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A GENERALIZATION OF EPSTEIN'S ZETA FUNCTION

AUDREY TERRAS*)

§ 0. Introduction.

Koecher defined in [3] the following zeta function associated with the

matrix S(n) of a positive quadratic form and one complex variable p

(1) Zni(S,p) = Σ\tASA\-p.
A.

Here n^nu and the sum is over a complete set of representatives for the

w by W] integral rank n1 matrices A{n*nJ with respect to the equivalence

relation A ~ B if A = BU for some unimodular matrix U. The unimodular

group UWl is defined by Uni = {U^^iU integral, nt by nx with determinant

\U\ = ±1}- We use the notation \S\ = determinant of S and S[A] = *ASA

throughout. Superscripts in parentheses on matrices denote the number of

rows and columns. Thus A{n*nJ has n rows and nx columns.

Koecher shows in [3] that Znx{S,p) converges for Rep>-^-. But his

proof of the analytic continuation and the functional equation,

(2)

where Rnι(S, P) = 3Λ~lϊ~~'-'"if /*(*»- 4 " ) ZΛι{S, p),

has a gap. This is remedied neatly using an idea of Selberg. One can

annihilate the trouble-making terms of the theta function with an appro-

priate differential operator. We outline these results in § 1 because they do

not appear in the literature.

Selberg has defined in [6] a zeta function associated with a positive

matrix S and w —1 complex variables p = (ρl9ρ2, 9pn-i) This function

can be seen to be essentially the same as
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where the sum is over a complete set of representatives for unimodular

{/<»> = {U%

in^*\ with respect to the equivalence relation U~V if U = VP for

P unimodular and upper triangular. Selberg states that this series converges

for Repi > 1 and that f(n)(S, p) satisfies n! functional equations and can be

continued to a meromorphic function in C""1. There are various proofs of

this fact. See [4] and [9]. Selberg used both approaches. We consider the

method used in [9] briefly in §2 because we generalize this method to ob-

tain our main results. And we make use of the n — 1 functional equations

which generate the rest:

For i = 2,3, , n — 2,

where pί = l — pi9 p'i±i = Pi±i + Pi--τr, Pj = Pj for j ψ i , i ± 1.

For i = 1,

^^Γ{pι)ζ{2pι)ζ{n){S9 P)=π"^piψ(l^p1)ζ(2(l-p1))ζin)(s, l-pu Pι + Pι~~\>

For i = n — 1,

Xζ(n)(S, Pu > l°w-3> ̂ n-l + Pn-2 — -g"* 1 ~ Pn-lJ-

I t should be noted that an easy "proof" of the n\ functional equations derives

from an integral formula of Harish-Chandra for spherical functions (see [1],

Proposition 6.8, page 428). Maass has shown in [4] that a further functional

equation is trivial, namely:

(5) ζw(S-\p)= |S| '- l P if ( κ )(S,£),

where p = (pn-ltPn-2, ,P2,Pi)

We consider here a generalization of both (1) and (3):

<6) ζut, "',.r(S, Pu' -,Pr-i) = Σ ' π
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T
 ι

Here n — j j nj9 with positive integers nj9 and Nt = 2 Wy, for z = 1,2, , Γ.
i=i i=i

In the sum, U(n) = (?7{

(n ΛΓ*)*) runs over a complete set of representatives for

unimodular matrices, with respect to the equivalence relation U~V if

U = VP, with P unimodular and having block form

We show in §3 that (6) converges when RePi>-~-9 i = 1,2, , r — 1.

It comes out of the proof of (4) in § 2 that

v

(7) ζ(n)(S9 p)\Pro = ζi 1,2,1 i(S,Pi, ,p»-i), where " V " denotes omis-

sion of the variable pit I n § 3 we generalize this relation to
(8) ζn1 nr\S9 Pjγί9 ' 9 PNj-vlpjfmOΛΦij = bm11... ,mλ\S, PM^ ' ' * 9 PMΓV9

where N^ = 2 nk = ^mk- Mj9 for y = 1, ,Λ. The proof is by induction

using results of § 1. Thus Koecher's functions are essentially specializations

of Selberg's arrived at by setting all but one variable equal to zero. Simi-

larly the functions (6) are specializations of Selberg's function (3).

In §4 we use the functional equations in §2 for Selberg's function and

the results of §3 to obtain relations between Koecher's functions ζitn-i and

ζn-i,ί We have two ways of doing this ((4) and (5)).

§1. Koecher's Zeta Function

We first note the relation between Koecher's function (1) and the case

T = 2 of (6).

LEMMA 1.1. Zni(S, P) = ζ^.n-nJS, pfπ

Proof. Consider the map h defined by h(Ain nJ) = (U(n>ni\ B^J), where

B is the greatest right divisor of A and A = UB with U primitive. For

the definitions of greatest right divisor and primitive, see Siegel [8], volume

I, pages 331 and 332. The map h gives a one-to-one map from integral
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rank nλ non right equivalent A to primitive non right equivalent U and

integral rank nι non right equivalent B. One uses a result of Koecher-for-

mula (1.10) of [3], page 7— to complete the proof.

The main results of this section are the functional equation and analytic

continuation of Zni(S, p). The proof requires a series of lemmas, which we

shall simply state. For more details, see [9].

Define the theta function by

(9) θ{S{n\ X(n^) = Σ e—wm = ΘS{X),

where σ(S) — trace of S, and the sum is over all integral A(n>ni\ If we

restrict summation to A of rank r, we denote the result θr{S, X) — θf(X).

Koecher proves (using the Poisson summation formula, in [3], page 8) that

Θ{S,X) converges for ReS>0, X>0, n>.nx and that it satisfies the trans-

formation formula

(10) θ{S,X)^\SVr\X\~ϊ~θ{S-\X-1).

Selberg defines differential operators Da on the Riemannian symmetric

space Pn of positive Y(n) as follows:

(11) Da= \Y\aDγ\Y\ι-*,

where Dγ — (1 + being the Kronecker delta. It is easy to
Z

see that the Da are invariant differential operators with respect to the dif-

feomorphisms τA of the space Pn defined by τA(Y) = Y[A], for Y^Pn, A&GL

(n,R). The general linear group GL{n,R) consists of all non-singular n by

n real matrices.

Further define L* as the formal adjoint of the differential operator L

on Pn, with respect to the r^-invariant measure dμ = \Y\ 2 Tldy^. That

is, \ (Lf)g dμ = \ f L*gdμ for / and g infinitely differentiable on Pn with

compact support (i.e., in C"(Pn)). Let a(Y) = Y~ί. Then one can show that

(12) L* = L\

where La{f) = [L(/oα)]ott-i for / G C ° ° ( P J .

Moreover the algebra of all L which are invariant with respect to the

τA {i-e* UA = L), for A^GL(n,R), is commutative. For a proof, see Selberg

[5], page 51.
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One easily sees that

(13) Dγe-<* γ) = IWI ( - l)ne~σvvγ>

Also

(14) (Day = (z>β)* - ( - i)nDi+rί±λ_a

Now define

(15) / ? ( * ) = ϊ'l-SΓi"!^.
f l

r

2if X=\ ) , Ni = 2 n j 9 i = 1,2, ,7, and n = 2 n5 = Nr. Note
\ * * / i=i i=i

that fΛl, , Λ r(S, iθ) = Σ/^(S[ί/]) . The / ; are eigenfunctions for the in-

variant differential operators L on the space Pn of positive symmetric mat-

rices . We compute the eigenvalues for Da in the case 7 — 2 later in this

section. Writing X= C7T for T upper triangular with positive diagonal

entries we have, if n = 7, i.e., nλ = n2 = = nr = 1,

(16) fί(tTT)=nn\r

ί=Xr(T), where T = l **. *

n-l

and ri = 2 2 /°i A similar result holds for arbitrary 7. X is a character

on the triangular group and can be extended to GL(n,R) by making it

constant on cosets OnT, where T is an upper triangular matrix and On is

the orthogonal group. The result is a right spherical function.

We need to define the following gamma factor

(17) Gnι(p) = V ψ - 4Λ
1 ;=o \ 2 /

Now we can prove the functional equation and obtain the analytic continuation

of Znχ{S, p) to the whole complex plane as a meromorphic function.

THEOREM 1.2. Let L be the invariant differential operator on Pni

L = DaDl9
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for a = -y-{n1 — n + 1). Let Fnι be a fundamental domain for Pnι with respect to

τv for UtEUnt {recall that ^ ( F ) = *U YU = Y[U]). Then we have the following

integral representation:

(•fp(γ\ — I Y\P Yc=zT> ^

The integral can be analytically continued for all p and

ΆS,P)= | S | ?

Further β(P) = %(„+ ^Ϊ^%P- ±^-) = <-f - , ) .

Proof. By changing to triangular matrix variables T through Y — ιTT,

it is easy to see that

/(S, P) = g(p)\ f%dlx dμ = 2g(p)Znι(S, p)^
nl~n{>-*1'' cnι(p),

where L*/5 = 9(P)fp2> since /f(X) = \X\P is an eigen function for L. We

compute g(p) later.

Now

θ*x + (fp

2oa)((Lθs

nι)oa)}dμ

>i

^ Or1) - (Lθs

r)oa}dμ

using the transformation formula (10). We have chosen L so that all the

terms of the last integral are zero. For recall that L — DaDι — DxDa. And

(13) implies Dγ(θs

r) = 0, for 0<r < nx. And so DM) = f\Dγ(θΐ) = 0, 0 < r < wlβ
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n-f2 — n n

Now ( - l)nΦ* = D „ = fCΈ~Drfϊ
Γ by (14). So ( - l)"i£»* ( Λ ^ Γ 1 ) =

~2~

n+2

f 2 Dyiθf-1) = 0, 0 < r<nlm Therefore

ΆS, P) = \

1

The functional equation J(S9 p) = \S\ 2 1 jίS'^^-n — p) will follow im-

mediately from the convergence of the above integral for all p, since

Lθs

ni = f 2 La(2

2 θs

nι).

The convergence of J{S, p) is easy. For we may assume Reσ is arbit-

rarily large in the function fa

2{X) = \X\% since this only increases the func-

tion when \X\^:1. Here we use also the fact that Znί(S, p) converges for

Re p>-^-9 to complate the proof that J{S, p) converges for all p. In fact

we obtain the inequality (which we shall use in the proof of Theorem 3.3)

J(S,p)<g(\p\ JJ,w W ί \ ))\F

were Lf? = 9f(p)f7- Actually g(p) = gr{p)9 as we shall see.

Next we compute g(p) and g'{p). Suppose D\\Y\P = h{p)\Y\p{ — l)nκ

Then

μ = \ e

l)ni ( \Y\e-<n\Y\'dμ.

It is clear that

)»,( e°^\YV"dμ "ffrfl + p--L
= Π (p-^-Y

So \Y\iDy\Y\r^' = A(i«»)lIΊ' and

k{p)\Y\p-K I t follows t h a t fc(/o) = Π (/>+ n ' ~ ? ) a n d g(p) = fc(p- -y-) x

' 9'{p)=fc(~'°+4"(w ~ M i + i ) ) f c ( ~ ί ' ) = » ( τ - -^= 9{p)

T h i s completes t h e proof.
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tion at

It will be necessary later to compute the residue of Koecher's zeta func-
n

Λ (l+nnιnι^ Ξ

THEOREM 1.3. Res ^^Znι{S{n\ p) = -±-π 2 \S\ 2 X

Proof. The method of Siegel [8], volume III, pages 328 to 333, can be

modified to show this result. One needs also formula (3.18) of Koecher [3],

page 14. SiegeΓs proof is for n = nu so some work is required to obtain

the result. For this, see [9], pages 82-91.

§2. Selberg's Zeta Function,

We are considering ζ{n)(S(n\ p) defined by (3). This is the case ϊ = n

of (6). Since the results of this section have been stated by many authors

(Selberg [6], Maass [4], and Godement in a 1962 lecture at Johns Hopkins

University), we shall be brief. We must note some details of the proofs for

later use.

Define %(nl9 ,n r) = \u: ί/eUw, £7=1

[ \0 U^

LEMMA 2.1. (A Decomposition for ζ{n) with respect to $? = 5β(l, , 1,2,1,

"π

Here V{n) = (Vf »*), Vi+1 = {V^V',.,), and T = \SWi-Ά

Wi-iSVl-Ji. Also

\T\ = 1517,-JI |S[F i + 1]| for iψl, n-l,

\T\ = |S[F2]| if i = l, and

\T\ = IS! |S[7._J| if i = n-l.

Proof. Note that U»z>$?=>$(n) = % (1, •••,!)• Therefore any

may be written uniquely as U = VW, F e U B / $ * , T7e$f/$ ( κ ) . And we can

take
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0 0 \

W* 0 with W*eU 2/$ ( 2 ), $(2> = $ (1,1).
0 J(n-l-i)/

Now we have |S|YW}]| = \S[Vj]\ for j ψ i . And 1S[FW;]| = | 7 W ? ] | .

This proves the lemma.

The analytic continuation and functional equation of £(2)(Γ, p^ (an

Epstein zeta function) can be used to derive the same for ζ(n). One obtains

the functional equations (4) and formula (7) immediately (after an argument

on the convergence of the series, which we omit here, as we must genera-

lize it in §3).

In order to complete the analytic continuation with this approach it

is convenient (and not surprising, considering the integral formula of Harish-

Chandra, stated in [1], proposition 6.8, page 428) to introduce new variables

z, with pi = zί+1 — Zi + - £ - . One uses (4) to show that for f'n)(β) = ζw(

we have

(19) 3(z)=\S\''~~Γπ~*'-'J" Π

is invariant under all permutations of zl9 z2, , zn.

One obtains the analyticity of Π ({zj — zt — -w-)ζU{z) in J*=
l<i<j^n\ Δ /

there is a permutation a such that Re (zσU+ί) — zσU)) > n, j = 2,3, , n}.

The region J* is a connected tube and its convex hull is Cn because it is

fairly easy to see that it contains n independent lines. Applying Theorem

2.5.10 of Hormander [2] one obtains the result that ζ{n) can be continued

to Cn~ι. For more details of the above arguments see § 3 of [9].

§3. The General Decomposition of the Zeta Function ζni Uj

Corresponding to ^ = ̂ (nl9 9nr) w i th respect to $ * = $ ( ^ , , ? ^ ) 3 $ .

We first show the convergence of ζnι,..m,nr(S(n\ pί9 , pr-i) = ζ(S9 p) for

Re pi >-^~, i = 1,2, ',T — 1. This results from the following theorem,
Δ

since Zm{S{n\ p) converges whenever Rep>-^-9 as Koecher proves in [3],

page 7. (Koecher bounds Zm{S(n\ p) by c(Zi(S, p))m, c being a positive

constant. Now the Epstein zeta function ZΊ(S, p) converges for Re p > -^-

using methods like those of Hecke for the Dedekind zeta function).
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THEOREM 3.1. {Convergence of the Zeta Function for Arbitrary ϊ). For real

Pi,

ζNi,n-Ni(S,Pi).

γ

Here n = Σ nj and Nt =

r
/. Define a map / : U»/5β(wi, ,«r) — > Π Sln.^/a^, where

{y*n.*,>: y primitive}. The map / is defined as follows. Let

(nl9 * ,nΓ) and U = (U?'N^*). Suppose ί74 = V4B4, with β 4 the greatest

right divisor of fT* and F4 primitive. (The notion of greatest right divisor

and primitive is defined in Siegel [8], volume I, pp. 331,332). Define

f(U) = (Vl9 ,W-i). The map is well-defined.

The map is shown to be one-to-one by an induction process. Suppose

f(U) = f{Ur\ where U, = V^ and U< = V^i as above. Then U1B^iBί=Uί.

Let Rt = JS^JBίeUtfj. In general let ^ = BixB[. We assume as the in-

duction hypothesis that /?*<=$ {nu , ^ ) . Then Ui+1(
Rί ° ) and £//+1

v 0 / ( f t i + i } /

have the same first Λ/i columns. So Bi+1 (Ri ° ) and B'i+1 have the

same first JV* columns. (Here take Bγ = U, Bf

7 — Ur). Therefore Rί+1 =

(Bi+J-iBl+^φifi!, ,n ί + 1). The result follows that CΛ^EΛeφ (**!, ,wΓ),

ί/ = (7r, and / is one-to-one.

Now that we have the convergence of the zeta function for arbitrary

ΐ, we generalize Lemma 2.1.

THEOREM 3.2. Sκ/>/w* $ = $ (»!, , wr) c 5β* = $ (mu , ^ ) . Z ^

Ni = 2 % = -M} = 2 w * Then we have the following representation :
k=l k—1

ζnί,...,nr(S9PNl, •»0tfr_1)

Here V = (Vy ^ '*) , «*/ ^ = {S - (SCF^J)-1^.^]}^.,], t/ F, =

IT,i =
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Proof. Write tf eU/ίfe in the form U = VW, 7eU/5β*, We φffi. Then

(W\ ° \
W= ' . , T^-GU^./$(^ ._ 1 + 1 , , n4i). Now if ij^<k^ij9 we can

\o wj
write as before:

\S[VWNk]\ =
Γ

/ z o o
where W = 0 Q 0

\0 0 *

\s\ywWti\ =

. It follows that

\{S-(S[V])-ψVS]}[YQ]\

This proves the theorem.

Next we generalize formula (7).

THEOREM 3.3. ?Λ l i...,Λ r(S,^1, ,^r_1)|p*t-o.**i, = ?»i ^(5, ̂ 7 i , . . .,

i 0 ^ j)* wA r̂̂  iVίy = M . (Here we use the notation of Theorem 3.2).

Proof We proceed by induction on T. The case ΐ = 2 is needed in

the induction step, so we shall prove it in detail. That is, we shall show

that ξ*ΛltΛ2(T, 0) = 1. This is equivalent (by Lemma 1.1) to the proof that

zΛl(τ(n),o) = nπV(-fc).

By Theorem 1.2,

We take the residue at p = 0 on both sides, recalling the facts:

Res TV) = 1 and ResZ./S" 1,-^- -p) = - Res ZKl(S-], P)
p=0 (0=0 \ 2 / Λ n

Uζ(k)r(^)\1r(JL^-Y1

9 by Theorem 1.3.
k=2 t = l
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It follows that

Let 0(a;) = f(2a;)Γ(a;). Then the functional equation of the Riemann zeta

function is 0(1 - α) = π*' * ψ(x - - |-) . This means that ζ{ - y)r(- - |-) =

+ l)r(-it±i.) . Therefore

Z.I(S,0)="ff1r(-t).
i=0

This completes the case 7* = 2.

Now we proceed to the induction step. We suppose for convenience

that i φ 1. By Theorem 3.2 for $*=$(^i + n2,«8, ,«r) we have Mj = Nj+1,

i = l,2, . , r - l , and

where 7 = (F(/^°*) and 7\ = SIV,].

Multiplying by the factor in Theorem 1.2 we obtain:

2 , 4 ( ^ { P + * \

= Σ
V

The theorem will follow from the case ΐ = 2 provided that we can show

the convergence of this representation in a domain like n > Re pNl > — 1,

i?£ pNj> L, j = 2, , ϊ — 1, for some sufficiently large L.

First one can show that there is a positive constant c, depending only

on S, pf and n, such that

Π |
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To prove this inequality, use the following facts.

lw1 0 \
a) If W(n) = (Wij) is reduced and Wo = * . , where wu = wi9 then

there is a positive constant c, depending only on n, such that for all vec-

tors x

1- "M/Trl < WYrl < r WϊrΛ anrl ^ W'Hvl < W~x\rΛ < rW"1[r1vyoL ̂ J ^ *' L^J ^ ^ '' oL ̂ J ίtiiLi vv Q \_Λ/\ <^ w L ̂ J ^ ^ ' ^ o L^J

b) By the proof of Theorem 1.2, /(S[Fi], pNι) is a sum of 2 integrals.

And (StFi])*1 comes into these integrals by means of the trace and a deter-

minant.

c) Recall that σ(W[Y]) = ΈW[ykl where F - (yxy2- yn). And W - Sΐtα

where F = {vχυ2 ϋΛ), implies that w.h — Sfe].

d) If W is reduced there exists a positive constant c depending only on

n such that \W\ ^cwιW2- M;Λ. And if W is positive then |T^ |<^i^ 2 wΛ.

e) To apply the previous, one assumes in the sums on the right hand

side of (20) that S\Vj], j = 2,3, , 7 — 2 are reduced and that S[FJ or

^J)"1 is reduced. In the sums on the left hand side one assumes that

' J or {I[Vί])-ί is reduced.

These facts and a little computation suffice to prove (20).

To show convergence we may assume S = I, the identity. Then

T = Tλ= I\V\\ is integral. From the proof of Theorem 1.2 it follows that

for n > Re p > — 1,

\J(T,P)\< g(n)\ \χ\»θτ

nidμ+ \9(n)\ \T\

If T is a matrix with integer entries, the first integral is less than a

bound independent of T. For \ IX^Θ^dμ ^>ξ(n)Zni(T,n), where f(w) is a

product of Γ-functions, etc., and ζ{n( is independent of T. We may assume

T to be Minkowski-reduced since Zni{T\U\n) = Zni{T,n) for ί/GUWl+ίl2. From

Koecher [3], page 7, we have ZΛl(T,w)^cZ lΛl+n2-i(T,w)ni. And Z1{T,n) =

4 - Σ TW"" < cn Σ T U M - ^ C ^ Γ Z J I / , w) < « ! < / , w), a bound B independent
Δ mφO

of T, since ^ ^ 1 . (Here To is the diagonal matrix with the same entries
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ft, * \

as the diagonal entries of T and T = H .)

If T is integral, so is adjoint T — adj T. Thus we are able to use the

same estimate for the second integral in the formula for J(T, ρNl). We have

= \T\n\ \X\nθ%^τdμ^ \T\nB, where B is a bound independent of T.

Therefore when n > Re ρNl > — 1, there is a positive constant B in-

dependent of T such that

\J(T,pNl)\^\T\nB.

It follows that for n > Re ρNl > — 1:

7 - 2

Σ l/CKjr'π

= Bζni+7ί2tnz nr X{I, — n + Re pNz, RepN^ * >Re PNT_^I

which converges for n > Re ρNl > — 1 and Re pNj > - ^ - , j = 2, , ΐ — 1.

This finishes the proof.

§4. Relations Between Koecher's Zeta Functions.

There are two methods of obtaining relations between ζitn-i and £»-*.€•
First we use (4) and the case T = n, λ = 2 of (8). Then we use (5) and the

same case of (8).

n - i

1 2 £ j p J -

THEOREM 4.1. Z*f Fn(p) = |S|-^-1+~2" π ^ 2 x

•
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Π Fn{ρj)\Pro,jΦiζn-ίti(S,-^-~Pij. Here pσ — (~o~— Σ Pa Pυ Pz> •> ̂ 74-2) ŵrf

^(a?) = ?(2α?)Γ(aϊ).

Proς/1 If we apply the functional equations (4) in the order n — 1,

n — 2, , 2,1, or if we use the invariance of formula (19) in § 2 under

G = {n n - 1) (32) (21) = (\ 2

Λ %' " ' ^ ~ \ J1 Λ we obtain:

Therefore ?w(/β)=ί'»(/»)r(»)(ί» ). And r(.,(p)=|π1F(/» ')r(.)(p '). It is clear that

PσJ = (/>n-(i-i), ,P«-i,-2~— Σ ^ » ^ i » ^ 2 , -,Pn-a+i)), where />n.€ is omit ted.2~— Σ

The result follows easily using (8). A small computation convinces one that
W-2-1

Π F{paJ)\PkmOtkΦi makes sense.
i=i

THEOREM 4.2. Un^iS'1, p) = \S\'ζn-US, p).

Proof. Use (8) and (5).

Theorems 4.1 and 4.2 combine to give once again the functional equa-

tion of Koecher's zeta function.
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