps(T1, T0) = ps
(

1

2
, 0

)
=

1

2
,

max{ps(1, T1), ps(0, T0)} = max

{
ps
(

1,
1

2

)
, ps(0, 0)

}
=

1

2

and

ψ(ps(1, 0), ps(1, T1)) = ψ

(
1,

1

2

)
=

3

7
.

Since 1
2 is not less or equal 1

2 −
3
7 , we get that (3) does hold for x = 1 and y = 0.
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[14] LjB. Ćirić, Non-self mappings satisfying nonlinear contractive condition with applications, Nonlinear Anal. 71

(2009), 2927–2935.
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