C OLLOQUIUM MATHEMATICUM
 VOL. LXIII $1992 \quad$ FASC. 2

a generalization of davenport's Constant AND ITS ARITHMETICAL APPLICATIONS

BY
FRANZ HALTER-KOCH (GRAZ)

1. For an additively written finite abelian group G, Davenport's constant $D(G)$ is defined as the maximal length d of a sequence $\left(g_{1}, \ldots, g_{d}\right)$ in G such that $\sum_{j=1}^{d} g_{j}=0$, and $\sum_{j \in J} g_{j} \neq 0$ for all $\emptyset \neq J \varsubsetneqq\{1, \ldots, d\}$. It has the following arithmetical meaning:

Let K be an algebraic number field, R its ring of integers and G the ideal class group of R. Then $D(G)$ is the maximal number of prime ideals (counted with multiplicity) which can divide an irreducible element of R. This fact was first observed by H. Davenport (1966) and worked out by W. Narkiewicz [8] and A. Geroldinger [4].

For a subset $Z \subset R$ and $x>1$ we denote by $Z(x)$ the number of principal ideals (α) of R with $\alpha \in Z$ and $(R:(\alpha)) \leq x$. If M denotes the set of irreducible integers of R, then it was proved by P. Rémond [12] that, as $x \rightarrow \infty$,

$$
M(x) \sim C x(\log x)^{-1}(\log \log x)^{D(G)-1}
$$

where $C>0$ depends on K; the error term in this asymptotic formula was investigated by J. Kaczorowski [7].

If an element $\alpha \in R \backslash\left(R^{\times} \cup\{0\}\right)$ has a factorization $\alpha=u_{1} \cdot \ldots \cdot u_{r}$ into irreducible elements $u_{j} \in R$, we call r the length of that factorization and denote by $L(\alpha)$ the set of all lengths of factorizations of α. For $k \geq 1$, we define sets M_{k} and M_{k}^{\prime} (depending on K) as follows:
M_{k} consists of all $\alpha \in R \backslash\left(R^{\times} \cup\{0\}\right)$ for which $\max L(\alpha) \leq k$ (i.e., α has no factorization of length $r>k)$;
M_{k}^{\prime} consists of all $\alpha \in R \backslash\left(R^{\times} \cup\{0\}\right)$ for which $\min L(\alpha) \leq k$ (i.e., α has a factorization of length $r \leq k)$.

If $G=\{0\}$, then $M_{k}=M_{k}^{\prime}$ for all k; in the general case, we have $M_{1}=M_{1}^{\prime}=M$ and $M_{k} \subset M_{k}^{\prime}$ for all k.

In this paper, we generalize the results of Rémond and Kaczorowski and obtain asymptotic formulas for $M_{k}(x)$ and $M_{k}^{\prime}(x)$. To do this, we shall define a sequence of combinatorial constants $D_{k}(G)(k \geq 1)$ generalizing $D(G)=D_{1}(G)$, and we shall obtain the following result.

Theorem. For $x \geq e^{e}$ and $q \in \mathbb{Z}, 0 \leq q \leq c_{0} \frac{\sqrt{\log x}}{\log \log x}$, we have

$$
M_{k}(x)=\frac{x}{\log x}\left[\sum_{\mu=0}^{q} \frac{W_{\mu}(\log \log x)}{(\log x)^{\mu}}+O\left(\left(c_{1} q\right)^{q} \frac{(\log \log x)^{D_{k}(G)}}{(\log x)^{q+1}}\right)\right]
$$

and

$$
M_{k}^{\prime}(x)=\frac{x}{\log x}\left[\sum_{\mu=0}^{q} \frac{W_{\mu}^{\prime}(\log \log x)}{(\log x)^{\mu}}+O\left(\left(c_{1} q\right)^{q} \frac{(\log \log x)^{k D(G)}}{(\log x)^{q+1}}\right)\right]
$$

where c_{0}, c_{1} are positive constants, and $W_{\mu}, W_{\mu}^{\prime} \in \mathbb{C}[X]$ are polynomials such that $\operatorname{deg} W_{\mu} \leq D_{k}(G), \operatorname{deg} W_{\mu}^{\prime} \leq k D(G), \operatorname{deg} W_{0}=D_{k}(G)-1, \operatorname{deg} W_{0}^{\prime}=$ $k D(G)-1$, and W_{0}, W_{0}^{\prime} have positive leading coefficients.

Remarks. 1) For $k=1$, this is [7, Theorem 1].
2) For $G=\{0\}$, we shall see that $D_{k}(G)=k$, and we rediscover $[9$, Ch. IX, § 1, Corollary 1].
3) In another context, the number $M_{k}^{\prime}(x)$ was studied in [6].

The main part of this paper is devoted to the definition and the investigation of the invariants $D_{k}(G)$ and is of purely combinatorial nature. Only in the final section shall we present a proof of the above Theorem using the work of Kaczorowski.
2. Let G be an additively written finite abelian group. We denote by $\mathcal{F}(G)$ the (multiplicatively written) free abelian semigroup with basis G. In $\mathcal{F}(G)$, we use the concept of divisibility in the usual way: $S^{\prime} \mid S$ if $S=S^{\prime} S^{\prime \prime}$ for some $S^{\prime \prime} \in \mathcal{F}(G)$. Every $S \in \mathcal{F}(G)$ has a unique representation

$$
S=\prod_{g \in G} g^{v_{g}(S)}
$$

with $v_{g}(S) \in \mathbb{N}_{0}$; we call

$$
\sigma(S)=\sum_{g \in G} v_{g}(S) \in \mathbb{N}_{0}
$$

the size and

$$
\iota(S)=\sum_{g \in G} v_{g}(S) \cdot g \in G
$$

the content of S. The semigroup

$$
\mathcal{B}(G)=\{B \in \mathcal{F}(G) \mid \iota(B)=0\} \subset \mathcal{F}(G)
$$

is called the block semigroup of G; we set $\mathcal{B}(G)^{\prime}=\mathcal{B}(G) \backslash\{1\}$ where $1 \in \mathcal{F}(G)$ denotes the unit element. Every $B \in \mathcal{B}(G)^{\prime}$ has a factorization $B=B_{1} \cdot \ldots \cdot B_{r}$ into irreducible blocks $B_{i} \in \mathcal{B}(G)^{\prime} ;$ again, we call r the length
of the factorization and denote by $L(B)$ the set of all lengths of factorizations of B in $\mathcal{B}(G)$. Obviously, B is irreducible if and only if $L(B)=\{1\}$, and $D(G)=\max \left\{\sigma(B) \mid B \in \mathcal{B}(G)^{\prime}\right.$ is irreducible $\}$.

Now we define, for $k \geq 1$,

$$
D_{k}(G)=\sup \left\{\sigma(B) \mid B \in \mathcal{B}(G)^{\prime}, \max L(B) \leq k\right\}
$$

Obviously, $D_{1}(G)=D(G)$, and we shall see in a moment that $D_{k}(G)<\infty$ for all $k \geq 1$.

Proposition 1. Let G be a finite abelian group and $k \in \mathbb{N}$.
(i) $k D(G)=\max \left\{\sigma(B) \mid B \in \mathcal{B}(G)^{\prime}, \min L(B) \leq k\right\}$

$$
=\max \left\{\sigma(B) \mid B \in \mathcal{B}(G)^{\prime}, k \in L(B)\right\} .
$$

(ii) $D_{k}(G) \leq k D(G)<\infty$.
(iii) $D_{k}(G)=\max \left\{\sigma(B) \mid B \in \mathcal{B}(G)^{\prime}, \max L(B)=k\right\}$.
(iv) $D_{k}(G)$ is the smallest number $d \in \mathbb{N}$ with the property that, for every $S \in \mathcal{F}(G)$ with $\sigma(S) \geq d$, there exist blocks $B_{1}, \ldots, B_{k} \in \mathcal{B}(G)^{\prime}$ such that $B_{1} \cdot \ldots \cdot B_{k} \mid S$.
(v) If $B \in \mathcal{B}(G)$ is a block satisfying $\sigma(B)>k D(G)$, then there exist blocks $B_{1}, \ldots, B_{k+1} \in \mathcal{B}(G)^{\prime}$ such that $B=B_{1} \cdot \ldots \cdot B_{k+1}$.
(vi) If $G_{1} \nsubseteq G$ is a proper subgroup, then $D_{k}\left(G_{1}\right)<D_{k}(G)$.

Proof. (i) If $B \in \mathcal{B}(G)^{\prime}$ is a block such that $\min L(B) \leq k$, then there exists a factorization $B=B_{1} \cdot \ldots \cdot B_{l}$ into irreducible blocks $B_{j} \in \mathcal{B}(G)^{\prime}$ of length $l \leq k$, and therefore

$$
\sigma(B)=\sum_{j=1}^{l} \sigma\left(B_{j}\right) \leq D(G) \leq k D(G)
$$

Hence it is sufficient to prove that there exists a block $B \in \mathcal{B}(G)$ such that $\sigma(B)=k D(G)$ and $k \in L(B)$. But if $B_{0} \in \mathcal{B}(G)^{\prime}$ is an irreducible block with $\sigma\left(B_{0}\right)=D(G)$, then $B=B_{0}^{k}$ has the required property.
(ii) follows immediately from (i) and the definition of $D_{k}(G)$.
(iii) Let l be the maximal length of a factorization of a block $B \in \mathcal{B}(G)^{\prime}$ with $\max L(B) \leq k$ and $\sigma(B)=D_{k}(G)$. If $l<k$, then the block $\bar{B}=B \cdot 0$ satisfies $\sigma(\bar{B})=D_{k}(G)+1$ and $\max L(\bar{B})=l+1 \leq k$, which contradicts the definition of $D_{k}(G)$.
(iv) In order to prove that $D_{k}(G)$ has the indicated property, let $S \in$ $\mathcal{F}(G)$ be such that $\sigma(S) \geq D_{k}(G)$, set $g=-\iota(S) \in G$ and consider the block $S_{g} \in \mathcal{B}(G)^{\prime}$. Since $\sigma(S g)>D_{k}(G)$, the block $S g$ has a factorization of length $\nu>k$, say $S g=B_{1} \cdot \ldots \cdot B_{\nu}$ with irreducible $B_{j} \in \mathcal{B}(G)^{\prime}$ and $v_{g}\left(B_{\nu}\right)>0$. This implies $B_{1} \cdot \ldots \cdot B_{k} \mid S$, as asserted.

In order to prove that $D_{k}(G)$ is minimal with this property, let $B \in$ $\mathcal{B}(G)$ be a block satisfying $\sigma(B)=D_{k}(G)$ and max $L(B)=k$, according to (iii). If $B=\prod_{j=1}^{D_{k}(G)} g_{j}$ and $d<D_{k}(G)$, then the element $S_{d}=\prod_{j=1}^{d} g_{j} \in$
$\mathcal{F}(G)$ cannot be divisible by a product of k blocks, for this would imply $\max L(B) \geq k+1$.
(v) If $B=g_{1} \cdot \ldots \cdot g_{\nu}$ with $\nu>k D(G)$ then, by (iv), there exist blocks $B_{1}, \ldots, B_{k} \in \mathcal{B}(G)^{\prime}$ such that $B_{1} \cdot \ldots \cdot B_{k} \mid g_{1} \cdot \ldots \cdot g_{\nu-1}$, and therefore the assertion follows.
(vi) By (iii), there exists a block $B=g_{1} \cdot \ldots \cdot g_{N} \in \mathcal{B}\left(G_{1}\right)$ such that $N=\sigma(B)=D_{k}\left(G_{1}\right)$ and $\max L(B)=k$. We pick an element $g \in G \backslash G_{1}$ and assume that $D_{k}\left(G_{1}\right) \geq D_{k}(G)$. By (iv), there exist blocks $B_{1}, \ldots, B_{k} \in$ $\mathcal{B}(G)^{\prime}$ such that $B_{1} \cdot \ldots \cdot B_{k} \mid g_{1} \cdot \ldots \cdot g_{N-1} g$; this implies $B_{1}, \ldots, B_{k} \in \mathcal{B}\left(G_{1}\right)^{\prime}$, and therefore there exists a block $B_{k+1} \in \mathcal{B}\left(G_{1}\right)^{\prime}$ such that $B=B_{1} \cdot \ldots$ $\ldots \cdot B_{k} B_{k+1}$, a contradiction.
3. The precise value of $D(G)$ is known only for some special types of abelian groups [2], [3]; see [5] for a survey. In the following proposition we collate those results which we shall either use or generalize in the sequel.

For $n \geq 1$, let C_{n} be the cyclic group of order n.
Proposition 2. Let $G=\bigoplus_{i=1}^{d} C_{n_{i}}$ be a finite abelian group with $1<$ $n_{d}\left|n_{d-1}\right| \ldots \mid n_{1}$, and set

$$
M(G)=n_{1}+\sum_{i=2}^{d}\left(n_{i}-1\right)
$$

(i) $M(G) \leq D(G) \leq \# G$.
(ii) If either $d \leq 2$ or G is a p-group, then $M(G)=D(G)$.

Proof. [10], [11]; see also [1].
Proposition 3. Let G be a finite abelian group and $k \in \mathbb{N}$.
(i) If $G=G^{\prime} \oplus G^{\prime \prime}$, then $D_{k}(G) \geq D_{k}\left(G^{\prime}\right)+D\left(G^{\prime \prime}\right)-1$.
(ii) If $G=\bigoplus_{i=1}^{d} C_{n_{i}}$ with $1<n_{d}\left|n_{d-1}\right| \ldots \mid n_{1}$, then $D_{k}(G) \geq k n_{1}+$ $\sum_{i=2}^{d}\left(n_{i}-1\right)$.
(iii) $D_{k}\left(C_{n}\right)=k n$.

Proof. (i) By Proposition 1(iv), there exist elements $S^{\prime} \in \mathcal{F}\left(G^{\prime}\right)$ and $S^{\prime \prime} \in \mathcal{F}\left(G^{\prime \prime}\right)$ such that $\sigma\left(S^{\prime}\right)=D_{k}\left(G^{\prime}\right)-1, S^{\prime}$ is not divisible by a product of k blocks from $\mathcal{B}\left(G^{\prime}\right)^{\prime}$ and $\sigma\left(S^{\prime \prime}\right)=D\left(G^{\prime \prime}\right)-1, S^{\prime \prime}$ is not divisible by a block of $\mathcal{B}\left(G^{\prime \prime}\right)^{\prime}$. If $S^{\prime}=\prod_{j=1}^{D_{k}\left(G^{\prime}\right)-1} g_{j}^{\prime}$ and $S^{\prime \prime}=\prod_{j=1}^{D\left(G^{\prime \prime}\right)-1} g_{j}^{\prime \prime}$, then the element

$$
S=\prod_{j=1}^{D_{k}\left(G^{\prime}\right)-1}\left(g_{j}^{\prime}, 0\right) \cdot \prod_{j=1}^{D\left(G^{\prime \prime}\right)-1}\left(0, g_{j}^{\prime \prime}\right) \in \mathcal{F}(G)
$$

is not divisible by a product of k blocks of $\mathcal{B}(G)^{\prime}$, whence

$$
D_{k}(G)>\sigma(S)=D_{k}\left(G^{\prime}\right)+D\left(G^{\prime \prime}\right)-2,
$$

by Proposition 1(iv), as asserted.
(ii) If $G=\left\langle g_{1}, \ldots, g_{d}\right\rangle$ and $\operatorname{ord}\left(g_{i}\right)=n_{i}$, then the block

$$
B=g_{1}^{k n_{1}-1} \cdot\left(g_{1}+\ldots+g_{d}\right) \cdot \prod_{j=2}^{d} g_{j}^{n_{j}-1} \in \mathcal{B}(G)
$$

has a unique factorization into irreducible blocks of length k, given by $B=$ $B_{1}^{k-1} B_{0}$, where $B_{1}=g_{1}^{n_{1}}$ and $B_{0}=\left(g_{1}+\ldots+g_{d}\right) \cdot \prod_{j=1}^{d} g_{j}^{n_{j}-1}$. This implies $D_{k}(G) \geq \sigma(B)=k n_{1}+\sum_{j=2}^{d}\left(n_{j}-1\right)$.
(iii) By Propositions 1 and 2, we have $D_{k}\left(C_{n}\right) \leq k D\left(C_{n}\right)=k n$, whereas, by (ii), $D_{k}\left(C_{n}\right) \geq k n$.
4. In this section we generalize the result on groups of rank 2 .

Proposition 4. Let $G=G_{1} \oplus G_{2}$ be a finite abelian group, $\# G_{i}=n_{i}$, $n_{2} \mid n_{1}$ and $k \in \mathbb{N}$. Then

$$
D_{k}\left(C_{n}\right) \leq k n_{1}+n_{2}-1 .
$$

For the proof of Proposition 4 we need two technical lemmas.
Lemma 1. Let G be a finite abelian group, $m \in \mathbb{N}, D(G)<2 m$ and $D\left(G \oplus C_{m}\right)<3 m$. Let $t \in \mathbb{N}$ and $S \in \mathcal{F}(G)$ be such that $\sigma(S) \geq D(G \oplus$ $\left.C_{m}\right)+(t-1) m$. Then there exist blocks $B_{1}, \ldots, B_{t} \in \mathcal{B}(G)^{\prime}$ such that $B_{1} \cdot \ldots \cdot B_{t} \mid S$ and $\sigma\left(B_{i}\right) \leq m$ for all $i \in\{1, \ldots, t\}$.

Proof. It suffices to consider the case $t=1$, for then the general case follows by a trivial induction argument.

Set $N=D\left(G \oplus C_{m}\right)<3 m$, and let $S=g_{1} \cdot \ldots g_{\nu} \in \mathcal{F}(G)$ be an element with $\nu=\sigma(S) \geq N$. Let e_{m} be a generator of C_{m}, and consider the element

$$
S^{\prime}=\prod_{j=1}^{N}\left(g_{j}, e_{m}\right) \in \mathcal{F}\left(G \oplus C_{m}\right)
$$

by Proposition 1(iv) there exists an irreducible block $S_{0}^{\prime} \in \mathcal{B}\left(G \oplus C_{m}\right)^{\prime}$ such that $S_{0}^{\prime} \mid S^{\prime}$, and we may assume that $S_{0}^{\prime}=\prod_{j=1}^{N_{0}}\left(g_{j}, e_{m}\right)$ for some $N_{0} \leq N$. Since

$$
\iota\left(S_{0}^{\prime}\right)=\left(\sum_{j=1}^{N_{0}} g_{j}, N_{0} e_{m}\right)=(0,0) \in G \oplus C_{m}
$$

we obtain $S_{0}=\prod_{j=1}^{N_{0}} g_{j} \in \mathcal{B}(G)$ and $m \mid N_{0}$, whence $m=N_{0}$ or $2 m=N_{0}$. If $m=N_{0}$, the assertion follows with $B=S_{0}$; if $2 m=N_{0}>D(G)$, then S_{0} has a decomposition $S_{0}=B B^{\prime}$ with $B, B^{\prime} \in \mathcal{B}(G)$ and $\sigma(B) \leq m$, which again implies the assertion.

Lemma 2. Let p be a prime, $t \in \mathbb{N}$ and $B \in \mathcal{B}\left(C_{p} \oplus C_{p}\right)$ a block satisfying $\sigma(B) \geq t p$. Then there exist blocks $B_{1}, \ldots, B_{t} \in \mathcal{B}\left(C_{p} \oplus C_{p}\right)^{\prime}$ such that $B=B_{1} \cdot \ldots \cdot B_{t}$.

Proof. The assertion is true for $t=1$ and also for $t=2$, as $D\left(C_{p} \oplus C_{p}\right)$ $=2 p-1<2 p$. Therefore we assume that $t \geq 3$ and $B=g_{1} \cdot \ldots \cdot g_{\nu}$ for some $\nu \geq t p$. We apply Lemma 1 with $G=C_{p} \oplus C_{p}, m=p$ and $S=g_{1} \cdot \ldots$ $\ldots \cdot g_{t p-1}$. Since $\sigma(S)=t p-1>(3 p-2)+(t-3) p=D\left(C_{p} \oplus C_{p} \oplus C_{p}\right)+(t-3) p$, there exist blocks $B_{1}, \ldots, B_{t-2}, B^{\prime} \in \mathcal{B}(G)^{\prime}$ such that $B=B_{1} \cdot \ldots \cdot B_{t-2} B^{\prime}$ and $\sigma\left(B_{j}\right) \leq p$ for all $j \in\{1, \ldots, t-2\}$. This implies

$$
\sigma\left(B^{\prime}\right)=\sigma(B)-\sum_{j=1}^{t-2} \sigma\left(B_{j}\right) \geq t p-(t-2) p=2 p>D(G)
$$

whence $B^{\prime}=B_{t-1} B_{t}$ with blocks $B_{t-1}, B_{t} \in \mathcal{B}(G)^{\prime}$.
Proof of Proposition 4. By induction on n_{2}; if $n_{2}=1$, then $D_{k}(G)=D_{k}\left(G_{1}\right) \leq k D\left(G_{1}\right) \leq k n_{1}$ by Proposition 1(ii) and Proposition 2(i).

If $n_{2}>1$, let p be a prime with $p \mid n_{2}$ and choose subgroups $G_{i}^{\prime} \subset G_{i}$ $(i=1,2)$ with $\left(G_{i}: G_{i}^{\prime}\right)=p$. Set

$$
t=k n_{1} / p+n_{2} / p
$$

and assume that the assertion is true for the subgroup $G^{\prime}=G_{1}^{\prime} \oplus G_{2}^{\prime} \subset G$, i.e., $D_{k}\left(G^{\prime}\right) \leq t-1$. We must prove that every block $B \in \mathcal{B}(G)$ with $\sigma(B)=N \geq k n_{1}+n_{2}$ has a factorization of length $l \geq k+1$. We set $B=g_{1} \cdot \ldots \cdot g_{N}$ and consider the canonical epimorphism $\pi: G \rightarrow C_{p} \oplus C_{p}$ with $\operatorname{ker}(\pi)=G^{\prime}$. The block $B^{*}=\pi\left(g_{1}\right) \cdot \ldots \cdot \pi\left(g_{N}\right) \in \mathcal{B}\left(C_{p} \oplus C_{p}\right)$ satisfies $\sigma\left(B^{*}\right)=N \geq t p$ and therefore, by Lemma $2, B^{*}$ is a product of t blocks from $\mathcal{B}\left(C_{p} \oplus C_{p}\right)^{\prime}$. Taking preimages in G, we obtain a decomposition $B=S_{1} \cdot \ldots \cdot S_{t}$ with $S_{i} \in \mathcal{F}(G)^{\prime}$ and $\iota\left(S_{i}\right)=g_{i}^{\prime} \in G^{\prime}$. Since $t>D_{k}\left(G^{\prime}\right)$ and $g_{1}^{\prime} \cdot \ldots \cdot g_{t}^{\prime} \in \mathcal{B}\left(G^{\prime}\right)$, there exist blocks $B_{1}^{\prime}, \ldots, B_{k+1}^{\prime} \in \mathcal{B}\left(G^{\prime}\right)^{\prime}$ with $B_{1}^{\prime}, \ldots, B_{k+1}^{\prime} \mid g_{1}^{\prime} \cdot \ldots \cdot g_{t}^{\prime}$ by Proposition 1(v). Hence there exists a decomposition

$$
\{1, \ldots, t\}=\bigcup_{\nu=1}^{k+1} J_{n} \quad \text { (disjoint union) }
$$

such that $B_{\nu}^{\prime}=\prod_{j \in J_{\nu}} g_{j}^{\prime}$ for all $\nu \in\{1, \ldots, k+1\}$. Putting $B_{\nu}=\prod_{j \in J_{\nu}} S_{j} \in$ $\mathcal{B}(G)$, we obtain $B_{1} \cdot \ldots \cdot B_{k+1} \mid B$, and therefore B has a factorization of length $l \geq k+1$.

Proposition 5. If $G=C_{n_{1}} \oplus C_{n_{2}}$ with $n_{2} \mid n_{1}$, then $D_{k}(G)=k n_{1}+$ $n_{2}-1$.

Proof. Obvious by Propositions 3 and 4 .
5. Proof of the Theorem. Let K be an algebraic number field, R its ring of integers, G the ideal class group, \mathcal{I} the semigroup of nonzero ideals and \mathcal{H} the subsemigroup of non-zero principal ideals of R. We write G additively, and for $J \in \mathcal{I}$ we denote by $[J] \in G$ the ideal class of J. Let $\theta: \mathcal{I} \rightarrow \mathcal{F}(G)$ be the unique semigroup homomorphism satisfying $\theta(P)=[P]$ for every maximal P of R. For $J \in \mathcal{I}$, we have $\theta(J) \in \mathcal{B}(G)$ if and only if $J \in \mathcal{H}$. If $\alpha \in R \backslash\left(R^{\times} \cup\{0\}\right)$, then $L(\alpha)=L(\theta((\alpha)))$.

Let \mathcal{M}_{k} be the set of all blocks $B \in \mathcal{B}(G)$ such that $\max L(B) \leq k$, and let \mathcal{M}_{k}^{\prime} be the set of all blocks $B \in \mathcal{B}(G)$ such that $\min L(B) \leq k$. Then

$$
M_{k}^{\prime}=\left\{\alpha \in R \backslash\left(R^{\times} \cup\{0\}\right) \mid \theta((\alpha)) \in \mathcal{M}_{k}^{\prime}\right\}
$$

and, by Proposition 1,

$$
k D(G)=\max \left\{\sigma(B) \mid B \in \mathcal{M}_{k}^{\prime}\right\}, \quad D_{k}(G)=\max \left\{\sigma(B) \mid B \in \mathcal{M}_{k}\right\}
$$

In particular, the sets \mathcal{M}_{k} and \mathcal{M}_{k}^{\prime} are finite.
After these observations, the Theorem is an immediate consequence of the following Lemma, due to Kaczorowski [7, Lemma 1].

Lemma 3. For $1 \neq S \in \mathcal{F}(G), x \geq e^{e}$ and $q \in \mathbb{Z}, 0 \leq q \leq c_{0} \frac{\sqrt{\log x}}{\log \log x}$, we have

$$
\begin{aligned}
& \#\{J \in \mathcal{I} \mid(R: J) \leq x, \theta(J)=S\} \\
& \quad=\frac{x}{\log x}\left[\sum_{\mu=0}^{q} \frac{W_{\mu}(\log \log x)}{(\log x)^{\mu}}+O\left(\left(c_{1} q\right)^{q} \frac{(\log \log x)^{\sigma(S)}}{(\log x)^{q+1}}\right)\right]
\end{aligned}
$$

with constants $c_{0}, c_{1} \in \mathbb{R}_{+}$and polynomials $W_{\mu} \in \mathbb{C}[X]$ such that $\operatorname{deg} W_{\mu} \leq$ $\sigma(S), \operatorname{deg} W_{0}=\sigma(S)-1$, and W_{0} has a positive leading coefficient.

REFERENCES

[1] P. C. Baayen, Een combinatorisch problem voor eindige Abelse groepen, Math. Centrum Syllabus 5, Coll. Discrete Wiskunde Caput 3, Math. Centre Amsterdam, 1968.
[2] P.van Emde Boas, A combinatorial problem on finite Abelian groups II, Stichting Mathematisch Centrum Amsterdam, Report ZW 1969-007, 1969.
[3] P.van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, Stichting Mathematisch Centrum Amsterdam, Report ZW 1969-008, 1969.
[4] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529.
[5] F. Halter-Koch, Factorization of algebraic integers, Ber. Math.-Stat. Sektion Forschungszentrum Graz 191 (1983).
[6] F. Halter-Koch and W. Müller, Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields, J. Reine Angew. Math. 421 (1991), 159-188.
[7] J. Kaczorowski, Some remarks on factorization in algebraic number fields, Acta Arith. 43 (1983), 53-68.
[8] W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330.
[9] -, Elementary and Analytic Theory of Algebraic Numbers, Springer, 1990.
[10] J. E. Olson, A combinatorial problem on finite Abelian groups, I, J. Number Theory 1 (1969), 8-10.
[11] -, A combinatorial problem on finite Abelian groups, II, ibid., 195-199.
[12] P. Rémond, Étude asymptotique de certaines partitions dans certaines semigroupes, Ann. Sci. École Norm. Sup. 83 (1966), 343-410.

INSTITUT FÜR MATHEMATIK
KARL-FRANZENS-UNIVERSITÄT
HEINRICHSTRASSE 36
A-8010 GRAZ, AUSTRIA

