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A GENERALIZATION OF EPSTEIN’S ZETA FUNCTION
AUDREY TERRAS®

§0. Introduction.
Koecher defined in [3] the following zeta function associated with the

matrix S™ of a positive quadratic form and one complex variable p
(1) Za (S, 0) = ;l’ASAl"’-

Here n=mn,, and the sum is over a complete set of representatives for the
n by mn, integral rank », matrices A™"’ with respect to the equivalence
relation A~ B if A= BU for some unimodular matrix U. The unimodular
group U, is defined by U,, = {U™’: U integral, n, by », with determinant
U] = £1}. We use the notation |S| = determinant of S and S[A]= ‘ASA
throughout. Superscripts in parentheses on matrices denote the number of
rows and columns. Thus A“™’ has n rows and #»;, columns.

Koecher shows in [3] that z,,(S, ) converges for Rep >% . But his

proof of the analytic continuation and the functional equation,

—nq

T oon
2) Ra(S,0) = 1SI 7 Ra (S, —p)

" ny—~1 —p)n—1 .
where R, (S,0) == (% )iISTO F(P—— %) Za (S, o),

has a gap. This is remedied neatly using an idea of Selberg. One can
annihilate the trouble-making terms of the theta function with an appro-
priate differential operator. We outline these results in §1 because they do
not appear in the literature.

Selberg has defined in [6] a zeta function associated with a positive
matrix S and # — 1 complex variables p = (0,04 + + +, pr-y). This function
can be seen to be essentially the same as
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® Ll 0) = Z L IS0,

where the sum is over a complete set of representatives for unimodular
U™ = (U,™%%), with respect to the equivalence relation U~V if U = VP for
P unimodular and upper triangular. Selberg states that this series converges
for Rep;>1 and that (S, p) satisfies »n! functional equations and can be
continued to a meromorphic function in C»'. There are various proofs of
this fact. See [4] and [9]. Selberg used both approaches. We consider the
method used in [9] briefly in §2 because we generalize this method to ob-
tain our main results. And we make use of the #» — 1 functional equations
which generate the rest:
For i =2,3,-+-+,m—2,

4 2~ I (03)E(20:)Cwy(S, 0) = 7 *OL(L — p,)E(2L — 04))Eny(S, 07)

L oj=p, for j#i, ikl

where pl=1-—p;, 0l = P11+ 0; — 5

For i =1,
AL (PE(20)E (S, 0) =700 (1= 0)E(21— )8 Sy 1= 015 01 + P2 — =, 0+ )
For i=n—1,
7 P05 1) (20 1) Eny(S, 0) = = EP1)(1 — 0,2 )E(2(L — P—1)) X

Xé‘(n)(s9 01y % * %y Onegy Pret + Opoa — %’ 1— Pn—l)-

It should be noted that an easy “proof” of the n! functional equations derives
from an integral formula of Harish-Chandra for spherical functions (see [1],
Proposition 6.8, page 428). Maass has shown in [4] that a further functional
equation is trivial, namely:

1

(5) (ST, 0) = 18155178 (S, ),

where ﬁ = (Pn—l, Op-gs * * *y P02 Pl)'
We consider here a generalization of both (1) and (3):

® Eu * * *sm, (S5 1, + 05 010) = UL ISTUI
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r . e . J .
Here n = X} n; with positive integers n; and N; = Xlny; for i=1,2, - -,7.
j=1 j=1

In the sum, U™ = (U,"¥’+) runs over a complete set of representatives for
unimodular matrices, with respect to the equivalence relation U~V if
U = VP, with P unimodular and having block form
Py *
Pz(nz)
0 .
P

We show in §3 that (6) converges when Re p; >%, i=1,2++,7—1.

It comes out of the proof of (4) in §2 that

(7) Emy(Ss P om0 = &1, ri2nteea(Ss P15+ + +5 Pny), Where €V’ denotes omis-
1

sion of the variable p,. In §3 we generalize this relation to

(8) gﬂq ..... n,(s’ ONgs * * *s pN,—l)leﬁO.laﬁi, = é‘m] ..... ml(sy Omys ** °s pM‘-—l)’

where N;, = kénk = é‘,lmk = M,, for j=1,.--,2. The proof is by induction
using results of §1. Thus Koecher’s functions are essentially specializations
of Selberg’s arrived at by setting all but one variable equal to zero. Simi-
larly the functions (6) are specializations of Selberg’s function (3).

In §4 we use the functional equations in §2 for Selberg’s function and
the results of §3 to obtain relations between Koecher’s functions ¢;,,-; and
Cn-i,i»  We have two ways of doing this ((4) and (5)).

§1. Koecher’s Zeta Function

We first note the relation between Koecher’s function (1) and the case
7 =2 of (6).

Lemya 1.1. Zu(S,0) = Lupinen( S, 0) 1L £(2(p— L),

Proof. Consider the map & defined by h(A™™) = (U™"?, B™?), where
B is the greatest right divisor of A and A =UB with U primitive. For
the definitions of greatest right divisor and primitive, see Siegel [8], volume
I, pages 331 and 332. The map h gives a one-to-one map from integral
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rank 7, non right equivalent A to primitive non right equivalent U and
integral rank »; non right equivalent B. One uses a result of Koecher-for-
mula (1.10) of [3], page 7— to complete the proof.

The main results of this section are the functional equation and analytic
continuation of Z,,(S, p). The proof requires a series of lemmas, which we
shall simply state. For more details, see [9].

Define the theta function by
(9) o(S™, X*0) = 3 e GHMID = ¢5(X),

where ¢(S) = trace of S, and the sum is over all integral A™"’. If we
restrict summation to A of rank 7, we denote the result 4,(S,X) = 05(X).
Koecher proves (using the Poisson summation formula, in [3], page 8) that
0(S, X) converges for ReS >0, X>0, n=mn, and that it satisfies the trans-
formation formula

(10) oS, X) = |SI % |X] * a(s™, X,
Selberg defines differential operators D, on the Riemannian symmetric
space P, of positive Y™ as follows:

(11) D, = [Y[*Dy|Y|'7¢,

where Dy = %(1 + 5”~)—L 5;; being the Kronecker delta. It is easy to

AN
see that the D, are invar:iyailt differential operators with respect to the dif-
feomorphisms z, of the space P, defined by =) =Y[A4], for YeP,, A=GL
(n, R). The general linear group GL(n, R) consists of all non-singular = by
n real matrices.

Further define L* as the formal adjoint of the differential operator L

_n#l

on P,, with respect to the ¢,-invariant measure dg = |Y| ? Idy,. That
1<i<j<n

is, SP (Lf)g dp = SP f L*gdp for f and g infinitely differentiable on P, with

compact support (i.e., in Cy(P,)). Let a(Y)=Y"!. Then one can show that
(12) L*= L2,

where L*(f) = [L(foa)loa™! for f&C(P,).

Moreover the algebra of all L which are invariant with respect to the
t4 (t.e. L'a= L), for AeGL(n, R), is commutative. For a proof, see Selberg
[5], page 51.
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One easily sees that

(13) Dye™@ ) = |[W[(— 1)"e™"V)
Also
(14) (Do)* = (Dg)* = (— 1)nDl+ﬁl_a
2
Now define
r—1

(15) fiUX) = i1=11 [ X317,

X.,,(Ni) & ; r
if X=( ),sz‘_,nj,i=1,2,---,7’, and =3 u; = N,. Note

\ * * j=1 j=1

that §u, + v +,a,(S,0) = 2 f7%(S[UY. The ¢ are ecigenfunctions for the in-
variant differential operators L on the space P, of positive symmetric mat-
rices . We compute the eigenvalues for D, in the case 7 =2 later in this
section, Writing X ='TT for T upper triangular with positive diagonal

entries we have, if n =7, ie, ny=n,= +++ =u, =1,

t
n-~1 t tz %

(16) fTT) = ,Hlti’i ="(T), where T = . ,
0 tn

n—1 . .
and 7; =23 p;. A similar result holds for arbitrary 7. x is a character
=

on the triangular group and can be extended to GL(n,R) by making it
constant on cosets O,T, where T is an upper triangular matrix and 0O, is
the orthogonal group. The result is a right spherical function.

We need to define the following gamma factor

ny~1 i
an) Caylo) = T 10— ).

=0

Now we can prove the functional equation and obtain the analytic continuation
of Z,,(S,p) to the whole complex plane as a meromorphic function.

THEOREM 1.2, Let L be the invariant differential operator on P,

L =D,D,
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Jor a= %(u1 —n+1). Let F, be a fundamental domain for P, with respect to

oy for UeW,, (recall that «y(Y)='U YU =Y[U]). Then we have the following
integral representation :

L n2—ny)—n — —
(18) ZZ,,I(S("), P)Q(P)Gnl(,ﬂ)ﬂ' 4 ¢ % e Sanfg(Leil)dﬂ = ](Sy P)

(F4(X) = 1 X%, XeP,).

The integral can be analytically continued for all o and

K800 =1S1F J(s7 2 o).

Pt 1= i+ P o= )=o)

i=1

Proof. By changing to triangular matrix variables 7 through Y = ‘TT,

it is easy to see that

n2—ny) —nyp

1

—(
1S, 0)=go)| f165, dp = 20(0)Z0 (S, o) Gay(0),
where L*f4 = g(p)f3, since f4X)= |X|* i1s an eigen function for L. We

compute g(p) later.
Now

sse={  +f

Fr, Fp,
1X]21 X1

= U1L63, + (frea)(L65 o) dpe

| X =1
= raLes + frLeUs® £t o
IXI.>_11
ny—1 i | B
+ S rUSITE L o5 — (LoDoatar
r=0 Fnl

| X|>1

using the transformation formula (10). We have chosen L so that all the
terms of the last integral are zero. For recall that L = D,D, = D,D,. And
(13) implies Dy(05)=0, for 0<7r <n,. And so D,6%) = fiDy(65) =0, 0< r < n,.
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nt2 =n n
Now (—1)"Di=D,  =f:*Dyfe® by (4. So (—1)"Di(f.”6;") =
2
ﬂ
f 2Dy =0, 0<r<m, Therefore
—-l-nl in
JS,o)={_ [res, + 21817 LU 05)de.

K33
[X]=>1

_inl
The functional equation J(S, p) = |S| 2 ]<s—1,%%_p> will follow im-

mediately from the convergence of the above integral for all p, since
1

Los, = f 7 L 65,

The convergence of J(S,p) is easy. For we may assume Reg is arbit-
ratily large in the function f9(X)= |X|°, since this only increases the func-
tion when |X|=1. Here we use also the fact that Z, (S, ¢) converges for
Rep>-", to complate the proof that J(S,p) converges for all p. In fact

we obtain the inequality (which we shall use in the proof of Theorem 3.3)
~1la
IS0y <gllol+m|,  slenosdp+ 15177 g(=(lol + )| siieeside,

were Lf3;* =9g'(0)f7*. Actually g(p) = ¢’(0), as we shall see.
Next we compute g(p) and ¢’(p). Suppose D¥|Y|* = h(p)|Y|*( — 1)™.
Then
(—vmite)| e oNvirdp = [ e=oDiIYap

ny M1

={ ey rap=(—um | vl wyrap,
P Pay

K3t

It is clear that

(—1)™\  e~M|Y|*dp "1+ o i
PRAE - B E) gy
EENCET VIS S

Ty

ny1+1 1-" +1

s S + —_
So [Y]'? Delyl ®  =h(e)lYI* and DylY|* = h(p+ L)yt =

ko) [Y |1, It follows that k(p) = iil o+ =L and glo) = Ko— 1) x

K(p— L ) 9'(e) = k(=p + 5 (n—m+ 1)Jk(—p) = o(4 —0) = 9(p).

This completes the proof.
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It will be necessary later to compute the residue of Koecher’s zeta func-

: n
tion at —-.
1 —n
~+nng-n2) 2L
THEOREM 1.3. Resp=lZ,,l(S"“,p) = —%—zz S| 2 x
2

7ny—1

e (L) (255"

Proof. The method of Siegel [8], volume III, pages 328 to 333, can be
modified to show this result. One needs also formula (3.18) of Koecher [3],
page 14. Siegel’s proof is for »n =mn, so some work is required to obtain
the result. For this, see [9], pages 82-91.

§2. Selberg’s Zefa Function.

We are considering £.,(S™, p) defined by (3). This is the case 7 ==
of (6). Since the results of this section have been stated by many authors
(Selberg [6], Maass [4], and Godement in a 1962 lecture at Johns Hopkins
University), we shall be brief. We must note some details of the proofs for

U(ln’) *
U:Ueun,U=< T, )

0 .U;n,)

later use.

Deﬁne SB(%], A ‘,"7) =

LemMa 2.1. (A Decomposition for &, with respect to $F =B, -+ -,1,2,1,
1
.. .’1)

n—1
Emy(Ss p) = eu?m..* ,-El [SIV I E(T, 03).
jEi
Here V™ = (V§9¥), Vi = (VioVio), and T = |SIV,_ ]| {SIV{-.]1— (SIVi-i])?
[V,o.SVi_ ). Also
[T = |SVi-dl ISVl f07’ i1, n—1,
IT] = |SIV:l] ¢f i =1, and
[T| = |S| |SVa-ddl if i =n—1.
Proof. Note that 1,DB*>Bu =B (L, -+ +,1). Therefore any Uecll,/Bm,

may be written uniquely as U =VW, Vell,/B}, WeB!/Bn.. And we can
take
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I6-1 0 0
W =10 w* 0 with W*Euz/gs(z), S:[3(2) =P (,1).
0 0 In=1=9)

Now we have |[S[VW]| = |S[V;]| for j#i. And [SIVW]| = |TIW*|.
This proves the lemma.

The analytic continuation and functional equation of ¢y (7, p,) (an
Epstein zeta function) can be used to derive the same for {,. One obtains
the functional equations (4) and formula (7) immediately (after an argument
on the convergence of the series, which we omit here, as we must genera-
lize it in §3).

In order to complete the analytic continuation with this approach it
is convenient (and not surprising, considering the integral formula of Harish-
Chandra, stated in [1], proposition 6.8, page 428) to introduce new variables

z, with p; = 2,4, — z; + —ﬁ— One uses (4) to show that for £(,(2) = {m)(0(2))

we have

(19) =1 1 2= 2+ (2t ) JEll?)

1<Li<j<n
is invariant under all permutations of 2,2, « * «, 2.

One obtains the analyticity of II ((z,-—— 2; ——E—) Co(z) in 4*={z&C™:
1<i<j<n

there is a permutation ¢ such that Re(z,yiny— 2.) >n, j=2,3,«++,n}.

The region 4* is a connected tube and its convex hull is C" because it is

fairly easy to see that it contains » independent lines. Applying Theorem

2.5.10 of Hormander [2] one obtains the result that ., can be continued

to €* 1. For more details of the above arguments see §3 of [9].

§3. The General Decomposition of the Zeta Function &, ...
Corresponding to L=P(n,, - - -, n,) with respect to B*=P(m;,, - - -, m;)DP.
We first show the convergence of &, ... .. (8™, py, » =+, 0,21 = £(S, p) for

T

Rep, > ", i=1,2-..,7—1. This results from the following theorem,

_2"’
since Z,(S™, p) converges whenever Re p > " as Koecher proves in [3],
page 7. (Koecher bounds Z,(S™,p) by c*(Zy(S,0))™, ¢ being a positive
n

constant. Now the Epstein zeta function Z(S, e) converges for Rep > >

using methods like those of Hecke for the Dedekind zeta function).
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TueoreM 3.1. (Convergence of the Zeta Function for Arbitrary v). For real

IS i
Here n = JZ}lnj and N; = ngn,.

Proof. Define a map f: U, /P (ny, « + +, %)) -—)T_I:IIIQI,.,N,/?IM, where U, =
{V®¥): V primitive}. The map f is defined la—s follows. Let Uell,/B
(g, + » +yn;) and U = (U™V¥%). Suppose U, =V,;B, with B, the greatest
right divisor of U; and V, primitive. (The notion of greatest right divisor
and primitive is defined in Siegel [8], volume I, pp. 331,332). Define
fU)=(Vy +++,Vsy). The map is well-defined.

The map is shown to be one-to-one by an induction process. Suppose
fWU) = f(U"), where U; =V;B; and U] =V,B/ as above. Then U,B{*B!=U].
Let R, = Bi'B{clly,. In general let R; = B;'B/. We assume as the in-
duction hypothesis that R, (ny,  + +,n;). Then Uy, f‘ ?(n )) and U/,

i+1

have the same first N; columns. So By, <Ri ;)( )) and B/,; have the
0 "t+1
same first N; columns. (Here take B,=U, B} =U’). Therefore R;,, =

(B;s1)'Bl,,€P (ny, » » =, n;4,). The result follows that U-U'eP(ny, - - -, n,),
U=U’, and f is one-to-one.

Now that we have the convergence of the zeta function for arbitrary
7, we generalize Lemma 2.1.

THEOREM 3.2. .Su[)pose B=Py e, n)CP*= Pmy, +--,m). Let
N;, = ;},1 n=M; = k}ﬁlmk. Then we have the following representation :

g’m ..... ﬂT(S’ Ongy *° °940Nr_1)

i,~1

2 s
-z 0
-T/EU?‘B* j£Il [SIV;-dl #=i,4 e g"i,_l"'l ..... 'nij(Tj, ‘oNi,_rH’ c pN{,—x)'

Here V = (V§-¥x), and T;={S— (S[V'-1])—1[tV'—IS]}[Yj-1]’ ?f Vi= (VY1)
Note that |T;| = |SIVI/ISIV;-dl.
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Proof. Write U/ in the form U =VW, VeW/$*, WeP*B. Then

( W,. 0

W = ), W,e U /B (4, 441y + + +5 my)). Now if i;, <k=<1i; we can

0 w;
write as before:

VW rV Y Ziee 0
IS[ Nk]lf S]-( j-1 j—1)<0 Qf;’i/iNk"Mj—l)

Z 0 0
where W = (O Q O). It follows that
0 0 =

ISVWx ]l = |SIVi-iZjmry Y 521Q5-5)]]
= |S[V]] |SIYQ]— (SIVZ)'[((VZISY Q]|
= [SIVIl {S — (SIV])'['VST} [Y Q]
=[SVl 1T4Q;-41l.

This proves the theorem.
Next we generalize formula (7).

THEOREM 3.3. gnl ..... n,(s’ ONnp * ',pN,_,)IovaD.k#ij = gm; ..... ml(S’ ley c "ty

ou, ), where Ny, = M;. (Here we use the notation of Theorem 3.2).

The case 7 =2 is needed in

Proof. We proceed by induction on 7.
That is, we shall show

the induction step, so we shall prove it in detail.
that &,,,,,(T,0)=1. This is equivalent (by Lemma 1.1) to the proof that
nyi—1
Zu(T,0) = ILg(— 1),
=0

1

By Theorem 1.2,

3 —m(G—e n

i r(o——5 e zags,o)= 181 Hr (2= o) TV z, (57, 0).

We take the residue at o =0 on both sides, recalling the facts:

ResI'(p) =1 and Res Z,,I<S“,’—z —p) = —Res Z, (S, p)
p=0 0=0 2 =2
L —nitmmtD) mo ni—1 RN
=17 ISI* T ewr <%) i}{r( n 3 ! ) , by Theorem 1.3.

2 k=2
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It follows that

1
1 ‘—(”%"1> ny . M
_TE ’ il:IZE(z)F(—;—> ’
Zn1(8, 0) = ny—1 —l
ZEAN Y
i=1

Let ¢(x) = &@2x)(x). Then the functional equation of the Riemann zeta
1—2:::

function is 6(1 — 2) ==z2 ¢(x — —é—) . This means that & — y)F( - %) =

-1
x 2 Ly + l)F(—y—;;—l—>. Therefore

nyg—1

an<sy 0) = il;[() g( - l)-

This completes the case 7 = 2.
Now we proceed to the induction step. We suppose for convenience
that ¢+ 1. By Theorem 3.2 for P*=PB(n, + ny 1y, + + -, n,) we have M;=N,,,,

j=1,2+--,7—1, and

=2
gnl ..... n,(Ss PNy ** %y PN,_,) = Ve%‘:/%*gnnnz(Tl’ pN1>j1;[1 IS[Vj]I_P”Jn,

where V = (V{¥»%) and T, = S[V,].
Multiplying by the factor in Theorem 1.2 we obtain:

2t B o4 A= o~ S50 oo~ 550

7—2
= 3 J(Tyex) T ISV ™50,
vell,/B* j=1

(C(S’ P) = gm ..... nr(S9 pr Sty pN,_l))'

The theorem will follow from the case 7 =2 provided that we can show
the convergence of this representation in a domain like # > Repy, > —1,
Repy,>L, j=2,++-,7—1, for some sufficiently large L.
First one can show that there is a positive constant ¢, depending only
on S, p, and #n, such that
]
23 |J(SVi), ox,) X [SIV1~035]
vell/B* j=1
(20)

7—2
<c 2 |JUIVY, ox) I IV ]| "%l
vell/B* j=1
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To prove this inequality, use the following facts.

. Wy 0
a) If W™ = (w,;,) is reduced and W, :( . >, where w,; = w;, then
0 Wy,
there is a positive constant ¢, depending only on #z, such that for all vec-
tors z

% Wilx] < Wla] < ¢ Wifz] and —i—W;’[x] < W-z] < Wizl

b) By the proof of Theorem 1.2, J(S[Vi, oy,) is a sum of 2 integrals.
And (S[V])*! comes into these integrals by means of the trace and a deter-
minant.

¢) Recall that ¢(W[Y]) = é‘lW[yk], where Y = (y,ys+ + +y,). And W = S[V],
where V = (vv,- - -v,), implies that w,; = S[v,].

d) If W is reduced there exists a positive constant ¢ depending only on
n such that |W| > cww,- - »w,. And if W is positive then |W|<w,w,+ + * w,.
e) To apply the previous, one assumes in the sums on the right hand
side of (20) that S[Vj], j=2,8,+--,7—2 are reduced and that S[V,] or
(S[V. D)t is reduced. In the sums on the left hand side one assumes that
IV or (ITV,])™! is reduced.

These facts and a little computation suffice to prove (20).

To show convergence we may assume S = I, the identity. Then
T =T,=I[V,] is integral. From the proof of Theorem 1.2 it follows that
for n > Rep >—1,

1

IJ(T,0)l < g 1X[P05de+ Lol [T | 1X|"052dp

If T is a matrix with integer entries, the first integral is less than a
bound independent of 7. For SF | X|"0% dp < &n)Z,,(T,n), where &(n) is a
product of I'-functions, etc., and &(n( is independent of 7. We may assume

T to be Minkowski-reduced since Z,,(T[U), n) = Z,,(T,n) for U, 4n,» From
Koecher [3], page 7, we have Z,/(T,n)< cZ ain,-T,n)". And Z(T,n) =

%ME*O Tim]I™ < ™ D Tml™" <™t Z, (I, n) <c"Z,(I,n), a bound B independent

of T, since t;==1. (Here T, is the diagonal matrix with the same entries
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tl *
as the diagonal entries of 7 and T = ( t? . ).)

* .tn

If T is integral, so is adjoint 7 =adj7. Thus we are able to use the
same estimate for the second integral in the formula for J(T, ey,). We have

[ 1xiremrae={ 1ximemeer ap
Fp, Fpy

= [TI"SF | X|"adirdp < |T|"B, where B is a bound independent of T.

1

Therefore when »n > Repy, > —1, there is a positive constant B in-
dependent of 7' such that

|J(T, o5 )| = IT["B.

It follows that for #n > Re py, > —1:

=2
2 NJ(T, px) IL IV 1] P55t
Ve ll./$* j=1

—2
<B Y VAT IV Repwa,
vell./8* j=1

= Bé‘nﬁnz.na ..... n,_l(ly —n+ Re Oy RepN3’ ce+,Re pN,_l)v

=2 -, 7T—1

which converges for # > Repy, >—1 and Re oy, > %n
This finishes the proof.

§4. Relations Between Koecher’s Zeta Functions.

There are two methods of obtaining relations between &;,,-; and &n—;.;.
First we use (4) and the case 7 =#n, 2=2 of (8). Then we use (5) and the
same case of (8).

n=1
1 2% jp;———
THeOREM 4.1. Let F,(p) = |S|™* 7 = =TTy

nﬁl ¢<1_Pn-1_ . —Pi'{-—ﬂ—_—Zli)

S N ==

Then &;n-i(S, p) =
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n—i—1 n~—1

n n
jl;Io Fn(pj)lpl=0,j*i§n-i,i(s9 5 TP Here p° = (T—iglpz, D15 02 * ° '9pn—2> and
¢(@) = L(2x) () .

Proof. If we apply the functional equations (4) in the order » —1,
n—2,+++,21, or if we use the invariance of formula (19) in §2 under

o=mn—1-@)e)=, 13271 " ) we obtain:
(n-1)(n-2) ,

—1—3
4 i1=-11¢ Pport+ oo 0+ py— L—‘Z——Z‘>§(n)(1")

"5 o+
~ 3 jo;
x =1

n—-1 1
—=fn1 3 jp]_.__4.(n+2)(n—1) n—1
=1

1
— 1|2 — —e g g MLl
= |S| 1 4(1 = o,y pi+ ALy

=1

n n—1
g(n) 5 _Epiapls c ey P2 )e
2 i=1

i1
Therefore Eay(0)=Fn(0)m(0?). And é‘(n)(p):jgo F(p°)Emy(p*'). It is clear that

n—1

n . .

07 = (Pagim1p * * %5 Prmis 3T X5 P1s P2 ¢ %y Paen), Where p,; is omitted.
=

The result follows easily using (8). A small computation convinces one that

n—i—1
I F(p”)],~0.res makes sense.
J=1

THEOREM 4.2. &;,2-4(S7Y 0) = |S|°En-s.:(S, 0).

Proof. Use (8) and (5).
Theorems 4.1 and 4.2 combine to give once again the functional equa-
tion of Koecher’s zeta function.
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