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n−1 + . . .+ a0 is a polynomial with coefficients
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each ai is divisible by p for 0 6 i 6 s − 1 and a0 is not divisible by p2, then

φ(x) has an irreducible factor of degree at least s over the field of rational num-

bers. We have observed that if φ(x) is as above, then it has an irreducible factor

g(x) of degree s over the ring of p-adic integers such that g(x) is an Eisenstein

polynomial with respect to p. In this paper, we prove an analogue of the above

result for a wider class of polynomials which will extend the classical Schönemann

Irreducibility Criterion as well as Generalized Schönemann Irreducibility Crite-

rion and yields irreducibility criteria by Akira, Panaitopol and Stefǎnescu (cf. J.

Number Theory, 25 (1987) 107-111).
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1. Introduction.

The classical Schönemann Irreducibility Criterion states that if f(x) is a

monic polynomial with coefficients from the ring Z of integers which is irreducible

modulo a prime number p and if g(x) belonging to Z[x] is a polynomial of the

form g(x) = f(x)s + pM(x) where M(x) belonging to Z[x] has degree less than

that of g(x) and is relatively prime to f(x) modulo p, then g(x) is irreducible

over the field Q of rational numbers. Observe that if g(x) is as above, then the

f(x)-expansion of g(x) obtained on dividing it by successive powers of f(x) given

by

g(x) =
s∑
i=0

Ai(x)f(x)i, deg Ai(x) < degf(x),

satisfies (i) As(x) = 1, (ii) p divides the content of each polynomial Ai(x) for 0 6

i 6 s− 1 and (iii) p2 does not divide the content of A0(x). Conversely, it is clear

that any polynomial g(x) belonging to Z[x], whose f(x)-expansion has the above

three properties, satisfies the conditions of Schönemann Irreducibility Criterion.

The above observation led to the extension of this criterion to polynomials with

coefficients in arbitrary valued fields (see [6]). In 2008, Ron Brown [3] gave a

simple proof of the most general version of the criterion which will be stated

after introducing some notations.

Throughout v is a Krull valuation of a field K, i.e., v : K → Γ∪{∞} where Γ

is a totally ordered additively written abelian group such that v(a) =∞⇔ a = 0,

v(ab) = v(a) + v(b) and v(a + b) > min{v(a), v(b)} for all a, b in K. We shall

denote by vx the Gaussian valuation of the field K(x) of rational functions in an

indeterminate x which extends the valuation v of K and is defined on K[x] by

vx(
∑
i

aix
i) = min

i
{v(ai)}, ai ∈ K.

For an element ξ in the valuation ring Rv of v with maximal idealMv, ξ̄ will

denote its v-residue, i.e., the image of ξ under the canonical homomorphism from

Rv onto Rv/Mv. For f(x) belonging to Rv[x], f̄(x) will stand for the polynomial

over Rv/Mv obtained by replacing each coefficient of f(x) by its v-residue.

With the above notations, the following theorem holds (see [3, Lemma 4]).

Theorem 1.A. Let v be a Krull valuation of a field K with value group Γ and

valuation ring Rv. Let f(x) belonging to Rv[x] be a monic polynomial of degree

m such that f̄(x) is irreducible over the residue field of v. Assume that g(x)
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belonging to Rv[x] is a monic polynomial whose f(x)-expansion
n∑
i=0

Ai(x)f(x)i

satisfies (i) A0(x) 6= 0, An(x) = 1, (ii) vx(Ai(x))
n−i > vx(A0(x))

n
> 0 for 0 6 i 6

n − 1 and (iii) vx(A0(x)) /∈ dΓ for any number d > 1 dividing n. Then g(x) is

irreducible over K.

A polynomial g(x) satisfying conditions (i),(ii), (iii) of the above theorem will

be referred to as a Generalized Schönemann polynomial with respect to v and

f(x). Note that in case v is a discrete valuation of K with value group Z, then

condition (iii) of Theorem 1.A says that vx(A0(x)) and n are coprime. Hence in

this case, it is immediate from the above theorem that a polynomial g(x) having

f(x)-expansion f(x)n +
n−1∑
i=0

Ai(x)f(x)i with vx(A0(x)) = 1, vx(Ai(x)) > 0 for

0 6 i 6 n− 1, is irreducible over K; such a polynomial is called a Schönemann

polynomial with respect to the discrete valuation v and f(x); in the particular

case when f(x) = x, it will be referred to as an Eisenstein polynomial with

respect to v.

In this paper, our aim is to extend Theorem 1.A. Precisely stated, we prove

Theorem 1.1. Let v be a henselian Krull valuation of a field K with value

group Γ and valuation ring Rv having maximal ideal Mv. Let f(x) belonging

to Rv[x] be a monic polynomial of degree m such that f̄(x) is irreducible over

Rv/Mv and φ(x) belonging to Rv[x]be a monic polynomial having f(x)-expansion
n∑
i=0

Ai(x)f(x)i with A0(x) 6= 0. Assume that there exists s 6 n such that (i)

vx(As(x)) = 0, (ii) vx(Ai(x))
s−i > vx(A0(x))

s
> 0 for 0 6 i 6 s−1 and (iii) vx(A0(x)) /∈

dΓ for any number d > 1 dividing s. Then φ(x) has an irreducible factor g(x)

of degree sm over K such that g(x) is a Generalized Schönemann polynomial

with respect to v and f(x); moreover the f(x)-expansion of g(x) = f(x)s +

Bs−1(x)f(x)s−1 + . . .+B0(x) satisfies vx(B0(x)) = vx(A0(x)).

It is immediate from the above theorem that if f(x) is as in this theorem, then

a monic polynomial φ(x) belonging to Rv[x] with f(x)-expansion
n∑
i=0

Ai(x)f(x)i

satisfying conditions (ii) and (iii) of Theorem 1.A but not satisfying (i), must be

reducible over K.
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The following corollaries will be deduced from Theorem 1.1. Corollary 1.2

extends Schönemann Irreducibility Criterion [10, §3.1, Theorem D]. Corollary 1.3

proves an irreducibility criterion due to Panaitopol and Stefǎnescu by a different

method (cf.[8]). Corollary 1.4 extends Akira’s criterion (cf. [1]).

Corollary 1.2. Let v be a discrete valuation of K with value group Z and π

be an element of K with v(π) = 1. Let f(x),m be as in Theorem 1.1. Let F (x)

belonging to Rv[x] be a monic polynomial having f(x)-expansion
n∑
i=0

Ai(x)f(x)i.

Assume that there exists s 6 n such that π does not divide the content of As(x), π

divides the content of each Ai(x), 0 6 i 6 s−1 and π2 does not divide the content

of A0(x).Then F (x) has an irreducible factor of degree sm over the completion

(K̂, v̂) of (K, v) which is a Schönemann polynomial with respect to v̂ and f(x).

As usual for polynomials g and h, R(g, h) will stand for the resultant of g

and h.

Corollary 1.3. Let (K, v) and π be as in Corollary 1.2. Let F (x) belonging to

Rv[x] be a monic polynomial such that F (x) = f1(x)m1 · · · fr(x)mr + πg(x) where

f1(x), . . . , fr(x), g(x) belong to Rv[x], each fi(x) is monic with f̄i(x) irreducible

over the residue field of v, f̄i(x) 6= f̄j(x) for i 6= j and f̄i - ḡ if mi > 2. Let h =

fm1
1 · · · fmr

r . If for every non-trivial factorization h = h1h2 with h1, h2 belonging

to Rv[x], h1, h2 coprime, there is an index j ∈ {1, 2} and i ∈ {1, 2, · · · , r} such

that fi divides hj and for all divisors d of R(fi, g), R(f̄i, h/hj) 6= d̄, then the

polynomial F (x) is irreducible in K[x].

Corollary 1.4. Let (K, v), π be as above and F (x) = xn +an−1x
n−1 + . . .+a0 be

a polynomial over Rv satisfying the following conditions for an index s 6 n− 1.

(i) π|ai for 0 6 i 6 s− 1, π2 - a0, π - as.
(ii) The polynomial xn−s + ān−1x

n−s−1 + . . . + ās is irreducible over the residue

field of v.

(iii) d̄ 6= ās for any divisor d of a0 in Rv.

Then F (x) is irreducible over K.

Indeed our method of proof can be easily carried over (using henselisation of

(K, v) instead of its completion) to prove the analogues of Corollaries 1.3, 1.4

when v is a Krull valuation of K of arbitrary rank having value group Γ with

v(π) as the smallest positive element of Γ.
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2. Notations, definitions and some preliminary results.

Recall that the resultant R(G,H) of two polynomials G(x) and H(x) with G(x)

monic, equals

q∏
j=1

H(yj) where q is the degree of G(x) and y1, y2, . . . , yq are the

roots of G(x).

As usual, for non-negative elements λ, µ in a totally ordered abelian group Γ,

we write λ � 0 if λ > 0 and λ � µ > 0 if λ > µ and λ − µ does not belong to

the largest convex subgroup of Γ not containing µ.

The following well-known lemma proved in [9] which is equivalent to Hensel’s

Lemma will be used in the sequel.

Rychlik’s Lemma. Let v be a henselian Krull valuation of a field K. Let

F (x), G(x), H(x) belonging to Rv[x] be non-zero polynomials such that

(i) deg G(x) > 0, deg F (x) = deg G(x)+deg H(x), G(x) is monic, vx(F (x)) = 0

and F (x) and H(x) have the same leading coefficient.

(ii) v(R(G,H)) = ρ <∞.

(iii) vx(F (x)−G(x)H(x))� 2ρ.

Then there exist polynomials g(x) and h(x) belonging to Rv[x] such that

a) vx(G(x)− g(x)) > ρ, vx(H(x)− h(x)) > ρ.

b) deg g(x)= deg G(x), deg h(x)= deg H(X), g(x) is monic.

c) F (x) = g(x)h(x).

In what follows, v is a henselian Krull valuation of a field K with value group

Γ, valuation ring Rv and ṽ is the unique prolongation of v to the algebraic closure

K̃ of K with value group Γ̃. By the degree of an element α ∈ K̃, we shall mean

the degree of the extension K(α)/K which will be denoted by degα. A pair (α, δ)

belonging to K̃ × Γ̃ is said to be a minimal pair (more precisely (K, v)-minimal

pair) if whenever β belongs to K̃ with deg β < degα, then ṽ(α − β) < δ. For

example if f(x) is a monic polynomial with coefficients in Rv such that f̄(x) is

irreducible over the residue field kv of v and α is a root of f(x), then (α, δ) is

a (K, v)-minimal pair for each positive δ in Γ̃, because whenever β belonging to

K̃ has degree less than m = deg f(x), then ṽ(α − β) ≤ 0, for otherwise ᾱ = β̄,

which in view of the fundamental inequality [4, Theorem 3.3.4] would lead to

[K(β) : K] ≥ [kv(β̄) : kv] = m.

Let (K, v), (K̃, ṽ) be as above and (α, δ) belonging to K̃ × Γ̃ be a (K, v)-
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minimal pair. The valuation w̃α,δ of K̃(x) defined on K̃[x] by

w̃α,δ(
∑
i

ci(x− α)i) = min
i
{ṽ(ci) + iδ}, ci ∈ K̃ (1)

will be referred to as the valuation with respect to the minimal pair (α, δ). The

valuation of K(x) obtained by restricting w̃α,δ will be denoted by wα,δ.

The description of wα,δ is given by the theorem stated below (cf. [2, Theorem

2.1], [5, Theorem 1.4]).

Theorem 2.A. Let (α, δ) be a (K, v)-minimal pair. If f(x) is the minimal

polynomial of α over K, then for any polynomial F (x) belonging to K[x] with

f(x)-expansion
∑
i

Ai(x)f(x)i, we have

wα,δ(F (x)) = min
i
{ṽ(Ai(α)) + iwα,δ(f(x))}.

Let (α, δ) and wα,δ be as in Theorem 2.A. For any non-zero polynomial

F (x) belonging to K[x] with f(x)-expansion
∑
i

Ai(x)f(x)i, we shall denote

by Iα,δ(F (x)), Sα,δ(F (x)) respectively the minimum and the maximum integers

belonging to the set

{i | wα,δ(F (x)) = ṽ(Ai(α)) + iwα,δ(f(x))}.

The following already known result will be used in the proof of the theorem

(cf. [7, Lemma 2.1]). Its proof is omitted.

Theorem 2.B. Let (α, δ) be a (K, v)-minimal pair. For any non-zero polynomi-

als F (x), G(x) in K[x], one has

(a) Iα,δ(F (x)G(x)) = Iα,δ(F (x)) + Iα,δ(G(x)),

(b) Sα,δ(F (x)G(x)) = Sα,δ(F (x)) + Sα,δ(G(x)).

We now prove a lemma to be used in the sequel.

Lemma 2.1. Let α be a root of a monic polynomial f(x) belonging to Rv[x]

such that f̄(x) is irreducible over the residue field of v. Let (α, δ) be a (K, v)-

minimal pair with δ > 0. Then for any polynomial ψ(x) belonging to Rv[x] with

f(x)-expansion
∑
i

Di(x)f(x)i, one has

wα,δ(ψ(x)) = min
i
{vx(Di(x)) + iwα,δ(f(x))} > 0.
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Proof. We first show that for any polynomial A(x) =
∑
aix

i belonging to K[x]

of degree less than deg α, we have

ṽ(A(α)) = vx(A(x)). (2)

Clearly (2) needs to be verified when m = deg α > 1. Now ᾱ being a root of the

irreducible polynomial f̄(x) is non-zero and so ṽ(α) = 0. If (2) does not hold,

then the triangle inequality would imply ṽ(A(α)) > min
i
{ṽ(aiα

i)} = v(aj) (say),

which gives
m−1∑
i=0

(
ai
aj

)
ᾱi = 0̄ contradicting the fact that the minimal polynomial

of ᾱ over the residue field of v has degree m.

Denote wα,δ(f(x)) by λ. Write f(x) =
m∑
i=1

ci(x − α)i, ci ∈ Rv[α]. Then

ṽ(ci) > 0. Using (1) and the fact that δ > 0, we get

λ = wα,δ(f(x)) = min
16i6m

{ṽ(ci) + iδ} > 0. (3)

Keeping in mind that ψ(x) and hence each Di(x) belongs to Rv[x], it follows

immediately from Theorem 2.A, (2) and (3) that

wα,δ(ψ(x)) = min
i
{ṽ(Di(α)) + iλ} = min

i
{vx(Di(x)) + iλ} > 0.

3. Proof of Theorem 1.1

Denote vx(A0(x)
s

by λ. Fix a root α of f(x). Write f(x) =
m∑
i=1

ci(x− α)i, ci ∈

K̃. Determine δ in Γ̃ so that

λ = min
16i6m

{ṽ(ci) + iδ}, i.e, δ = max
16i6m

(
λ− ṽ(ci)

i

)
.

Note that δ > 0 in view of the fact that cm = 1 and λ > 0 by hypothesis.

So (α, δ) is a (K, v)-minimal pair and wα,δ(f(x)) = λ by virtue of (1) and the

choice of λ. Therefore keeping in mind assumptions (i) and (ii) of the theorem,

it follows from Lemma 2.1 that

wα,δ(φ(x)) = min
i
{vx(Ai(x)) + iλ} = sλ = vx(A0(x)). (4)

It is immediate from (2) and (4) that

Iα,δ(φ(x)) = 0 and Sα,δ(φ(x)) = s. (5)
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Write φ(x) as a product φ1(x)φ2(x) · · ·φr(x) of monic, irreducible polynomials

over Rv. We split the proof into two main steps.

Step I. In this step, it will be shown that there exists j, 1 6 j 6 r, such that

wα,δ(φj(x)) = wα,δ(φ(x)) and wα,δ(φi(x)) = 0 for each i 6= j.

Applying Theorem 2.B, we have

Sα,δ(φ(x)) =
r∑
i=1

Sα,δ(φi(x)) , Iα,δ(φ(x)) =
r∑
i=1

Iα,δ(φi(x)). (6)

It now follows from (5) and (6) that there exists j such that

Sα,δ(φj(x)) > 0 , Iα,δ(φi(x)) = 0 for 1 6 i 6 r, (7)

which in view of Lemma 2.1 implies that

0 6 wα,δ(φi(x)) ∈ Γ , 1 6 i 6 r. (8)

We first show that

Sα,δ(φj(x)) = s. (9)

Let
t∑
i=0

Bi(x)f(x)i be the f(x)-expansion of φj(x). Denote Sα,δ(φj(x))by s1. In

view of (5) and (6), s1 6 s. Using the equality ṽ(Bi(α)) = vx(Bi(x)) proved in

(2), we have

wα,δ(φj(x)) = vx(Bs1(x)) + s1λ. (10)

As shown in (8), wα,δ(φj(x)) belongs to Γ and hence by (10), s1λ ∈ Γ. The

desired equality s1 = s now follows on recalling that λ = vx(A0(x))
s

and that s is

the smallest positive integer for which sλ belongs to Γ by assumption (iii) of the

theorem.

Keeping in mind that φj(x) and hence Bs(x) belongs to Rv[x], (10) together

with (9) implies that

wα,δ(φj(x)) = vx(Bs(x)) + sλ > sλ. (11)

Since wα,δ(φi(x)) > 0 for each i by (8) and wα,δ(φ(x)) = sλ by (4), it follows

from (11) that

wα,δ(φj(x)) = sλ , vx(Bs(x)) = 0 (12)
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and hence the assertion of Step I is proved.

Step II. In this step, it will be shown that φj(x) has degree sm and is a Gener-

alized Schönemann polynomial with respect to v and f(x) which will complete

the proof of the theorem.

In view of (9), deg φj(x) > sm. We shall prove that deg φj(x) = sm. Suppose

to the contrary that deg φj(x) > sm. Define polynomials G(x) and H(x) by

G(x) = f(x)s , H(x) = Bt(x)f(x)t−s +Bt−1(x)f(x)t−s−1 + . . .+Bs(x). (13)

It will be shown that the polynomials φj(x), G(x) and H(x) satisfy the condi-

tions of Rychlik’s Lemma. These polynomials clearly satisfy condition (i) of this

lemma. We first show that

vx(φj −GH) > 0. (14)

In view of (12) and Lemma 2.1, we have

sλ = wα,δ(φj(x)) = min
06i6s−1

{vx(Bi(x)) + iλ}.

Consequently

vx(Bi(x)) + iλ > sλ , 0 6 i 6 s− 1. (15)

Since Iα,δ(φj(x)) = 0 by (7), using (2), we see that

wα,δ(φj(x)) = ṽ(B0(α)) = vx(B0(x)).

The above equation together with (12) implies that vx(B0(x)) = sλ. Thus (15)

can be rewritten as

vx(Bi(x))

s− i
>
vx(B0(x))

s
=
vx(A0(x))

s
> 0 for 0 6 i 6 s− 1 (16)

which implies that vx(Bi(x)) > 0 for 0 6 i 6 s− 1; consequently

vx(φj −GH) = vx(Bs−1(x)f(x)s−1 + . . .+B0(x)) > min
06i6s−1

{vx(Bi(x))} > 0

and hence (14) is proved. Keeping in mind (14), conditions (ii) and (iii) of

Rychlik’s Lemma are verified once we show that

v(R(G,H)) = 0. (17)
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Let α = α1, α2, . . . , αm denote the roots of f(x). Keeping in mind (13) and the

fact that (K, v) is henselian, it is clear that

v(R(G,H)) = sṽ(
m∏
i=1

H(αi)) = sṽ(
m∏
i=1

Bs(αi)) = msṽ(Bs(α)).

Using (2) and (12), it now follows from the above equation that v(R(G,H)) =

msvx(Bs(x)) = 0 which proves (17). Applying Rychlik’s Lemma, we see that

φj(x) has a factor g(x) over K of degree equal to that of G(x), i.e., sm, which

contradicts the irreducibility of φj(x). This contradiction proves that degree

of φj(x) is sm. Moreover φj(x) is a Generalized Schönemann polynomial with

respect to v and f(x) in view of (16) and hence the theorem.

4. Proof of Corollaries 1.2, 1.3 and 1.4.

Proof of Corollary 1.2. The hypothesis implies that vx(Ai(x)) > 0 for 0 6 i 6

s− 1, vx(As(x)) = 0 and vx(A0(x)) = 1. Therefore by Theorem 1.1, F (x) has an

irreducible factor g(x) of degree sm over K̂ which is a Generalized Schönemann

polynomial with respect to v̂ and f(x). The desired result now follows from the

last assertion of the theorem and the fact that vx(A0(x)) = 1.

Proof of Corollary 1.3. Let (K̂, v̂) denote the completion of (K, v). The unique

prolongation of v̂ to the algebraic closure of K̂ will be denoted by ˜̂v. Claim is

that for each j, 1 6 j 6 r, there exists an irreducible factor Fj(x) belonging

to Rv̂[x] of F (x) having degree mjdegfj(x) with F̄j(x) = f̄j
mj(x). Taking into

account the degree, this will immediately give that F (x) factors over Rv̂ as

F (x) = F1(x) · · ·Fr(x).

For convenience of notation, we prove the claim for j = 1. Let
∑
i>0

Di(x)f1(x)i,∑
i>0

Ei(x)f1(x)i be the f1-expansions of fm2
2 · · · fmr

r and g(x) respectively. Since

f̄1(x) - f̄i(x) for i > 2, it follows that D̄0(x) 6= 0̄, i.e., vx(D0(x)) = 0. In case m1 >

2, f̄1(x) - ḡ(x) and so in this case, vx(E0(x)) = 0. Therefore the f1-expansion of

F (x) = f1(x)m1 · · · fr(x)mr + πg(x) satisfies the hypothesis of Theorem 1.1 with

s replaced by m1 and hence F (x) has a factor F1(x) belonging to Rv̂[x] which

is a Generalized Schönemann polynomial with respect to v̂ and f1(x) of degree

m1degf1(x). This proves the claim.

Suppose to the contrary that F (x) is reducible over K, say F (x) = G(x)H(x)

with G(x), H(x) monic polynomials over Rv of positive degree. In view of the
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claim, we can write h = h1h2 where h̄1(x) = Ḡ(x) and h̄2(x) = H̄(x). By

hypothesis, there exist j ∈ {1, 2} and i ∈ {1, 2, . . . , r} such that fi divides hj

and for all divisors d of R(fi, g), R(f̄i, h/hj) 6= d̄. Let α1, α2, . . . , αt denote the

roots of fi(x) counted with multiplicities, if any. After renaming if necessary,

assume that fi divides h1. Then f̄i divides h̄1 = Ḡ and hence by virtue of the

henselian property of (K̂, v̂), we see that

0 < v(R(fi, G)) =
t∑

k=1

˜̂v(G(αk)) = t˜̂v(G(α1)). (18)

Keeping in mind that f̄i is irreducible over the residue field of v, it follows from

the formula proved in (2) (with v replaced by v̂) that ˜̂v(G(α1)) belongs to Z.

Consequently (18) implies that v(
t∏

k=1

G(αk)) > t and hence

1

πt

t∏
k=1

G(αk) ∈ Rv. (19)

Thus we conclude that

R(fi, g) =
t∏

k=1

g(αk) =
1

πt

t∏
k=1

F (αk) =

(
1

πt

t∏
k=1

G(αk)

)
t∏

k=1

H(αk)

is divisible by the element
t∏

k=1

H(αk) = d (say) of Rv in view of (19). This

contradicts the hypothesis of Corollary 1.3 because

R(f̄i, h/h1) = R(f̄i, H̄) = R(fi, H) =
∏
k

H(αk) = d̄.

Hence F (x) is irreducible over K.

Proof of Corollary 1.4. Applying Corollary 1.2 with f(x) = x, we see that F (x)

has an irreducible factor g(x) of degree s over the completion (K̂, v̂) of (K, v),

which is an Eisenstein polynomial with respect to v̂. Write F (x) = g(x)h(x),

where g(x) = xs + bs−1x
s−1 + . . . + b0, h(x) = xn−s + cn−s−1x

n−s−1 + . . . + c0.

In view of the hypothesis, F̄ (x) = xs(xn−s + ān−1x
n−s−1 + . . . + ās), so h̄(x) =

xn−s + ān−1x
n−s−1 + . . . + ās, which is given to be irreducible over the residue

field of v. Hence h(x) is also irreducible over K̂. Note that c̄0 = ās 6= 0̄ by

hypothesis. If F (x) were reducible over K, then g(x) and h(x) being irreducible
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over K̂, would belong to K[x] and consequently the equality a0 = b0c0 would

contradict assumption (iii) of the corollary for the divisor c0 belonging to Rv of

a0.
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