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Abstract

With respect to a given family of functions 9, a function is said to be ^-convex, if it is
supported, at each point, by some member of 9. For particular choices of 9 one obtains the
convex functions and the generalized convex functions in the sense of Beckenbach. ^-convex
functions are characterized and studied, retaining some essential results of classical convexity.

Introduction

Let 9 be a family of functions: R" —»R, depending on (n + 1) parameters.
A function /:/?"—>/? is called 9-convex if its graph is supported at each point
by some member of 9. For particular choices of 9, the ^-convex functions
reduce to the ordinary proper convex functions and the sub ^-functions of
Beckenbach.

In this paper we study the basic properties of ^-convex functions.
Sections 2 and 3 contain definitions and examples.
Section 4 gives first order conditions (so called because they involve only

first derivatives and "generalized gradients") for ^-convexity. For families 9
which possess certain uniqueness property, ^-convexity is characterized by an
analog of the gradient inequality. The remaining results in Section 4 are
conditions for ^-convexity or strict ^-convexity, in terms of the injectivity
properties of the "generalized gradients" (termed here "^-gradients").
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Wissenschaft through the German Research Council).
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Second order conditions for ^-convexity and strict ^-convexity are given
in Section 5. These conditions involve a "generalized Hessian matrix" H(x),
depending on / and !¥, which in the classical case reduces to the Hessian Matrix

The main results here are Theorems 5.1 and 5.5. An analog of the
differential inequality of Peixoto (1949), characterizing sub-^ functions, is
obtained as a special case.

Section 6 deals with the monotonicity properties of the ^-gradient x*f of
an ^-convex function, where 9 belongs to a certain class of functions. The
derivative of x*f is computed and the result is used, for the "separable" families
to establish that x*f is a P0-function [P-function] if / is ^-convex [strictly
iF-convex].

In a sequel paper we study the corresponding generalizations of conjugacy
and duality in the sense of Fenchel (see Rockafellar (1970)). These results
involve a conjugate family 5F*, and are hidden in the classical case by the fact
that there 9 = 3F*. In future papers the authors intend to apply the theory
developed here to derive duality results for nonconvex programs and to furnish
a unified theory for various recent results on generalized Lagrangians.

2. ,F-convex functions: definitions and examples

2.1 DEFINITIONS. Let f be a family of functions: X—*R where XCR"
with range

( 2 - 1 ) H = U {range F: F<E&}.

Let / be a function: R" —»R with domain

(2.2) d o m / C X

and let S be an open subset of dom /. Then / is called ^-convex in S if for
every JC G S, there exists an F G !¥ such that

(2.3) f(x) = F(x) and

in which case F is called a support of f: S at x. The function / is called
strictly ZF-convex in S if strict inequality holds in (2.4) for all x^ z G s.

The name ^-convex function was used recently (Roberts and Varberg
(1973), p. 241) to denote the sub-^ functions, see Example 2.2.

If there is no need to specify 5, for example if S = dom /, the above names
are abbreviated by omitting S, e.g., 3F-convex, support of f at x, etc.

2.2. EXAMPLE. Let & be the family of affine functions: /?"—»/?, i.e.,

(2.4) & = {F(-) = (x*, •>-£*: i * E R " , f £ R } .
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Then a function / : R"->R is ^-convex if and only if it is a proper convex
function, i.e., a convex function whose epigraph is a non empty set containing
no vertical lines, ([Rockafellar (1970), §4].

2.3 EXAMPLE. Let 9 be a family of continuous functions: X—>R where X
is the open interval (a, b), and such that

(B) For any two distinct points in X, say,

a < x, < x2< b

and any two real numbers {yi,y2}, there is a unique F £ 9 satisfying

F(x,) = y,, (i = l,2).

We call such an 9 a Beckenbach family in (a,b). Beckenbach (1937) called a
function / : (a, b)—*R a sub-3F function if for any two points

a < x, < x2< b

the member of &, F,2, defined by

(2.5) FI2(x,) = / ( * ) , (i = l,2),

satisfies

(2.6) /(*)=£ F12(JC), Xl<x<x2.

Peixoto (1948, 1949, Theorem 1) showed that if / is a sub-^ function and
a < x0 < b then there exist two functions

F ; S ^ , (i = 1,2),

such that

(i = 1,2).

(a<x<x0),

and

xo<x<b.

(Furthermore, if the derivatives / ' (x0), F\ (x0) and F'2(x0) exist, they are equal).
Thus both F, and F2 support / at x0.

Therefore every sub-^ function is ^-convex. We will now prove the
converse for Beckenbach families &.

2.4 PROPOSITION. Let 3Fbe a Beckenbach family in (a,b). Then a function
f: (a,b)^>R is ^-convex in (a,b) if and only If f is a sub-SP function.

PROOF. The proof of the "if" part was cited above.
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To prove "only if" suppose / is not a sub-^ function, i.e., there are three
points

a < x, < xo< x2< b

such that the function F,2 G &, defined by (2.5), satisfies

(2.7) Fl2(xo)<f(xo).

Suppose that F o £ & is a support of / at x0, i.e.,

(2.8) f(xo)=Fo(xo) and f(x)SF0(x), a < x < b.

From (2.5), (2.7) and (2.8) it follows that F,2 and Fo intersect twice over the

interval (a,b), contradicting (B). Therefore / is not ^-convex. •

2.5 EXAMPLE. Let G (x, y, z) be a continuous function: (a,b)xR x /?-»/?,
such that

(PI) For each {x0,y0,y'o}e(a,b)x R x R, the differential equation

(2.9) y"=G(x,y,y'), (a < x < b),

has a unique solution y = y (x) satisfying

(2.10) y(*o) = yo, y'(xo) = y i .

(P2) The solution of (2.9) is continuous with respect to the initial values y0, yj.

(P3) For any two points {*,, y,} G (a, b) x R (i = 1,2) with x, / x2, there is a
unique solution of (2.9) satisfying

(2.11) y ( * ) = yi, i = l,2.

Let & be the Beckenbach family of solutions of (2.9). Peixoto (1949,
Theorem 2) showed that a function / G C2(a, b) is a sub-^ function if and only
if

(2.12) f"^G(x, / , / ' ) , a<x<b.

2.6 EXAMPLE. While sub-^ functions are continuous (Beckenbach (1937),
Roberts and Varberg (1973), p. 242), an ^-convex function need not be
continuous in its domain, even if each F G 9 is continuous:
Let 3F be the family of functions: R —*R

x* x)

depending on the two parameters

x*GR |*GR.
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Then the function

is ^-convex. Indeed, for every x ^ 0, the function F = F(x*,£*; •) defined by

supports / at x. Also every F G 9 supports / at 0.
We show now that an 9-convex function inherits from 9 its lower semi

continuity.

2.7 PROPOSITION. Let 9 be a family of l.s.c. ( = lower semi continuous)
functions, and let f be 9-convex in dom f. Then f is l.s.c. in dom f.

PROOF. Suppose / is not l.s.c. Then there exists an x G dom / such that

(2.13) /(x)>liminf/(y).
y~*x

Let F G 9 support / at x. Then

F(x) = /(x) > liminf /(y) ^ liminf F (y),

by (2.3) and (2.13), contradicting the lower semi continuity of F. •
2.8 NOTES. For further generalizations of convexity see the surveys in

Beckenbach and Bellman (1965), Chapter 4, and Roberts and Varberg (1973),
Chapter VIII.

For functions of several variables, the analogs of the sub ^-functions are
the subfunctions in particular the subharmonic functions; see Beckenbach and
Bellman (1965), p. 146, Beckenbach and Jackson (1953) and Jackson (1968),
where applications to second order differential inequalities are surveyed.

3. Requirements on 9

3.1 GENERAL. With Examples 2.2, 2.3 and 2.5 as our motivation, we
consider from now on only families 9 of functions F: R" —*R depending
continuously on n + 1 parameters

{x*,£*}GX*xE*

where the sets of parameters X* and a* are given subsets of R" and R
respectively. The general member of 9 is thus denoted by

(3.1) F ( - ) = F(x*,£*; •), (x*GX*,£*Ga*),
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with function values

(3.2) F(x) = F(x*,£*; x), x G X.

We assume that the mapping: {**,£*}—>F(JC*, f*; •) is one to one on
AT*x@*.

3.2 THE CLASS A. Let Dk (X) denote the functions: Rn -> R which are k

times differentiable in X. If & CD (X) = D'(x) we define the set

(3.3) Z = U (range T^ l : FG^J C/?x/?n

where Fx is the gradient of F with respect to x.
A family SF of differentiable functions is said to be in class A, denoted by

, if for every x G X and r £ Z, the system

(3.4)

(3.5)

has a unique solution {**,£*}£ X* x H*.
If ^ CD (X) and if / and 5 are a function: R" -* R and an open subset of

dom / respectively, we denote by

the facts

(Dl) Scdom/CX

(D2) fSD(S)

dom/

We abbreviate / = & by / « 9.

If 9 G A, f ~ & and x G dom/ we denote by

(3.7) (x* {x), £* (x))

the unique solution of
(3.8) f(x) = F(x*,£*;x)
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3.3 THE CLASS C. A family 9 is said to be in class C, denoted by 9 G C, if
for every {x*,x}e. X*x X the function F(x*, •; x) is a strictly decreasing
function of f , f ' £ a * . In this case, we denote by F' (x, •; x*) the inverse
function of F(x*, •; x). It satisfies the identity

(3.10) £ = F(x*,F'(x,£\ x*);x), f £ a .

If Sf £ A n C, f « 5̂  and x G dom /, then (3.8) gives

(3.11) f*=F ' (x , / (x) ;x*)

which, substituted in (3.9), gives

(3.12) U (x) = F, (x*,Ff (x,/(x); x*); x).

The unique solution of (3.12) is then called the 9-gradient of f at x, and is
denoted by x*,(x).

3.4 EXAMPLE. Let 9 be the family (2.4) of affine functions: R" -»• R. Then

(a) ? C D ( R " ) , Fc(x*,f*;x) = x* for every F £ f andx £R", and (3.3)
gives Z = RxR".

(b) f £ l For every j :GR n and * 6 f i x/?", the unique solution of

(3.4H3.5) is

(c) f£C.

(d) / = ^ means that / £ D (dom /).

(e) If / = 3F then for every x G dom /

(3.13) x f ( x ) = /x(x), ^ ( x ) = </x(x),x>

Thus the 9-gradient of /, x*f, coincides here with its ordinary gradient /».

3.5 EXAMPLE. Let </> be a given function: X* x X—> R and let the family
consist of the functions F(x*,£*; •), {**,£*}£ X* x 3 * , with values

(3.14) F(x*,£*;x) = <£(x*,x)-f*, x G X.

Then: 9 G C and

(a) f £ 4 if and only if the following two conditions hold:

(al) <{> (x*, •) £ D (X) for every x* G X*.

(a2) For every x G X, y G U , . range 4>x (x*, •), the system y = <px (x*,
has a unique solution x*.
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The ^-gradient of / at x, x*f(x), is the unique solution x* of 

(3.15) fx{x) = 4>Ax*,x). 

A concrete example is the following family & given by 

(3.16) F ( J c . , r ; x ) = J ^ £ L _ r 

with domain X = {x: (a, x) + B > 0}, and X* = R". Here a is a given vector in 
R" and /3 is a given nonzero scalar. No te that, for the special case a = 0, B = 1, 
the family (3.16) reduces to the family (2.4) of affine function. Here condition 
( a l ) clearly holds, while condition (a2) holds if and only if the linear system of 
equations 

V - V f -x,a, J . (a,x) + B-aixi 

{(a,x)+B)^'\ ((a,x)+B)2 

i = 1,2, •••,n 

has a unique solution. This occurs of course if and only if det G ^ 0 where G is 
the n x n matrix 

' (a,x)+B - a,x,, - a2x2, - anXi 

G= - atx2, (a,x) + B - a2x2, 

- a,x„, - a2xn, (a, x)+ B - anx„ J 

Using Sylvester's identity (Gantmacher (1959), section II.3) it can be shown, by 
induction, that det G = [(a,x) + B]"~'B, and since B^O it follows that 
det G/ 0 and hence & G A. For a ^ - c o n v e x function /, the ^-gradient is given 
by 

x*f(x) = G-'(Vf(x)). 

4. First order conditions for ^-convexity 

In this section we give first order conditions (so-called because they 
involve only first derivatives and the "gradients" {x*f,^*f} of / , see (3.7)) for 
^ -convex i ty , for families 3? in class A. These conditions use the extremal 
property of the supports implied by the inequality (2.3). First we require 

s 

4.1 L E M M A . Let & E. A, f: R" —>R, and let f ~ If f: S is supported (by 

some F E f ) at a point x G S, then 

(4.1) F ( * ? ( * ) , tf{x); •) 

is the unique support of f at x. 
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PROOF. Let F ( * $ , £ ? ; •) G support / : S at x, i.e., 

(4.2) h ( z ) = f(z)-F(xt,£t; z ) S 0 , V z G S , 

and 

(4.3) h(x) = f(x)-F(xt,£t;x) = 0. 

Therefore h ( z ) is minimized, in S, by z = x. Since S is open, this implies that x 
is a critical point of h, i.e., 

(4.4) h,(x) = fAx)-FAxt€t;x) = 0. 

Since f £ A , a comparison of (4.3)-(4.4) and (3.8)-(3.9) shows that 

{x*0,a} = {x1(x), a(x)} 

proving that (4.1) is the unique support at x. • 

4.2 THEOREM. Let & G A , / : R " -> R, and / « 9 . Then / is ^ - c o n v e x in 5 

if and only if for every i £ S 

(4.5) / ( z ) g F ( x ? ( x ) , V x ^ z G S . 

Furthermore, / is strictly ^ - c o n v e x in S if and only if for every x G S 

(4.6) f(z)>F(xHx),a(x);z), V x ^ z G S . 

PROOF. //. From (4.5) and (3.8) it follows, for any x G S, that the function 
(4.1) supports / : S at x. Moreover, x is the unique point of support if (4.6) 
holds. 

Only if. Let / be ^ - c o n v e x in S. Then, by Lemma 4.1, for any x G S, the 
function (4.1) is the unique support of / : S at x. The inequality (4.5) then 
follows from (2.3). Similarly (4.6) follows from the strict ^-convexi ty of /. 

• 
4.3 E X A M P L E . Let OF be the family (2.4) of affine functions: R n — » R , 

& = {F(x*A*; -) = (x*, • > - £ * : x * G R " , £ * G R } . 

Then, using (3.13), the inequality (4.5) reduces to 

f(z)^(fAx),z-x) + f(x), V x ^ z G S , 

the classical gradient inequality. 

S 

4.4 COROLLARY, (a) Let 9 G A, and let f: R" - » R, / « 9, be ^-convex in 
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S. Then f is strictly ^-convex in S if and only if the mapping

(4.7) *->{*?(*),£?(*)}

is one to one on S.

(b) Let, in addition, ^ S C . Then f is strictly 9-convex in S if and only if the
mapping

(4.8) JC-»X?(JC)

is one to one on S.

PROOF. From Lemma 4.1 it follows, for every x E S, that the function (4.1)
is the unique support of / : 5 at x. By definition, / is strictly ^-convex in S if,
and only if, every support of / : 5 supports / at exactly one point of S. This is
equivalent to the mapping (4.7) being one to one on S.

To prove the last part, note that the additional hypothesis !? E C implies

(4.9) \ x —> x*(x) on S <=> \x —>{x*[(x), £*, (x)} on

Indeed, the implication =̂> is always true. Conversely, suppose that x* is not
one to one on S, i.e., there exist JC,,JC2ES, xl^x2, such that

(4.10) . . . „, . * „
X f \X\) — X f \X2j — X 0'

Let £t = £*(*<) = F (Xi,f(Xi); xt) and let

F ' ( - ) = F(xt,tf; •), ( i= 1,2).

Then

F1 (J:, ) = / (JC,), F ' (JC,) = /,(*,), i = l , 2 .

Hence by Theorem 4.2, F1 supports / at *,-. If ^f = ^?, then this and (4.10)
contradicts the fact that (x?,£*) is 1 : 1, established earlier. Thus suppose that
£?>£? . This implies, since ? £ C , that F ' ( z ) < F 2 ( z ) Vz E 5. In particular

F 2 ( J C , ) > F ' ( * , ) = /(*,)

contradicting the fact that F2 is a support. •

4.5 THEOREM. Let & E A <1 C, f:Rn-*R, and f « ^ . TTien / 15 vm'c//y
3F-convex in S if the following two conditions hold.

(a) The mapping x*f is one to one on S.
(b) For every x E S and for every sequence {zk} C S which either converges
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to a point y G bdry 5 or || zk II—*00 there exists an x E S such that

(4.11) \im sup {F1 (zk, f(zk), x*fU))- Fl (x, f(x), x*f(x))} SO

where F' is defined in §3.3.

PROOF. For any x G 5 consider the function

(4.12) T(z) = F'(

We show first that z = x is a critical point of T. Differentiating the identity

(4.13) F(x* ,F ' (y , / (y ) ;x*) ; y ) - / ( y ) = 0

with respect to y we get

(4.14) FA-,-; -) + F(.(-, •; • )[Fi (y,/(y); x*) + Fj (y,/(y); x*)f, (y)]
- /x(y) = 0

where
(•, •; •) = (**,F ' (y , / (y) ;x*);y) .

Now F{. ̂  0, since f £ C . Therefore, for y = x and x * = x * (x), it follows from
(4.14) and (3.12) that

(4.15) FJ (x,/(x); x?(x)) + FJ (*,/(*); JC?(x))/, (x) = 0

which, by (4.12), is the same as TAx) = 0, proving that z = x is critical.
Moreover, z = x is the unique critical point of T in S. For suppose that

i / x ' £ S is another critical point of T, i.e.

T2 (*') = FJ (x ' , / (x ') ; x?(x))+ F | (x ' , / (x ' ) ; x?(x))/, (x') = 0

implying that for y = x' and x* = xj(x), (4.14) reduces to

which, together with (3.12), implies that

x*l{x') = x*l(x),
contradicting (a).

We show next that

(4.16) sup {T(z): z G S} = T(x).

Indeed if this supremum occurs at some z = y G bdry S or if a supremizing
sequence {zk} is such that || zk |[ —* ĉ then the supremum is also attained at x G S,
by (4.11). Therefore z = x is a critical point of T, proving that x = x, since the
latter is the unique critical point in 5, and therefore (4.16) becomes

F ' (x,/(x); x*,{x))>F' (z,f(z); x?(x)), Vx^ z G 5,
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which is the same as

f(z)>F(x*f(x),FI(xJ(x);x*f(x));z), Vi^zES,

proving that / is strictly ^-convex in S, by theorem 4.2. •

4.6 EXAMPLE. Consider the family

& = {(t>(x*, • ) - £ * : x*GX*,£*GH*},

of Example 3.5 and let & E A, f: R" -> R, and / « 9. Then condition (b) of

Theorem 4.5 follows from

(bl) For every x*G range {x*f(x): x G 5} and every sequence {zk} as in
Theorem 4.5(b),

(4.17) liminf {/(zt )-<£(**, z* )}=+*=. •

In particular, if

and

(4.18) limsup ^ 1 X | ' | X ) < ^ , Vx* G range xf.

then condition (b) of Theorem 4.5 is satisfied if

Note that (4.18) is trivially satisfied by the family & of affine functions. Hence,
a differentiable function f:R"^R is strictly convex if the following two
conditions hold.

(a) The mapping

is one to one on R".

(b) lim
lllH

As a concrete example of condition (bl) let & be the family of functions:
R2^>R given by

(4.19) F ( j t * , £ * ; x ) = x f e~x' +x*2 x2e~x'-^*

with X = X*= R2, H* = R.
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Consider the function / : R2—*R

(4.20) f ( x ) = ^e2'> + ^ x l e x <

with dom/= R2. Then / is ^-convex in R2 since:

(a) The ^-gradient

' W m

is one-to-one, and

(4.21) range *=?=

(b) / ( z ) - < £ ( * * , * ) =

by (4.21) the coefficients of all exponentials are positive and hence

lim [/(z)-</>(**,z)] = o= Vx*G range x^.
'2 ';—"=c

5. Second order conditions for ^-convexity

In this section we collect second order condit ions (involving second

derivatives) for ^ - convex i ty .

5.1 THEOREM. Let f £ A n D 2 ( X ) , f:R"-*R, j ^ 9 and / £ D 2 ( 5 ) .

Then:

(a) / is ^-convex in S only if, for every x G S, the matrix

(5-D H(x) = f,Ax)-Fx,(xl(x),tf(x);x)

is positive semi definite. (A matrix HE/?""" is called here positive semi definite
if

<H2,z>g0, VzER" .

We do not mean by this that H is symmetric.)
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(b) Let S be convex and let f and each F £ SF be twice continuously
differentiable in S. Then f is ^-convex in S if

(5.2)

for every x G 5 and y G S - x.
If strict inequality holds in (5.2), F is strictly ^-convex in S.

PROOF, (a) Let / be ^-convex in S. Then, for any x G S, the function

( 5 J ) h(z) =

satisfies

(5.4) M*) = 0, M * ) = 0, by (3.8)-(3.9),

and

Mz) = 0, V z G S , by Theorem 4.2.

Therefore z = x minimizes h in S. Since S is an open set, it follows that

ha(x) = H(x)

is positive semi-definite.

(b) The function h of (5.3) satisfies

h(z) = h ( z ) - h ( x ) - (h, (x), z-x), by (5.4) ,

= (h,(x + t(z - x))- h2 (x), z - x), for s o m e I X K l ,

by a mean value theorem (Ortega and Rheinboldt
(1970), Theorem 3.2.2).

= (z-x,(\ hZ! (x + st(z- x))ds) t (z - x)),
\ \ Jo ' I

by a mean value theorem (Ortega and Rheinboldt
(1970), Theorem 3.2.7),

(/„ (x + s y ) - F« (JC^ (JC). ^* (JC); x

where y = t (z — x).

Thus, (5.2) implies that

(5.5) h(z)mO, VzG5,

proving that / is ^-convex in S, by Theorem 4.2.
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Similarly, strict inequality in (5.2) implies strict inequality in (5.5), hence
strict ^-convexity. •

5.2 EXAMPLE. Let 9 be the family (2.4) of affine functions: R" -> R. Then
the matrix H(x) of (5.1) reduces to the Hessian of /

and Theorem 5.1 gives the classical conditions for convexity in terms of the
Hessian.

5.3 EXAMPLE. Let 9 be the Beckenbach family of solutions of the second
order differential equation

(2.9) y"=G(x,y,y'), (a < x < b),

discussed in Example 2.5. Then (5.1) becomes

H = f"-G(x,f,f').

Now, suppose that & C C2(X), / G C2(S), then H(x)>0 implies H(x + sy)>
0 for 0 < 5 < 1 and y sufficiently close to JC. Thus (5.2) is a strict inequality in
some neighborhood of x, and we conclude that / is, locally, strictly ^-convex.
By Proposition 2.4 this implies that / is locally strictly sub-^F, which by
(Beckenbach (1937), Theorem 7) implies that / is sub-^ globally in (a, b). This
result is the analog of (Peixoto (1949), Theorem 3). To get the analogous result
of (Peixoto (1949), Theorem 1), we need the implication H ( J C ) ^ 0 = >

H (x + sy) g 0, for 0 < s < 1 and y sufficiently close to x, for which Peixoto's
additional requirement, (P2) of Example 2.5, is needed (see the proof of Lemma

1 in Peixoto (1949)).

5.4 DEFINITION. A mapping T: R" -*R" is called an extended one to one
mapping on R" if

(a) x,yeR", x/y

(b) The inverse images T~'(B) of bounded sets B CR" are bounded.

5.5 THEOREM. Let & G A n C f l C ! ( R " ) , / : R" — R, feC2(R") and f =
&. Then f is strictly ^-convex in R" if the following two conditions hold

(a) JC* is an extended one to one mapping on R".

(b) For every x G R", the matrix

(5.6) H(x) = f,Ax)-Fxx(x*,(x), F'(xj(x); x*f(x)); x)

is positive definite. Conversely, if f is strictly ^-convex in R" then x*f is one to
one and the matrix H(x) is positive semi-definite for every x G R".
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PROOF. First we note, by (3.11), that (5.6) and (5.1) are the same.
For any x G R" consider now the function (4.12)

As in the proof of Theorem 4.5 it follows from (a) that z = x is the unique
critical point of T in R".

Differentiating the identity (4.13) twice with respect to y we get, by using
(4.15) and (3.12),

(5.7) Ta(x) = -±- H (x)

(where F(. is evaluated at {x*f(x), F' (x,f(x); x}). From (5.7), (b) and F e C it
follows that Tzz (x) is negative definite. Therefore z = x is an isolated local
maximizer of T, and its unique critical point in R".

Thus, by Leighton's Theorem (Leighton (1966), see also Szego (1968)),
2 = x is the global maximizer of T, i.e.,

F' (x,f(x); x*f(x))>F' (z,f(z); x*,(x)), Vx/ z £ R",

which is the same as

f(z)>F(x*f(x),F'(x,f(z);x*f(x));z), Vx/z<ER\

proving that / is strictly ^-convex in R" by Theorem 4.2.

If / is strictly ^-convex in R" then (a) and (b) follow from Corollary 4.4
and Theorem 5.1(a) respectively. •

5.6 EXAMPLE. Let 9> and / be given by (4.19) and (4.20) respectively. Then
the matrix (5.1) is positive definite

0

e'

and / is strictly ^-convex in R2, by Theorem 5.5.

6. Monotonicity of ^-gradients

In this section we prove monotonicity results for the ^-gradient x*f of an
^-convex function. We recall that a mapping g: R" —> R" is a P-function
[P0-function] if for every x, yGdomg, x/y, there is an index k =
k(x, y)G{l,2, • • •,«} such that

(xk-yk)(gk(x)-gk(y))>0 l(xk-yk)(gk(x)-gk(y))^0 and xk?yk],
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see More and Rheinboldt (1973). In particular, a mapping g: R"—> R" is
monotone (strictly monotone) if for every x, y Edomg, x/ y, we have

(x-y,g(x)-g (y)> i= 0 [(x-y,g(x)-g (y)> > 0].

We also require the following

6.1 DEFINITIONS. A family "OF is said to be in class A,, denoted by & £ A,, if
&GA and for every { i * , f * ; x } £ X * x a * x X the derivatives in (6.1) are
continuous and the matrix

rF(.(x*,$*;x) Fj.(x*,€*;x)-\
(6.1) J(x*,€*;x)=\

lF(.x(x*,e;x) Fx.x(x*,{*;x)\

is nonsingular, say

(6.2) detJ(x*,{*;x)<0.

This matrix is the Jacobian matrix of the function

( • . - ;*>1
( - , • ; X ) \ '

see (3.4)-(3.5).

A family & is said to be in class A2, denoted by 9 G A2, if 3F G A\ and for
every x G X the matrix

(6.3) J0(x) = -±-[Ft.Fx.x - F(.XFJ.],
re

where all derivatives are evaluated at {x*,(x), ^(x)\ x}, is positive definite.

6.2 LEMMA. Let &<E A, n C, / : R" -+R, f * 9 and let f and each F&&

be twice continuously differentiate in S. Then, for every x E S,

(6.4) Dxx*f(x) = Jo(x)

where Dxx*f (x) denotes the derivative of x*f at x and Jo and H are given by (6.3)
and (5.1) respectively.

PROOF. For any x G S consider the system

(3.8) F(x*,f*;x)- /( jc) = 0

(3.9) Fz(x*,S*;x)-f,(x) = 0

which, since ? G A , has a unique solution {x*f(x), ^ (x)}. The implicit function



358 Aharon Ben-Tal and Adi Ben-Israel [18]

theorem, applicable since &E.A,, then gives

\
[Ft.x Fx.x

where the derivatiyes

Ff.x F.

are evaluated at {x*f(x), £*(x); x}.

Using (3.9) and (5.1), we rewrite (6.5) as

(6.6) Ft.Dxtf(x) + Fj.Dxxl(x) = O

(6.7) Ft.xDxtf(x) + Fx.xDxxl(x) = H(x).

Now F{. ̂  0 since f £ C . Eliminating Dxtf (x) from (6.6) and substituting in
(6.7) gives

H(x) = 4~lFr Fx.x ~ F(.,FI.] DxxHx).
re

The proof is completed by showing that the matrix

[Ff.Fx..-Ft..Fl.]

is nonsingular, which follows since

(6.8) det [F t . Fx.x - Ff.x FT
X.] = -FJ."1 det f £*' Jx* 1,

by Sylvester's identity (Gantmacher (1959),
Section II.3), / 0, since f e C f l A , .

•
6.3 EXAMPLE Let & be the family (2.4) of affine functions: R" -*• R. Then

x*,(x) = fx{x), by Example 3.4,

Mx) = / by (6.3) since Fx.x = /, F(.% = 0

and (6.4) reduces to the obvious

(6.9) Dxfx(x) = fxx(x).

If / is a convex [strictly convex] differentiate function, then its gradient /, is
monotone [strictly monotone] in dom/. This is an immediate consequence of
the gradient inequality (Example 4.3), and Theorem 4.2. Alternatively and less
directly, the monotonicity of fx can be shown to follow from (6.9) and the fact
that /„ is positive semi definite, see, e.g. Ortega and Rheinboldt (1970),
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Theorem 5.4.3. Two other cases in which the factorization (6.4) is used to
establish a monotonicity property of the ^-gradient x"l, will now be given.

6.4 THEOREM. Let &eA2n C2(X) where X = /, x I2 x •• • x /„ is the pro-
duct of open intervals /, CR, (i = 1, • • • ,n). Let each F G & be of the form

(6-10) F(x*,£*;x) = 'ZF'{xl,xl)-£*
i-l

where F' (xi, •): I, -» R (i = 1,2, • • - , « ) . Let f: R" -» /? be ^-convex [strictly
^-convex] with domfDX and fEC2(X). Then x*, is a P^-function IP-
function] in X.

PROOF From (6.10), (6.3) and 9 £ A2 it follows that

Jo 00 = Fx.x

is a diagonal, positive definite matrix. From (6.4) and Theorem 5.1(a) it
therefore follows, for an ^-convex function /, that Ds x*(x) is a Po-matrix,
(see Fiedler and Ptak (1962, 1966), proving that x*f is a Po-function, by More
and Rheinboldt (1973), Corollary 5.3.

If / is strictly ^-convex, then, by Corollary 4.4(b) (applicable since
f £ C ) , it follows for any x, y G X, x^y, that there is a k =
/C(JC, y)S{l,2, •• •, n} such that

jct^yk and ac?(x)k^ x?(y)k,

proving that x*j is a P-function. •
A special case of Theorem 6.4 is the following, one dimensional result:

6.5 COROLLARY. Let ^ G A , n C be a family of functions: R—>R, let
f: R-*R, S an open subset of domf, and let f and each F &3F be twice
continuously differentiable in S. If f is ^-convex in S then x*f is a nondecreasing
function in S.

PROOF. Using (6.3), (6.8) and (6.1) we write

J0(x) = —detJ(x*f(x), a(x)- x)

> 0, by (6.2) and f £ C .

Therefore

-pxfOOgO, by (6.4) and Theorem 5.l(a). •
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6.6 COROLLARY. Let 9, f and S be as in Corollary 6.5, where S is an interval
(a,b). If

then f is strictly 3F-convex.

PROOF. From (6.4) and (6.11) we infer that x* is 1 : 1 on (a, b). As in the
proof of Theorem 5.6 this implies that z = x is a local minimizer of

A

h (z) = f(z)-F(x"}(x), £*(*); z) and that no other critical point exists in

(a,b). Hence z=x is the unique global minimizer of h (z), which was
previously shown to be equivalent to the strict ^-convexity of /. •

6.7 COROLLARY. Let 3F be as in Theorem 6.4, with X = R". A function
f: R" -^Rwith domf = R", / G C2 (/?"), / = & is strictly ^-convex, if the matrix
H (x) is positive definite.

PROOF. Follows from (6.4) and Theorem 5.5. •
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