

A GENERALIZATION OF g-SUPPLEMENTED MODULES

BERNA KOŞAR, CELIL NEBIYEV, AND AYTEN PEKIN

Received 07 April, 2018

Abstract. In this work g-radical supplemented modules are defined which generalize gsupplemented modules. Some properties of g-radical supplemented modules are investigated. It is proved that the finite sum of g-radical supplemented modules is g-radical supplemented. It is also proved that every factor module and every homomorphic image of a g-radical supplemented ted module is g-radical supplemented. Let R be a ring. Then $_{R}R$ is g-radical supplemented if and only if every finitely generated R-module is g-radical supplemented. In the end of this work, it is given two examples for g-radical supplemented modules separating with g-supplemented modules.

2010 Mathematics Subject Classification: 16D10; 16D70

Keywords: small submodules, radical, supplemented modules, radical (generalized) supplemented modules

1. INTRODUCTION

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let *R* be a ring and *M* be an *R* -module. We will denote a submodule *N* of *M* by $N \leq M$. Let *M* be an *R* -module and $N \leq M$. If L = M for every submodule *L* of *M* such that M = N + L, then *N* is called a *small submodule* of *M* and denoted by $N \ll M$. Let *M* be an *R* -module and $N \leq M$. If there exists a submodule *K* of *M* such that M = N + K and $N \cap K = 0$, then *N* is called a *direct summand* of *M* and it is denoted by $M = N \oplus K$. For any module *M*, we have $M = M \oplus 0$. *RadM* indicates the radical of *M*. A submodule *N* of an *R* -module *M* is called an *essential submodule* of *M*, denoted by $N \leq M$, in case $K \cap N \neq 0$ for every submodule $K \neq 0$. Let *M* be an *R* -module and *K* be a submodule of *M*. *K* is called a *generalized small* (briefly, *g-small*) *submodule* of *M* if for every $T \leq M$ with M = K + T implies that T = M, this is written by $K \ll_g M$ (in [6], it is called an *e-small submodule* of *M* and denoted by $K \ll_e M$). It is clear that every small submodule is a generalized small submodule but the converse is not true generally. Let *M* be an *R*-module an *hollow module* if every proper submodule of *M* is small in *M*. *M* is called a *local module* if *M* has the largest submodule, i.e.

© 2019 Miskolc University Press

a proper submodule which contains all other proper submodules. Let U and V be submodules of M. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a *supplement* of U in M. M is called a *supplemented module* if every submodule of M has a supplement in M. Let M be an R-module and $U, V \leq M$. If M = U + V and M = U + T with $T \leq V$ implies that T = V, or equivalently, M = U + V and $U \cap V \ll_g M$, then Vis called a *g*-supplement of U in M. M is called *g*-supplemented if every submodule of M has a g-supplement in M. The intersection of maximal essential submodules of an R-module M is called a *generalized radical* of M and denoted by $Rad_g M$ (in [6], it is denoted by $Rad_e M$). If M have no maximal essential submodules, then we denote $Rad_g M = M$.

Lemma 1 ([2, 4, 6]). Let M be an R -module and $K, L, N, T \leq M$. Then the followings are hold.

(1) If $K \leq N$ and N is generalized small submodule of M, then K is a generalized small submodule of M.

(2) If K is contained in N and a generalized small submodule of N, then K is a generalized small submodule in submodules of M which contains submodule N.

(3) Let S be an R-module and $f: M \to S$ be an R-module homomorphism. If $K \ll_g M$, then $f(K) \ll_g S$.

(4) If $K \ll_g L$ and $N \ll_g T$, then $K + N \ll_g L + T$.

Corollary 1. Let $M_1, M_2, ..., M_n \le M$, $K_1 \ll_g M_1$, $K_2 \ll_g M_2$, ..., $K_n \ll_g M_n$. Then $K_1 + K_2 + ... + K_n \ll_g M_1 + M_2 + ... + M_n$.

Corollary 2. Let M be an R -module and $K \le N \le M$. If $N \ll_g M$, then $N/K \ll_g M/K$.

Corollary 3. Let M be an R -module, $K \ll_g M$ and $L \leq M$. Then $(K + L)/L \ll_g M/L$.

Lemma 2. Let M be an R-module. Then $Rad_g M = \sum_{L \ll gM} L$.

Proof. See [2].

Lemma 3. The following assertions are hold. (1) If M is an R-module, then $Rm \ll_g M$ for every $m \in Rad_g M$. (2) If $N \leq M$, then $Rad_g N \leq Rad_g M$. (3) If $K, L \leq M$, then $Rad_g K + Rad_g L \leq Rad_g (K + L)$. (4) If $f : M \longrightarrow N$ is an R-module homomorphism, then $f (Rad_g M) \leq Rad_g N$. (5) If $K, L \leq M$, then $\frac{Rad_g K + L}{L} \leq Rad_g \frac{K + L}{L}$.

Proof. Clear from Lemma 1 and Lemma 2.

Lemma 4. Let $M = \bigoplus_{i \in I} M_i$. Then $Rad_g M = \bigoplus_{i \in I} Rad_g M_i$.

Proof. Since $M_i \leq M$, then by Lemma 3(2), $Rad_g M_i \leq Rad_g M$ and $\bigoplus_{i \in I} Rad_g M_i \leq Rad_g M$. Let $x \in Rad_g M$. Then by Lemma 3(1), $Rx \ll_g M$. Since $x \in M = \bigoplus_{i \in I} M_i$, there exist $i_1, i_2, ..., i_k \in I$ and $x_{i_1} \in M_{i_1}, x_{i_2} \in M_{i_2}, ..., x_{i_k} \in M_{i_k}$ such that $x = x_{i_1} + x_{i_2} + ... + x_{i_k}$. Since $Rx \ll_g M$, then by Lemma 1(4), under the canonical epimorphism π_{i_t} (t = 1, 2, ..., k) $Rx_{i_t} = \pi_{i_t} (Rx) \ll_g Rx_{i_t}$. Then $x_{i_t} \in Rad_g M_{i_t}$ (t = 1, 2, ..., k) and $x = x_{i_1} + x_{i_2} + ... + x_{i_k} \in \bigoplus_{i \in I} Rad_g M_i$. Hence $Rad_g M \leq \bigoplus_{i \in I} Rad_g M_i$ and since $\bigoplus_{i \in I} Rad_g M_i \leq Rad_g M$, $Rad_g M = \bigoplus_{i \in I} Rad_g M_i$.

2. G-RADICAL SUPPLEMENTED MODULES

Definition 1. Let *M* be an *R*-module and $U, V \le M$. If M = U + V and $U \cap V \le Rad_g V$, then *V* is called a generalized radical supplement (briefly, g-radical supplement) of *U* in *M*. If every submodule of *M* has a generalized radical supplement in *M*, then *M* is called a generalized radical supplemented (briefly, g-radical supplemented) module.

Clearly we see that every g-supplemented module is g-radical supplemented. But the converse is not true in general. (See Example 1 and 2.)

Lemma 5. Let M be an R-module and $U, V \leq M$. Then V is a g-radical supplement of U in M if and only if M = U + V and $Rm \ll_g V$ for every $m \in U \cap V$.

Proof. (\Rightarrow) Since V is a g-radical supplement of U in M, M = U + V and $U \cap V \leq Rad_g V$. Let $m \in U \cap V$. Since $U \cap V \leq Rad_g V$, $m \in Rad_g V$. Hence by Lemma 3(1), $Rm \ll_g V$.

(⇐) Since $Rm \ll_g V$ for every $m \in U \cap V$, then by Lemma 2, $U \cap V \leq Rad_g V$ and hence V is a g-radical supplement of U in M.

Lemma 6. Let M be an R-module, $M_1, U, X \leq M$ and $Y \leq M_1$. If X is a g-radical supplement of $M_1 + U$ in M and Y is a g-radical supplement of $(U + X) \cap M_1$ in M_1 , then X + Y is a g-radical supplement of U in M.

Proof. Since X is a g-radical supplement of $M_1 + U$ in M, $M = M_1 + U + X$ and $(M_1 + U) \cap X \le Rad_g X$. Since Y is a g-radical supplement of $(U + X) \cap M_1$ in M_1 , $M_1 = (U + X) \cap M_1 + Y$ and $(U + X) \cap Y = (U + X) \cap M_1 \cap Y \le Rad_g Y$. Then $M = M_1 + U + X = (U + X) \cap M_1 + Y + U + X = U + X + Y$ and, by Lemma 3(3), $U \cap (X + Y) \le (U + X) \cap Y + (U + Y) \cap X \le Rad_g Y + (M_1 + U) \cap X \le Rad_g Y + Rad_g X \le Rad_g (X + Y)$. Hence X + Y is a g-radical supplement of U in M.

Lemma 7. Let $M = M_1 + M_2$. If M_1 and M_2 are g-radical supplemented, then M is also g-radical supplemented.

Proof. Let $U \le M$. Then 0 is a g-radical supplement of $M_1 + M_2 + U$ in M. Since M_1 is g-radical supplemented, there exists a g-radical supplement X of

 $(M_2 + U) \cap M_1 = (M_2 + U + 0) \cap M_1$ in M_1 . Then by Lemma 6, X + 0 = X is a g-radical supplement of $M_2 + U$ in M. Since M_2 is g-radical supplemented, there exists a g-radical supplement Y of $(U + X) \cap M_2$ in M_2 . Then by Lemma 6, X + Yis a g-radical supplement of U in M.

Corollary 4. Let $M = M_1 + M_2 + ... + M_k$. If M_i is g-radical supplemented for every i = 1, 2, ..., k, then M is also g-radical supplemented.

Proof. Clear from Lemma 7.

Lemma 8. Let M be an R-module, $U, V \le M$ and $K \le U$. If V is a g-radical supplement of U in M, then (V + K)/K is a g-radical supplement of U/K in M/K.

Proof. Since V is a g-radical supplement of U in M, M = U + V and $U \cap V \le Rad_g V$. Then M/K = U/K + (V + K)/K and by Lemma 3(5), $(U/K) \cap ((V + K)/K) = (U \cap V + K)/K \le (Rad_g V + K)/K \le Rad_g [(V + K)/K]$. Hence (V + K)/K is a g-radical supplement of U/K in M/K.

Lemma 9. Every factor module of a g-radical supplemented module is g-radical supplemented.

Proof. Clear from Lemma 8.

Corollary 5. The homomorphic image of a g-radical supplemented module is g-radical supplemented.

Proof. Clear from Lemma 9.

Lemma 10. Let M be a g-radical supplemented module. Then every finitely M-generated module is g-radical supplemented.

Proof. Clear from Corollary 4 and Corollary 5. \Box

Corollary 6. Let R be a ring. Then $_RR$ is g-radical supplemented if and only if every finitely generated R-module is g-radical supplemented.

Proof. Clear from Lemma 10.

Theorem 1. Let M be an R-module. If M is g-radical supplemented, then $M/Rad_g M$ is semisimple.

Proof. Let $U/Rad_g M \le M/Rad_g M$. Since M is g-radical supplemented, there exists a g-radical supplement V of U in M. Then M = U + V and $U \cap V \le Rad_g V$. Thus $M/Rad_g M = U/Rad_g M + (V + Rad_g M)/Rad_g M$ and

$$(U/Rad_g M) \cap ((V + Rad_g M)/Rad_g M) = (U \cap V + Rad_g M)/Rad_g M$$
$$\leq (Rad_g V + Rad_g M)/Rad_g M$$
$$= Rad_g M/Rad_g M = 0.$$

Hence $M/Rad_g M = U/Rad_g M \oplus (V + Rad_g M)/Rad_g M$ and $U/Rad_g M$ is a direct summand of M.

Lemma 11. Let M be a g-radical supplemented module and $L \leq M$ with $L \cap Rad_g M = 0$. Then L is semisimple. In particular, a g-radical supplemented module M with $Rad_g M = 0$ is semisimple.

Proof. Let $X \leq L$. Since M is g-radical supplemented, there exists a g-radical supplement T of X in M. Hence M = X + T and $X \cap T \leq Rad_gT \leq Rad_gM$. Since M = X + T and $X \leq L$, by Modular Law, $L = L \cap M = L \cap (X + T) = X + L \cap T$. Since $X \cap T \leq Rad_gM$ and $L \cap Rad_gM = 0$, $X \cap L \cap T = L \cap X \cap T \leq L \cap Rad_gM = 0$. Hence $L = X \oplus L \cap T$ and X is a direct summand of L.

Proposition 1. Let M be a g-radical supplemented module. Then $M = K \oplus L$ for some semisimple module K and some module L with essential generalized radical.

Proof. Let *K* be a complement of $Rad_g M$ in *M*. Then by [5, 17.6], $K \oplus Rad_g M \leq M$. Since $K \cap Rad_g M = 0$, then by Lemma 11, *K* is semisimple. Since *M* is g-radical supplemented, there exists a g-radical supplement *L* of *K* in *M*. Hence M = K + L and $K \cap L \leq Rad_g L \leq Rad_g M$. Then by $K \cap Rad_g M = 0$, $K \cap L = 0$. Hence $M = K \oplus L$. Since $M = K \oplus L$, then by Lemma 4, $Rad_g M =$ $Rad_g K \oplus Rad_g L$. Hence $K \oplus Rad_g M = K \oplus Rad_g L$. Since $K \oplus Rad_g L =$ $K \oplus Rad_g M \leq M = K \oplus L$, then by [1, Proposition 5.20], $Rad_g L \leq L$.

Proposition 2. Let M be an R-module and $U \le M$. The following statements are equivalent.

(1) There is a decomposition $M = X \oplus Y$ with $X \leq U$ and $U \cap Y \leq Rad_g Y$.

(2) There exists an idempotent $e \in End(M)$ with $e(M) \leq U$ and $(1-e)(U) \leq Rad_g(1-e)(M)$.

(3) There exists a direct summand X of M with $X \le U$ and $U/X \le Rad_g(M/X)$.

(4) U has a g-radical supplement Y such that $U \cap Y$ is a direct summand of U.

Proof. (1) \Rightarrow (2) For a decomposition $M = X \oplus Y$, there exists an idempotent $e \in End(M)$ with X = e(M) and Y = (1-e)(M). Since $e(M) = X \leq U$, we easily see that $(1-e)(U) = U \cap (1-e)(M)$. Then by Y = (1-e)(M) and $U \cap Y \leq Rad_g Y$, $(1-e)(U) = U \cap (1-e)(M) = U \cap Y \leq Rad_g Y = Rad_g (1-e)(M)$.

 $(2) \Rightarrow (3)$ Let X = e(M) and Y = (1-e)(M). Since $e \in End(M)$ is idempotent, we easily see that $M = X \oplus Y$. Then M = U + Y. Since $e(M) = X \leq U$, we easily see that $(1-e)(U) = U \cap (1-e)(M)$. Since M = U + Y and $U \cap Y = U \cap (1-e)(M) = (1-e)(U) \leq Rad_g(1-e)(M) = Rad_gY$, Y is a g-radical supplement of U in M. Then by Lemma 8, M/X = (Y + X)/X is a g-radical supplement of U/X in M/X. Hence $U/X = (U/X) \cap (M/X) \leq Rad_g(M/X)$.

(3) \Rightarrow (4) Let $M = X \oplus Y$. Since $X \leq U$, M = U + Y. Let $t \in U \cap Y$ and Rt + T = Y for an essential submodule T of Y. Let $((T + X)/X) \cap (L/X) = 0$ for a submodule L/X of M/X. Then $(L \cap T + X)/X = ((T + X)/X) \cap (L/X) = 0$ and $L \cap T + X = X$. Hence $L \cap T \leq X$ and since $X \cap Y = 0$, $L \cap T \cap Y \leq X \cap Y = 0$. Since $L \cap Y \cap T = L \cap T \cap Y = 0$ and $T \leq Y$, $L \cap Y = 0$. Since $X \leq L$ and M = X + Y, by Modular Law, $L = L \cap M = L \cap (X + Y) = X + L \cap Y = X + 0 = X$. Hence L/X = 0 and $(T + X)/X \leq M/X$. Since Rt + T = Y, R(t + X) + (T + X)/X = (Rt + X)/X + (T + X)/X = (Rt + T + X)/X = (Y + X)/X = M/X. Since $t \in U$, $t + X \in U/X \leq Rad_g (M/X)$ and hence $R(t + X) \ll M/X$. Then by R(t + X) + (T + X)/X = M/X and $(T + X)/X \leq M/X$, (T + X)/X = M/X and then X + T = M. Since X + T = M and $T \leq Y$, by Modular Law, $Y = Y \cap M = Y \cap (X + T) = X \cap Y + T = 0 + T = T$. Hence $Rt \ll_g Y$ and by Lemma 5, Y is a g-radical supplement of U in M. Since $M = X \oplus Y$ and $X \leq U$, by Modular Law, $U = U \cap M = U \cap (X \oplus Y) = X \oplus U \cap Y$. Hence $U \cap Y$ is a direct summand of U.

 $(4) \Rightarrow (1)$ Let $U = X \oplus U \cap Y$ for a submodule X of U. Since Y is a g-radical supplement of U in M, M = U + Y and $U \cap Y \ll_g Y$. Hence $M = U + Y = (X \oplus U \cap Y) + Y = X \oplus Y$.

Lemma 12. Let V be a g-radical supplement of U in M. If U is a generalized maximal submodule of M, then $U \cap V$ is a unique generalized maximal submodule of V.

Proof. Since U is a generalized maximal submodule of M and $V/(U \cap V) \simeq (V+U)/U = M/U$, $U \cap V$ is a generalized maximal submodule of V. Hence $Rad_g V \leq U \cap V$ and since $U \cap V \leq Rad_g V$, $Rad_g V = U \cap V$. Thus $U \cap V$ is a unique generalized maximal submodule of V.

Definition 2. Let M be an R-module. If every proper essential submodule of M is generalized small in M or M has no proper essential submodules, then M is called a generalized hollow module.

Clearly we see that every hollow module is generalized hollow.

Definition 3. Let M be an R-module. If M has a large proper essential submodule which contain all essential submodules of M or M has no proper essential submodules, then M is called a generalized local module.

Clearly we see that every local module is generalized local.

Proposition 3. Let M be an R-module and $Rad_g M \neq M$. Then M is generalized hollow if and only if M is generalized local.

Proof. (\Longrightarrow) Let M be generalized hollow and let L be a proper essential submodule of M. Then $L \ll_g M$ and by Lemma 2, $L \leq Rad_g M$. Thus $Rad_g M$ is a proper essential submodule of M which contain all proper essential submodules of M.

(\Leftarrow) Let *M* be a generalized local module, *T* be the largest proper essential submodule of *M* and *L* be a proper essential submodule of *M*. Let L + S = M with $S \leq M$. If $S \neq M$, then $L + S \leq T \neq M$. Thus S = M and $L \ll_g M$.

Definition 4. Let M be an R-module and $U, V \leq M$. If M = U + V and $U \cap V \ll_g M$, then V is called a weak g-supplement of U in M. If every submodule of M has a weak g-supplement in M, then M is called a weakly g-supplemented module. (See [3]).

Clearly we can see that if M is a weakly g-supplemented module, then M is g-semilocal $(M/Rad_g M$ is semisimple, see [3]).

Proposition 4. *Generalized hollow and generalized local modules are weakly g-supplemented, so are g-semilocal.*

Proof. Clear from definitions.

Proposition 5. Let M be a g-radical supplemented module with $\operatorname{Rad}_g M \ll_g M$. Then M is weakly g-supplemented.

Proof. Clear from definitions.

Example 1. Consider the \mathbb{Z} -module \mathbb{Q} . Since $Rad_g\mathbb{Q} = Rad\mathbb{Q} = \mathbb{Q}$, $\mathbb{Z}\mathbb{Q}$ is g-radical supplemented. But, since $\mathbb{Z}\mathbb{Q}$ is not supplemented and every nonzero sub-module of $\mathbb{Z}\mathbb{Q}$ is essential in $\mathbb{Z}\mathbb{Q}$, $\mathbb{Z}\mathbb{Q}$ is not g-supplemented.

Example 2. Consider the \mathbb{Z} -module $\mathbb{Q} \oplus \mathbb{Z}_{p^2}$ for a prime p. It is easy to check that $Rad_g\mathbb{Z}_{p^2} \neq \mathbb{Z}_{p^2}$. By Lemma 4, $Rad_g(\mathbb{Q} \oplus \mathbb{Z}_{p^2}) = Rad_g\mathbb{Q} \oplus Rad_g\mathbb{Z}_{p^2} \neq \mathbb{Q} \oplus \mathbb{Z}_{p^2}$. Since \mathbb{Q} and \mathbb{Z}_{p^2} are g-radical supplemented, by Lemma 7, $\mathbb{Q} \oplus \mathbb{Z}_{p^2}$ is g-radical supplemented. But $\mathbb{Q} \oplus \mathbb{Z}_{p^2}$ is not g-supplemented.

REFERENCES

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules (Graduate Texts in Mathematics)*. New York: Springer, 1998.
- [2] B. Koşar, C. Nebiyev, and N. Sökmez, "G-supplemented modules," Ukrainian Mathematical Journal, vol. 67, no. 6, pp. 861–864, 2015, doi: 10.1007/s11253-015-1127-8.
- [3] C. Nebiyev and H. H. Ökten, "Weakly g-supplemented modules," *European Journal of Pure and Applied Mathematics*, vol. 10, no. 3, pp. 521–528, 2017.
- [4] N. Sökmez, B. Koşar, and C. Nebiyev, "Genelleştirilmiş küçük alt modüller," in XIII. Ulusal Matematik Sempozyumu. Kayseri: Erciyes Üniversitesi, 2010.
- [5] R. Wisbauer, Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991.
- [6] D. X. Zhou and X. R. Zhang, "Small-essential submodules and morita duality," *Southeast Asian Bulletin of Mathematics*, vol. 35, pp. 1051–1062, 2011.

Authors' addresses

Berna Koşar

Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit-Atakum, Samsun, Turkey

E-mail address: bernak@omu.edu.tr

BERNA KOŞAR, CELIL NEBIYEV, AND AYTEN PEKIN

Celil Nebiyev

Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit-Atakum, Samsun, Tur-key

E-mail address: cnebiyev@omu.edu.tr

Ayten Pekin

Department of Mathematics, İstanbul University, İstanbul, Turkey *E-mail address:* aypekin@istanbul.edu.tr