A GENERALIZATION OF GERAGHTY'S THEOREM IN PARTIALLY ORDERED G-METRIC SPACES AND APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS

Zeid I. AL-Muhiameed ${ }^{1}$, M. Bousselsal ${ }^{2}$, M. Laid Kadri ${ }^{3}$
and Sidi Hamidou Jah ${ }^{4}$
${ }^{1}$ Department of Mathematics, College of Science, Qassim University 54152, Bouraydah, Kingdom of Saudi Arabia
e-mail: ksapr006@yahoo.fr
${ }^{2}$ Department of Mathematics, College of Science, Qassim University 54152, Bouraydah, Kingdom of Saudi Arabia
e-mail: bousselsal55@gmail.com
${ }^{3}$ Laboratoire d'Analyse Nonlineaire et HM
Department of Mathematics, E.N.S, B.P. 92 Vieux Kouba
16050, Algiers, Algeria
e-mail: kadri@ens-kouba.dz
${ }^{4}$ Department of Mathematics, College of Science, Qassim University 54152, Bouraydah, Kingdom of Saudi Arabia
e-mail: jahsidii@yahoo.fr

Abstract

The purpose of this article is to present some coincidence and fixed point theorems for generalized contraction in partially ordered complete G-metric spaces. As an application, we give an existence and uniqueness for the solution of an initial-boundary-value problem. These results generalize and extend several well known results in the literature.

1. Introduction

The study of fixed points of mappings satisfying certain contractive conditions has been at the center of rigorous research activity, see [15]-[19], [22, 23], [25]-[28]. The notion of D-metric space is a generalization of usual metric

[^0]spaces and it is introduced by Dhage [2, 3]. Recently, Mustafa and Sims [31][33] have shown that most of the results concerning Dhage's D-metric spaces are invalid. In [31], [34]-[36], they introduced a improved version of the generalized metric space structure which they called G-metric spaces. For more results on G-metric spaces and fixed point results, one can refer to the papers [1], [4]-[13], [20, 24, 29], [37]-[43] some of them have given some applications to matrix equations, ordinary differential equations, and integral equations.

Let S denotes the class of the functions $\beta:[0,+\infty) \rightarrow[0,1)$ which satisfies the condition $\beta\left(t_{n}\right) \rightarrow 1$ implies $t_{n} \rightarrow 0$. For example, functions
$\beta_{1}(x)=\left\{\begin{array}{cll}\frac{\ln (1+x)}{x} & \text { if } x>0, \\ 0 & \text { if } x=0,\end{array} \quad \beta_{2}(x)=\frac{1}{1+x}, \quad \beta_{3}(x)=\left\{\begin{array}{cll}\frac{\exp (x)-1}{x} & \text { if } x>0 \\ 0 & \text { if } & x=0\end{array}\right.\right.$ are in S.

2. Mathematical preliminaries

Definition 2.1. ([30]) Let X be a non-empty set, $G: X \times X \times X \rightarrow R_{+}$be a function satisfying the following properties:
(G1) $G(x, y, z)=0$ if $x=y=z$.
(G2) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$.
(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$.
(G4) $G(x, y, z)=G(x, z, y)=G(y, z, x)$ (symmetry in all three variables).
(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 2.2. ([30]) Let (X, G) be a G-metric space, and let $\left(x_{n}\right)$ be a sequence of points of X. We say that $\left(x_{n}\right)$ is G-convergent to $x \in X$ if $\lim _{n, m \rightarrow \infty} G\left(x ; x_{n}, x_{m}\right)=0$, that is, for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x ; x_{n}, x_{m}\right)<\varepsilon$, for all $n, m \geq N$. We call x the limit of the sequence x_{n} and write $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=x$.

Proposition 2.3. ([30]) Let (X, G) be a G-metric space. The following are equivalent:
(1) $\left(x_{n}\right)$ is G-convergent to x;
(2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$;
(3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$;
(4) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

Definition 2.4. ([30]) Let (X, G) be a G-metric space. A sequence $\left(x_{n}\right)$ is called a G - Cauchy sequence if, for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$ for all $m, n, l \geq N$, that is $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$.

Proposition 2.5. ([30]) Let (X, G) be a G-metric space. Then the following are equivalent:
(1) The sequence $\left(x_{n}\right)$ is G-Cauchy.
(2) For any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for all $n, m \geq N$.

Proposition 2.6. ([30]) Let (X, G) be a G-metric space. A mapping $f: X \rightarrow$ X is G-continuous at $x \in X$ if and only if it is G-sequentially continuous at x, that is, whenever $\left(x_{n}\right)$ is G-convergent to $x, f\left(x_{n}\right)$ is G-convergent to $f(x)$.

Proposition 2.7. ([30]) Let (X, G) be a G-metric space. Then the function $G(x, y, z)$ is jointly continuous all three of its variables.

Definition 2.8. ([30]) A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G).

Definition 2.9. (weakly compatible mappings ([30])) Two mappings f, g : $X \rightarrow X$ are weakly compatible if they commute at their coincidence points, that is $f t=g t$ for some $t \in X$ implies that $f g t=g f t$.

Definition 2.10. ([30]) Let X be a non-empty set and S, T be self-mappings of X. A point $x \in X$ is called a coincidence point of S and T if $S x=T x$. A point $w \in X$ is said to be a point of coincidence of S and T if there exists $x \in X$ so that $w=S x=T x$.

Definition 2.11. (g-Nondecreasing Mapping ([30])) Suppose (X, \preceq) is a partially ordered set and $f, g: X \rightarrow X$ are mappings. f is said to be g-Non decreasing if for $x, y \in X, g x \preceq g y$ implies $f x \preceq f y$.

Now, we are ready to state and prove our main results.
Let Ψ denotes the class of the functions $\psi:[0,+\infty[\rightarrow[0,+\infty[$ which satisfies the following conditions:
(1) ψ is nondecreasing,
(2) ψ is sub-additive, that is, $\psi(s+t) \leq \psi(s)+\psi(t)$,
(3) ψ is continuous,
(4) $\psi(t)=0 \Longleftrightarrow t=0$.

For example, functions $\varphi_{1}(t)=k t$, where $k>0, \varphi_{2}(t)=\frac{t}{1+t}, \varphi_{3}(t)=$ $\ln (1+t)$ and $\varphi_{4}(t)=\min \{1, t\}$ are in Ψ.

The following generalization of Banach's contraction principle is due to Geraghty [21].

Theorem 2.12. Let (M, d) be a complete metric space and let $f: M \rightarrow M$ be a map. Suppose there exists $\beta \in S$ such that for each $x, y \in M$

$$
d(f(x), f(y)) \leq \beta(d(x, y)) d(x, y) .
$$

Then f has a unique fixed point $z \in M$ and $\left\{f^{n}(x)\right\}$ converges to z, for each $x \in M$.

3. Main results

Now, we state our main results.
Lemma 3.1. Let (X, G) be a G-metric space and $\left(x_{n}\right)$ be a sequence in X such that $G\left(x_{n+1}, x_{n+1}, x_{n}\right)$ is decreasing and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(x_{n+1}, x_{n+1}, x_{n}\right)=0 . \tag{3.1}
\end{equation*}
$$

If $\left(x_{2 n}\right)$ is not a Cauchy sequence, then there exists $\varepsilon>0$ and two sequences $\left(m_{k}\right)$ and $\left(n_{k}\right)$ of positive integers such that the following four sequences tends to ε as $k \rightarrow \infty$,

$$
\begin{align*}
& G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k}}\right), \quad G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k+1}}\right) \tag{3.2}\\
& G\left(x_{2 m_{k-1}}, x_{2 m_{k-1}}, x_{2 n_{k}}\right), \quad G\left(x_{2 m_{k-1}}, x_{2 m_{k-1}}, x_{2 n_{k+1}}\right) .
\end{align*}
$$

Proof. If $\left(x_{2 n}\right)$ is not a Cauchy sequence, then there exists $\varepsilon>0$ and two sequences (m_{k}) and (n_{k}) of positive integers such that

$$
n_{k}>m_{k}>k ; \quad G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k}-2}\right)<\varepsilon, \quad G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k}}\right) \geq \varepsilon
$$

for all integer k. Then

$$
\begin{aligned}
\varepsilon \leq & G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k}}\right) \\
\leq & G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k}-2}\right)+G\left(x_{2 n_{k-2}}, x_{2 n_{k-2}}, x_{2 n_{k}-1}\right) \\
& +G\left(x_{2 n_{k-1}}, x_{2 m_{k-1}}, x_{2 n_{k}}\right) \\
< & \varepsilon+G\left(x_{2 n_{k-2}}, x_{2 n_{k-2}}, x_{2 n_{k}-1}\right)+G\left(x_{2 n_{k-1}}, x_{2 n_{k-1}}, x_{2 n_{k}}\right) .
\end{aligned}
$$

From (3.1), we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k}}\right)=\varepsilon \tag{3.3}
\end{equation*}
$$

Further,

$$
G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k}}\right) \leq G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k+1}}\right)+G\left(x_{2 n_{k+1}}, x_{2 n_{k+1}}, x_{2 n_{k}}\right)
$$

and

$$
G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k+1}}\right) \leq G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k}}\right)+G\left(x_{2 n_{k}}, x_{2 n_{k}}, x_{2 n_{k+1}}\right) .
$$

Passing to the limit when $k \rightarrow \infty$ and using (3.1) and (3.3), we obtain

$$
\lim _{k \rightarrow \infty} G\left(x_{2 m_{k}}, x_{2 m_{k}}, x_{2 n_{k+1}}\right)=\varepsilon .
$$

The remaining two sequences in (3.2) tend to ε can be proved in a similar way.

Theorem 3.2. Let (X, \preceq) be a partially ordered set and suppose that (X, G) be a G - complete metric space. Let $f, g: X \rightarrow X$ be such that $f(X) \subseteq g(X), f$ is g-nondecreasing, $g(X)$ is closed. Suppose that there exist $\beta \in S$ and $\psi \in \Psi$ such that

$$
\begin{equation*}
\psi(G(f x, f y, f z)) \leq \beta(\psi(G(g x, g y, g z))) \psi(G(g x, g y, g z)) \tag{3.4}
\end{equation*}
$$

for all $x, y, z \in X$ with $g x \preceq g y \preceq g z$. Assume that X is such that if an increasing sequence x_{n} converges to x, then $x_{n} \preceq x$ for each $n \geq 0$. If there exists $x_{0} \in X$ such that $g x_{0} \preceq f x_{0}$, then f and g have a coincidence point.
Proof. By the condition of the theorem there exists $x_{0} \in X$ such that $g x_{0} \preceq$ $f x_{0}$. Since $f(X) \subseteq g(X)$, we can define $x_{1} \in X$ such that $g x_{1}=f x_{0}$, then $g x_{0} \preceq f x_{0}=g x_{1}$. Since f is g-nondecreasing, we have $f x_{0} \preceq f x_{1}$. In this way we construct the sequence (x_{n}) recursively as

$$
\begin{equation*}
f x_{n}=g x_{n+1}, \quad \forall n \geq 1 \tag{3.5}
\end{equation*}
$$

for which

$$
\begin{align*}
g x_{0} & \preceq f x_{0}=g x_{1} \preceq f x_{1}=g x_{2} \preceq f x_{2} \preceq \cdots \tag{3.6}\\
& \preceq f x_{n-1}=g x_{n} \preceq f x_{n}=g x_{n+1} \preceq \cdots .
\end{align*}
$$

First, we suppose that there exists $n_{0} \in \mathbb{N}$ such that $\psi\left(G\left(f x_{n_{0}}, f x_{n_{0}}, f x_{n_{0}+1}\right)\right)$ $=0$, then it follows from the properties of $\psi, G\left(f x_{n_{0}}, f x_{n_{0}}, f x_{n_{0}+1}\right)=0$. So, $f x_{n_{0}}=f x_{n_{0}+1}$, we have $g x_{n_{0}+1}=f x_{n_{0}+1}$. Therefore $x_{n_{0}+1}$ is a considance point of f and g. From now on we suppose $\psi\left(G\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right) \neq 0$ for all $n \geq 0$. The elements $g x_{n}$ and $g x_{n+1}$ are comparable, substituting $x=y=x_{n}$ and $z=x_{n+1}$ in (3.4), using (3.5) and (3.6), we have

$$
\begin{aligned}
\psi\left(G\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right) & \leq \beta\left(\psi\left(G\left(g x_{n}, g x_{n}, g x_{n+1}\right)\right)\right) \psi\left(G\left(g x_{n}, g x_{n}, g x_{n+1}\right)\right) \\
& \leq \psi\left(G\left(g x_{n}, g x_{n}, g x_{n+1}\right)\right) \\
& =\psi\left(G\left(f x_{n-1}, f x_{n-1}, f x_{n}\right)\right) .
\end{aligned}
$$

Thus it follows that $\left(\psi\left(G\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right)\right)$ is a non increasing sequence and bounded below, so $\lim _{n \rightarrow \infty} \psi\left(G\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right)=r \geq 0$ exits. Assume that $r>0$, then from (3.4), we have

$$
\frac{\psi\left(G\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right)}{\psi\left(G\left(f x_{n-1}, f x_{n-1}, f x_{n}\right)\right)} \leq \beta\left(\psi\left(G\left(g x_{n}, g x_{n}, g x_{n+1}\right)\right)\right) \leq 1 \quad \text { for each } n \geq 1
$$

which yields that

$$
\lim _{n \rightarrow \infty} \beta\left(\psi\left(G\left(g x_{n}, g x_{n}, g x_{n+1}\right)\right)\right)=1 .
$$

On the other hand, since $\beta \in S$, we have $\lim _{n \rightarrow \infty} \psi\left(G\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right)=0$ and so $r=0$. Now we show that $\left(f x_{n}\right)$ is a Cauchy sequence. Suppose that $\left(f x_{n}\right)$ is not a Cauchy sequence. Using Lemma 3.1, we know that there exist $\varepsilon>0$ and two sequences $\left(m_{k}\right)$ and $\left(n_{k}\right)$ of positive integers such that the following four sequences tend to ε as k goes to infinity,

$$
\begin{aligned}
& G\left(f x_{2 m_{k}}, f x_{2 m_{k}}, f x_{2 n_{k}}\right), \quad G\left(f x_{2 m_{k}}, f x_{2 m_{k}}, f x_{2 n_{k+1}}\right), \\
& G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k}}\right), \quad G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k+1}}\right) .
\end{aligned}
$$

Putting in the contractive condition $x=y=x_{2 m_{k}}$ and $z=x_{2 n_{k+1}}$, using (3.5) and (3.6), it follows that

$$
\begin{aligned}
& \psi\left(G\left(f x_{2 m_{k}}, f x_{2 m_{k}}, f x_{2 n_{k+1}}\right)\right) \\
& \leq \beta\left(\psi\left(G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k}}\right)\right)\right) \psi\left(G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k}}\right)\right) \\
& \leq \psi\left(G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k}}\right)\right)
\end{aligned}
$$

So

$$
\frac{\psi\left(G\left(f x_{2 m_{k}}, f x_{2 m_{k}}, f x_{2 n_{k+1}}\right)\right)}{\psi\left(G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k}}\right)\right)} \leq \beta\left(\psi\left(G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k}}\right)\right)\right) \leq 1
$$

and $\lim _{k \rightarrow \infty} \beta\left(\psi\left(G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k}}\right)\right)\right)=1$. Since $\beta \in S$, it follows that

$$
\lim _{k \rightarrow \infty} \psi\left(G\left(f x_{2 m_{k-1}}, f x_{2 m_{k-1}}, f x_{2 n_{k}}\right)\right)=0 .
$$

Since ψ is a continuous mapping, $\psi(\varepsilon)=0$ and so $\varepsilon=0$, which contradicts $\varepsilon>$ 0 . Therefore, $\left(f x_{n}\right)$ is a Cauchy sequence in (X, G). Since (X, G) is a complete metric space, there exists $a \in X$ such that $\lim _{n \rightarrow \infty} f x_{n}=a=\lim _{n \rightarrow \infty} g x_{n+1}$. Since $g(X)$ is closed, then $a=g z$, and by (3.5) $f x_{n}=g x_{n+1}$ for all $n \geq 1$. We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g x_{n}=\lim _{n \rightarrow \infty} f x_{n}=g z=a . \tag{3.7}
\end{equation*}
$$

Now we prove that z is a coincidence point of f and g. By (3.6), we have $\left(g x_{n}\right)$ is a non-decreasing sequence in X. By (3.7) and condition of our theorem

$$
\begin{equation*}
g x_{n} \preceq g z . \tag{3.8}
\end{equation*}
$$

Putting $x=y=x_{n}$ in (3.4), by the virtue of (3.8), we get

$$
\begin{aligned}
& \psi\left(G\left(f x_{n}, f x_{n}, f z\right)\right. \\
& \leq \beta\left(\psi\left(G\left(f x_{n-1}, f x_{n-1}, g z\right)\right)\right) \psi\left(G\left(g x_{n}, g x_{n}, g z\right)\right) \\
& \leq \psi\left(G\left(g x_{n}, g x_{n}, g z\right), \quad \text { for each } n \geq 1\right.
\end{aligned}
$$

Taking $n \rightarrow \infty$ in the above inequality, using (3.7) and the continuity of ψ, we get

$$
G(g z, g z, f z)=0,
$$

that is

$$
\begin{equation*}
f z=g z \tag{3.9}
\end{equation*}
$$

This complete the proof.

Theorem 3.3. If in Theorem 3.2, it is additionally assumed that

$$
\begin{equation*}
g z \preceq g g z, \tag{3.10}
\end{equation*}
$$

where z is as in the condition of theorem and f and g are weakly compatible, then f and g have a common fixed point in X.

Proof. Following the proof of the Theorem 3.2, we have (3.7), that is, a nondecreasing sequence $\left(g x_{n}\right)$ converging to $g z$. Then by (3.10) we have $g z \preceq g g z$. Since f and g are weakly compatible, by (3.9), we have $f g z=g f z$. We set

$$
\begin{equation*}
w=g z=f z . \tag{3.11}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
g z \preceq g g z=g w . \tag{3.12}
\end{equation*}
$$

Also

$$
\begin{equation*}
f w=f g z=g f z=g w . \tag{3.13}
\end{equation*}
$$

If $z=w$, then z is a common fixed point. If $z \neq w$, then necessarily $g z=g w$. We argue by contradiction, if $g z \neq g w$. By (3.4) and (3.8), we have

$$
\frac{\psi\left(G\left(g x_{n}, g x_{n}, g w\right)\right)}{\psi\left(G\left(g x_{n}, g x_{n}, g w\right)\right)} \leq \beta\left(\psi\left(G\left(g x_{n}, g x_{n}, g w\right)\right)\right) \leq 1
$$

By going to the limit as $n \rightarrow \infty$, by using the fact that $\beta \in S$ and the continuity of ψ, we get $\psi(G(g z, g z, g w))=0$, so $g z=g w$. This is a contradiction. Therefore, by (3.11) and (3.13), we have $w=g w=f w$. Hence w is a common fixed point. This completes the proof.

Remark 3.4. Continuity of f is not required in Theorem 3.3. If we assumed f to be continuous, then (3.8) is not longer required for the theorem and can be omitted.

Theorem 3.5. Let (X, \preceq) be a partially ordered set and suppose that (X, G) be a G - complete metric space. Let $f: X \rightarrow X$ be such that f is a nondecreasing. Suppose that there exist $\beta \in S$ and $\psi \in \Psi$ such that

$$
\psi(G(f x, f y, f z)) \leq \beta(\psi(G(x, y, z))) \psi(G(x, y, z))
$$

for all $x, y, z \in X$ with $x \preceq y \preceq z$. Assume that either f is continuous or X is such that if an increasing sequence x_{n} converges to x, then $x_{n} \preceq x$ for each $n \geq 0$. If there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$, then f has a fixed point.

Proof. Following the proof of the Theorem 3.2, we have (3.7), that is, a nondecreasing sequence $\left(x_{n}\right)$ converging to z. Now we show, that z is a fixed of point of f. If f is continuous, then

$$
z=\lim _{n \rightarrow \infty} f^{n}\left(x_{0}\right)=\lim _{n \rightarrow \infty} f^{n+1}\left(x_{0}\right)=f\left(\lim _{n \rightarrow \infty} f^{n}\left(x_{0}\right)\right)=f(z)
$$

and hence $f(z)=z$. If the second condition of the theorem holds, then we have

$$
G(f(z), f(z), z) \leq G\left(f(z), f(z), f\left(\left(x_{n}\right)\right)+G\left(f\left(x_{n}\right), f\left(x_{n}\right), z\right) .\right.
$$

On the other hand, since φ is nondecreasing and sub-additive, we have

$$
\begin{aligned}
& \psi(G(f(z), f(z), z)) \\
& \leq \psi\left(G\left(f(z), f(z), f\left(\left(x_{n}\right)\right)\right)+\psi\left(G\left(f\left(x_{n}\right), f\left(x_{n}\right), z\right)\right)\right. \\
& \leq \beta\left(\psi\left(G\left(z, z, x_{n}\right)\right)\right) \psi\left(G\left(z, z, x_{n}\right)\right)+\psi\left(G\left(x_{n+1}, x_{n+1}, z\right)\right) \\
& \leq \psi\left(G\left(z, z, x_{n}\right)\right)+\psi\left(G\left(x_{n+1}, x_{n+1}, z\right)\right)
\end{aligned}
$$

Since $G\left(z, z, x_{n}\right) \rightarrow 0, G\left(x_{n+1}, x_{n+1}, z\right) \rightarrow 0, \psi\left(G\left(x_{n+1}, x_{n+1}, z\right)\right) \rightarrow 0$ and $\psi\left(G\left(z, z, x_{n}\right)\right) \rightarrow 0$ when n goes to infinity. Then

$$
\psi(G(f(z), f(z), z))=0 \Leftrightarrow G(f(z), f(z), z)=0
$$

Therefore, we get $f(z)=z$. This completes the proof.
In the following, we give a sufficient condition for the uniqueness of the fixed point in Theorem 3.5. This condition is as follows.
(i) Every pair of elements in X has a lower bound or an upper bound.

In [12], it is proved that the condition (i) is equivalent to the following.
(ii) For every $x, y \in X$, there exists $z \in X$ which is comparable to x and y.

Theorem 3.6. Adding the condition (ii) to the hypothesis of Theorem 3.5, The fixed point z is unique.

Proof. Let y be another fixed point of f, from (ii), there exists $x \in X$ which is comparable to y and z. The monotonicity of f implies that $f^{n}(x)$ is comparable to $f^{n}(y)=y$ and $f^{n}(z)=z$ for $n \geq 0$. Moreover, we have

$$
\begin{align*}
& \psi\left(G\left(z, z, f^{n}(x)\right)\right. \\
= & \psi\left(G\left(f^{n}(z), f^{n}(z), f^{n}(x)\right)\right. \\
= & \psi\left(G\left(f\left(f^{n-1}(z)\right), f\left(f^{n-1}(z)\right), f\left(f^{n-1}(x)\right)\right)\right. \\
\leq & \beta\left(\psi (G (f ^ { n - 1 } (z) , f ^ { n - 1 } (z) , f ^ { n - 1 } (x))) \psi \left(G\left(f^{n-1}(z), f^{n-1}(z), f^{n-1}(x)\right)\right.\right. \\
\leq & \psi\left(G\left(f^{n-1}(z), f^{n-1}(z), f^{n-1}(x)\right)\right. \\
= & \psi\left(G\left(z, z, f^{n-1}(x)\right) .\right. \tag{3.14}
\end{align*}
$$

Consequently, the sequence $\left(\gamma_{n}\right)$ defined by $\gamma_{n}=\psi\left(G\left(z, z, f^{n-1}(x)\right)\right.$ is nonnegative and non increasing and so

$$
\lim _{n \rightarrow \infty} \psi\left(G\left(z, z, f^{n-1}(x)\right)=\gamma \geq 0\right.
$$

Now, we show that $\gamma=0$. Assume that $\gamma>0$. By passing to the subsequences, if necessary, we may assume that $\lim _{n \rightarrow \infty} \beta\left(\gamma_{n}\right)=\delta$ exists. From (3.14), it follows that $\delta \gamma=\gamma$ and so $\delta=1$. Since $\beta \in S$,

$$
\gamma=\lim _{n \rightarrow \infty} \gamma_{n}=\lim _{n \rightarrow \infty} \psi\left(G\left(z, z, f^{n-1}(x)\right)=\gamma=0 .\right.
$$

This is a contradiction and so $\gamma=0$. Similarly, we can prove that

$$
\lim _{n \rightarrow \infty} \psi\left(G\left(y, y, f^{n-1}(x)\right)=0 .\right.
$$

Finally, from

$$
G(z, z, y) \leq G\left(z, z, f^{n}(x)\right)+G\left(f^{n}(x), f^{n}(x), y\right)
$$

and $G(x, x, y) \leq 2 G(x, y, y)$ for any $x, y \in X$, we obtain

$$
G(z, z, y) \leq G\left(z, z, f^{n}(x)\right)+2 G\left(f^{n}(x), y, y\right)
$$

Since ψ is nondecreasing and sub-additive, it follows that

$$
\begin{aligned}
\psi(G(z, z, y)) \leq & \psi\left(G\left(z, z, f^{n}(x)\right)\right)+\psi\left(G\left(f^{n}(x), y, y\right)\right) \\
& +\psi\left(G\left(f^{n}(x), y, y\right)\right) \\
\leq & \psi\left(G\left(z, z, f^{n}(x)\right)\right)+2 \psi\left(G\left(f^{n}(x), y, y\right)\right)
\end{aligned}
$$

Therefore, taking $n \rightarrow \infty$, we have

$$
\psi(G(z, z, y))=0 .
$$

It follows that $G(z, z, y)=0$ and so $z=y$. This completes the proof.
Letting $\psi=i d_{X}$, in Theorems 3.2 and 3.5 , we can get the following results.

Corollary 3.7. Let (X, \preceq) be a partially ordered set and suppose that (X, G) be a G-complete metric space. Let $f, g: X \rightarrow X$ be such that $f(X) \subseteq g(X), f$ is g-nondecreasing, $g(X)$ is closed. Suppose that there exist $\beta \in S$ such that

$$
\begin{equation*}
G(f x, f y, f z) \leq \beta(G(g x, g y, g z)) G(g x, g y, g z) \tag{3.15}
\end{equation*}
$$

for all $x, y, z \in X$ with $g x \preceq g y \preceq g z$. Assume that X is such that if an increasing sequence x_{n} converges to x, then $x_{n} \preceq x$ for each $n \geq 0$. If there exists $x_{0} \in X$ such that $g x_{0} \preceq f x_{0}$, then f and g have a coincidence point.

Corollary 3.8. Let (X, \preceq) be a partially ordered set and suppose that (X, G) be a G-complete metric space. Let $f: X \rightarrow X$ be such that f is a nondecreasing. Suppose that there exist $\beta \in S$ such that

$$
G(f x, f y, f z) \leq \beta(G(x, y, z)) G(x, y, z),
$$

for all $x, y, z \in X$ with $x \preceq y \preceq z$. Assume that either f is continuous or X is such that if an increasing sequence x_{n} converges to x, then $x_{n} \preceq x$ for each $n \geq 0$. If there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$, then f has a fixed point.

Example 3.9. Let $X=[0,1]$. We define a partial ordered \leq on X as $x \leq y$ if and only if $x \leq y$ for all $x, y \in X$. Define $G: X \times X \times X \rightarrow \mathbb{R}^{+}$by

$$
G(x, y, z)=|x-y|+|y-z|+|z-x|
$$

for all $x, y, z \in X$. Then (X, G) is a complete G-metric space. Let f, g : $X \rightarrow X$ be two functions defined as, $f(x)=\frac{x}{6}$ and $g(x)=\frac{x}{2}$ for all $x \in X$. So, $f(X) \subset g(X)=\left[0, \frac{1}{2}\right] . g(X)$ is closed in X and f is g-nondecreasing. Let $\psi:[0, \infty) \rightarrow[0, \infty)$ be defined as $\psi(x)=\ln (1+x)$. ψ is continuous, sub-additive, nondecreasing and satisfies $\psi(x)=0 \Longleftrightarrow x=0$ and $\psi(x)<x$ for any $x>0$. Let $\beta:[0, \infty) \rightarrow[0,1)$ defined as $\beta(x)=\left\{\begin{array}{cll}\frac{\ln (1+x)}{x} & \text { if } & x>0, \\ 0 & \text { if } & x=0 .\end{array}\right.$

Without loss of generality, we assume that $x<y<z$ and satisfy the inequality (3.4) for all $x, y, z \in X$ with $x<y<z$. So

$$
G(f x, f y, f z)=\frac{1}{3}(z-x) \quad \text { and } \quad G(g x, g y, g z)=(z-x) .
$$

Hence it is easy to see that $\frac{1}{3} x \leq \psi(x)$ for all $x \in X$. Therefore the inequality (3.4) is satisfied. Then we choose $x_{0}=0$ in $[0,1], f(0) \leq g(0)$. All conditions of Theorem 3.2 are satisfied. Here $x_{0}=0$ is a coincidence point of f and g.

Later, from the previous obtained results, we deduce some coincidence point results for mappings satisfying a contraction of an integral type as an application of Theorem 3.2 above. For this purpose, let

$$
Y=\left\{\begin{array}{ll}
\chi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {satisfies that } \chi \text { is Lebesgue integrable, } \\
\chi: & \text { summable on each compact of subset of } \mathbb{R}^{+}, \text {sub-additive } \\
\text { and } \int_{0}^{\epsilon} \chi(t) d t>0 \text { for each } \epsilon>0
\end{array}\right\}
$$

Definition 3.10. The function $\chi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is called sub-additive integrable function if for any $a, b \in \mathbb{R}^{+}$,

$$
\int_{0}^{a+b} \chi(t) d t \leq \int_{0}^{a} \chi(t) d t+\int_{0}^{b} \chi(t) d t
$$

Theorem 3.11. Let (X, \preceq) be a partially ordered set and suppose that (X, G) be a G-complete metric space. Let $f, g: X \rightarrow X$ be such that $f(X) \subseteq g(X), f$ is g-nondecreasing, $g(X)$ is closed. Suppose that there exist $\beta \in S$ and $\psi \in \Psi$ such that for $\chi \in Y$,

$$
\begin{align*}
& \int_{0}^{\psi(G(f x, f y, f z))} \chi(t) d t \\
& \leq \beta\left(\int_{0}^{\psi(G(g x, g y, g z))} \chi(t) d t\right) \int_{0}^{\psi(G(g x, g y, g z))} \chi(t) d t \tag{3.16}
\end{align*}
$$

for all $x, y, z \in X$ with $g x \preceq g y \preceq g z$. Assume that X is such that if an increasing sequence x_{n} converges to x, then $x_{n} \preceq x$ for each $n \geq 0$. If there exists $x_{0} \in X$ such that $g x_{0} \preceq f x_{0}$, then f and g have a coincidence point.

Proof. For $\chi \in Y$, consider the function $\Lambda: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$defined by $\Lambda(x)=$ $\int_{0}^{x} \chi(t) d t$. We note that $\Lambda \in \Psi$. Thus the inequality (3.16) becomes

$$
\begin{equation*}
\Lambda(\psi(G(f x, f y, f z))) \leq \beta(\Lambda(\psi(G(g x, g y, g z)))) \Lambda(\psi(G(g x, g y, g z))) \tag{3.17}
\end{equation*}
$$

Setting $\Lambda \circ \psi=\psi_{1}, \psi_{1} \in \Psi$, so we obtain

$$
\psi_{1}(G(f x, f y, f z)) \leq \beta\left(\psi_{1}(G(g x, g y, g z))\right) \psi_{1}(G(g x, g y, g z)) .
$$

Therefore by Theorem 3.2 above, f and g have a coincidence point.

Corollary 3.12. Let (X, \preceq) be a partially ordered set and suppose that (X, G) be a G-complete metric space. Let $f: X \rightarrow X$ be a nondecreasing function. Suppose that there exist $\beta \in S$ and $\psi \in \Psi$ such that

$$
\begin{align*}
& \int_{0}^{\psi(G(f x, f y, f z))} \chi(t) d t \\
& \leq \beta\left(\int_{0}^{\psi(G(x, y, z))} \chi(t) d t\right) \int_{0}^{\psi(G(x, y, z))} \chi(t) d t, \quad \chi \in Y \tag{3.18}
\end{align*}
$$

for all $x, y, z \in X$ with $x \preceq y \preceq z$. Assume that either f is continuous or X is such that if an increasing sequence x_{n} converges to x, then $x_{n} \preceq x$ for each $n \geq 0$. If there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$, then f has a fixed point.

Corollary 3.13. Let (X, \preceq) be a partially ordered set and suppose that (X, G) be a G-complete metric space. Let $f, g: X \rightarrow X$ be such that $f(X) \subseteq g(X), f$ is g-nondecreasing, $g(X)$ is closed. Suppose that there exist $\beta \in S$ such that for $\chi \in Y$,

$$
\begin{equation*}
\int_{0}^{G(f x, f y, f z)} \chi(t) d t \leq \beta\left(\int_{0}^{G(g x, g y, g z)} \chi(t) d t\right) \int_{0}^{G(g x, g y, g z)} \chi(t) d t \tag{3.19}
\end{equation*}
$$

for all $x, y, z \in X$ with $g x \preceq g y \preceq g z$. Assume that X is such that if an increasing sequence x_{n} converges to x, then $x_{n} \preceq x$ for each $n \geq 0$. If there exists $x_{0} \in X$ such that $g x_{0} \preceq f x_{0}$, then f and g have a coincidence point.

4. Application

In this section, We show the existence of solution for the following initialvalue problem by using Theorems 3.5 and 3.6.

$$
\left\{\begin{array}{c}
u_{t}(x, t)=u_{x x}(x, t)+F\left(x, t, u, u_{x}\right),-\infty<x<\infty, 0<t<T, \tag{4.1}\\
u(x, t)=\varphi(x),-\infty<x<\infty
\end{array}\right.
$$

Where we assumed that φ is continuously differentiable and that φ and φ^{\prime} are bounded and $F\left(x, t, u, u_{x}\right)$ is a continuous function.

Definition 4.1. We mean a solution of an initial-boundary-value problem for any $u_{t}(x, t)=u_{x x}(x, t)+F\left(x, t, u, u_{x}\right)$ in $\mathbb{R} \times I$, where $I=[0, T]$. A function $u=u(x, t)$ defined in $\mathbb{R} \times I$ such that
(a) $u \in C(\mathbb{R} \times I)$,
(b) $u_{t}, u_{x}, u_{x x} \in C(\mathbb{R} \times I)$,
(c) u_{t} and u_{x} are bounded in $\mathbb{R} \times I$,
(d) $u_{t}(x, t)=u_{x x}(x, t)+F\left(x, t, u(x, t), u_{x}(x, t)\right), \quad \forall(x, t) \in \mathbb{R} \times I$.

Now we consider the space $\Omega=\left\{v(x, t): v, v_{x} \in C(\mathbb{R} \times I)\right.$ and $\left.\|v\|<\infty\right\}$, where

$$
\|v\|=\sup _{x \in \mathbb{R}, t \in I}|v(x, t)|+\sup _{x \in \mathbb{R}, t \in I}\left|v_{x}(x, t)\right| .
$$

The set Ω with the norm $\|\cdot\|$ is a Banach space. Obviously, the space with the G-metric given by

$$
\begin{aligned}
G(u, v, w)= & \sup _{x \in \mathbb{R}, t \in I}|u(x, t)-v(x, t)|+\sup _{x \in \mathbb{R}, t \in I}\left|u_{x}(x, t)-v_{x}(x, t)\right| \\
& +\sup _{x \in \mathbb{R}, t \in I}|v(x, t)-w(x, t)|+\sup _{x \in \mathbb{R}, t \in I}\left|v_{x}(x, t)-w_{x}(x, t)\right| \\
& +\sup _{x \in \mathbb{R}, t \in I}|u(x, t)-w(x, t)|+\sup _{x \in \mathbb{R}, t \in I}\left|u_{x}(x, t)-w_{x}(x, t)\right|
\end{aligned}
$$

is a complete G-metric space. The set Ω can also equipped with the a partial order given by

$$
u, v \in \Omega, \quad u \preceq v \Longleftrightarrow u(x, t) \leq v(x, t), \quad u_{x}(x, t) \leq v_{x}(x, t)
$$

for any $x \in \mathbb{R}$ and $t \in I$. Obviously, (Ω, \preceq) satisfies the condition (ii), since for any $u, v \in \Omega, \max \{u, v\}$ and $\min \{u, v\}$ are the least and greatest lower bounds of u and v, respectively. Taking a monotone nondecreasing sequence $\left\{v_{n}\right\} \subseteq \Omega$ converging to v in Ω, for any $x \in \mathbb{R}$ and $t \in I$,

$$
v_{1}(x, t) \leq v_{2}(x, t) \leq \cdots \leq v_{n}(x, t) \leq \cdots
$$

and

$$
v_{1 x}(x, t) \leq v_{2 x}(x, t) \leq \cdots \leq v_{n x}(x, t) \leq \cdots
$$

Further, since the sequences $\left\{v_{n}(x, t)\right\}$ and $\left\{v_{n x}(x, t)\right\}$ of real numbers converge to $v(x, t)$ and $v_{x}(x, t)$, respectively, it follows that, for all $x \in \mathbb{R}, t \in I$ and $n \geq 1, v_{n}(x, t) \leq v(x, t)$ and $v_{n x}(x, t) \leq v_{x}(x, t)$. Therefore, $v_{n} \leq v$ for all $n \geq 1$ and so (Ω, \preceq) with the above mentioned metric satisfies the condition (I).

Definition 4.2. A lower solution of the initial-value problem (4.1) is a function $u \in \Omega$,

$$
\left\{\begin{array}{c}
u_{t}(x, t)=u_{x x}(x, t)+F\left(x, t, u, u_{x}\right),-\infty<x<\infty, 0<t<T, \\
u(x, t)=\varphi(x),-\infty<x<\infty
\end{array}\right.
$$

where we assume that φ is continuously differentiable and that φ and φ^{\prime} are bounded, the set Ω is defined in above and $F\left(x, t, u, u_{x}\right)$ is a continuous function. This section is inspired in [14, 20, 21].

Theorem 4.3. Consider the problem (4.1) with $F: \mathbb{R} \times I \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ continuous and assume the following:
(1) for any $c>0$ with $|s|<c$ and $|p|<c$, the function $F(x, t, s, p)$ is uniformly Holder continuous in x and t for each compact subset of $\mathbb{R} \times I ;$
(2) there exists a constant $c_{F} \leq \frac{1}{3}\left(T+2 \pi^{\frac{-1}{2}} T^{\frac{1}{2}}\right)^{-1}$ such that $0 \leq F\left(x, t, s_{2}, p_{2}\right)-F\left(x, t, s_{1}, p_{1}\right) \leq c_{F} \ln \left(s_{2}-s_{1}+p_{2}-p_{1}+1\right)$
for all $\left(s_{1}, p_{1}\right)$ and $\left(s_{2}, p_{2}\right)$ in $\mathbb{R} \times \mathbb{R}$ with $s_{1} \leq s_{2}$ and $p_{1} \leq p_{2}$;
(3) F is bounded for bounded s and p.

Then the existence of a lower solution for the initial-value problem (4.1) provides the existence of the unique solution of the problem (4.1).

Proof. The problem (4.1) is equivalent to the integral equation

$$
\begin{aligned}
u(x, t)= & \int_{-\infty}^{+\infty} k(x-\xi, t) \varphi(\xi) d \xi \\
& +\int_{0}^{t} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} k(x-\xi, t-\tau) F\left(\xi, \tau, u(\xi, \tau), u_{x}(\xi, \tau)\right) d \xi d \tau
\end{aligned}
$$

for all $x \in \mathbb{R}$ and $0<t \leq T$, where

$$
k(x, t)=\frac{1}{\sqrt{4 \pi t}} \exp \left\{\frac{-x^{2}}{4 t}\right\}
$$

for all $x \in \mathbb{R}$ and $t>0$. The initial-value (4.1) possesses a unique solution if and only if the above integral differential equation possesses a unique solution u such that u and u_{x} are continuous and bounded for all $x \in \mathbb{R}$ and $0<t \leq T$. Define a mapping $f: \Omega \rightarrow \Omega$ by

$$
\begin{aligned}
(f u)(x, t)= & \int_{-\infty}^{+\infty} k(x-\xi, t) \varphi(\xi) d \xi \\
& +\int_{0}^{t} \int_{-\infty}^{+\infty} k(x-\xi, t-\tau) F\left(\xi, \tau, u(\xi, \tau), u_{x}(\xi, \tau)\right) d \xi d \tau
\end{aligned}
$$

for all $x \in \mathbb{R}$ and $t \in I$. Note that, if $u \in \Omega$ is a fixed point of f, then u is a solution of the problem (4.1). Now, we show that the hypothesis in Theorems 3.5 and 3.6 are satisfied. The mapping f is nondecreasing since, by hypothesis, for $u \geq v$,

$$
F\left(x, t, u(x, t), u_{x}(x, t)\right) \geq F\left(x, t, v(x, t), v_{x}(x, t)\right) .
$$

By using that $k(x, t)>0$ for all $(x, t) \in \mathbb{R} \times(0, T]$, we conclude that

$$
\begin{aligned}
(f u)(x, t)= & \int_{-\infty}^{+\infty} k(x-\xi, t) \varphi(\xi) d \xi \\
& +\int_{0}^{t} \int_{-\infty}^{+\infty} k(x-\xi, t-\tau) F\left(\xi, \tau, u(\xi, \tau), u_{x}(\xi, \tau)\right) d \xi d \tau \\
\geq & \int_{-\infty}^{+\infty} k(x-\xi, t) \varphi(\xi) d \xi \\
& +\int_{0}^{t} \int_{-\infty}^{+\infty} k(x-\xi, t-\tau) F\left(\xi, \tau, v(\xi, \tau), v_{x}(\xi, \tau)\right) d \xi d \tau \\
= & (f v)(x, t)
\end{aligned}
$$

for all $x \in \mathbb{R}$ and $t \in I$. Besides, we have

$$
\begin{align*}
& |(f u)(x, t)-(f v)(x, t)| \\
& \leq \int_{0}^{t} \int_{-\infty}^{+\infty} k(x-\xi, t-\tau) \mid F\left(\xi, \tau, u(\xi, \tau), u_{x}(\xi, \tau)\right) \\
& \quad-F\left(\xi, \tau, v(\xi, \tau), v_{x}(\xi, \tau)\right) \mid d \xi d \tau \\
& \leq \int_{0}^{t} \int_{-\infty}^{+\infty} k(x-\xi, t-\tau) \cdot c_{F} \\
& \quad \times \ln \left(u(\xi, \tau)-v(\xi, \tau)+u_{x}(\xi, \tau)-v_{x}(\xi, \tau)+1\right) d \xi d \tau \\
& \leq c_{F} \ln (G(u, v, w)+1) \int_{0}^{t} \int_{-\infty}^{+\infty} k(x-\xi, t-\tau) d \xi d \tau \\
& \leq c_{F} \ln (G(u, v, w)+1) T \tag{4.2}
\end{align*}
$$

With the same way, we obtain

$$
\begin{equation*}
|(f v)(x, t)-(f w)(x, t)| \leq c_{F} \ln (G(u, v, w)+1) T \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|(f u)(x, t)-(f w)(x, t)| \leq c_{F} \ln (G(u, v, w)+1) T \tag{4.4}
\end{equation*}
$$

for all $u \geq v \geq w$. Similarly, we have

$$
\begin{align*}
& \left|\frac{\partial f u}{\partial x}(x, t)-\frac{\partial f u}{\partial x}(x, t)\right| \\
& \leq c_{F} \ln (G(u, v, w)+1) \int_{0}^{t} \int_{-\infty}^{+\infty}\left|\frac{\partial k}{\partial x}(x-\xi, t-\tau)\right| d \xi d \tau \\
& \leq c_{F} \ln (G(u, v, w)+1) 2 \pi^{\frac{-1}{2}} T^{\frac{1}{2}} \tag{4.5}
\end{align*}
$$

$$
\begin{align*}
& \left|\frac{\partial f v}{\partial x}(x, t)-\frac{\partial f w}{\partial x}(x, t)\right| \\
& \leq c_{F} \ln (G(u, v, w)+1) \int_{0}^{t} \int_{-\infty}^{+\infty}\left|\frac{\partial k}{\partial x}(x-\xi, t-\tau)\right| d \xi d \tau \tag{4.6}\\
& \leq c_{F} \ln (G(u, v, w)+1) 2 \pi^{\frac{-1}{2}} T^{\frac{1}{2}}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\frac{\partial f u}{\partial x}(x, t)-\frac{\partial f w}{\partial x}(x, t)\right| \\
& \leq c_{F} \ln (G(u, v, w)+1) \int_{0}^{t} \int_{-\infty}^{+\infty}\left|\frac{\partial k}{\partial x}(x-\xi, t-\tau)\right| d \xi d \tau \tag{4.7}\\
& \leq c_{F} \ln (G(u, v, w)+1) 2 \pi^{\frac{-1}{2}} T^{\frac{1}{2}} .
\end{align*}
$$

Combining (4.2), (4.3), (4.4) with (4.5), (4.6), (4.7), we obtain

$$
G(f u, f v, f w) \leq 3 c_{F}\left(T+2 \pi^{\frac{-1}{2}} T^{\frac{1}{2}}\right) \ln (G(u, v, w)+1) \leq \ln (G(u, v, w)+1)
$$

which implies

$$
\begin{aligned}
\ln (G(f u, f v, f w)+1) & \leq \ln (\ln (G(u, v, w)+1)+1) \\
& =\frac{\ln (\ln (G(u, v, w)+1)+1)}{\ln (G(u, v, w)+1)} \ln (G(u, v, w)+1) .
\end{aligned}
$$

Put $\psi(x)=\ln (x+1)$ and $\beta(x)=\frac{\psi(x)}{x}$. Obviously, $\psi:[0, \infty) \rightarrow[0, \infty)$ is continuous, sub-additive, nondecreasing and ψ is positive in $(0, \infty)$ with $\psi(0)=0$ and also $\psi(x)<x$ for any $x>0$ and $\beta \in S$. Finally, let $\alpha(x, t)$ be a lower solution for (4.1). Then we show that $\alpha \leq f \alpha$ integrating the following:

$$
\begin{aligned}
& (\alpha(\xi, \tau) k(x-\xi, t-\tau))_{\tau}-\left(\alpha_{\xi}(\xi, \tau) k(x-\xi, t-\tau)\right)_{\xi} \\
& \quad+\left(\alpha(\xi, \tau) k_{\xi}(x-\xi, t-\tau)\right)_{\xi} \\
& \leq F\left(\xi, \tau, \alpha(\xi, \tau), \alpha_{\xi}(\xi, \tau)\right) k(x-\xi, t-\tau)
\end{aligned}
$$

for $-\infty<\xi<\infty$ and $0<\tau<t$. Then we obtain the following.

$$
\begin{aligned}
\alpha(x, t) \leq & \int_{-\infty}^{+\infty} k(x-\xi, t) \varphi(\xi) d \xi \\
& +\int_{0}^{t} \int_{-\infty}^{+\infty} k(x-\xi, t-\tau) F\left(\xi, \tau, \alpha(\xi, \tau), \alpha_{\xi}(\xi, \tau)\right) d \xi d \tau \\
= & (f \alpha)(x, t)
\end{aligned}
$$

for all $x \in \mathbb{R}$ and $t \in(0, T]$. Therefore, by Theorems 3.5 and $3.6, f$ has a unique fixed point. This completes the proof.

Acknowledgments: The authors acknowledge research support from the Qassim University, Grant 2630.

References

[1] M. Bousselsal and M. Mostefaoui, (ψ, α, β)-Weak contraction in partially ordered G metric spaces, Thai Journal of Math., 12(1) (2014), 71-80.
[2] B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336.
[3] B.C. Dhage, Generalized metric spaces and topological structure I, Annalele Stintifice ale Universitatii Al.I. Cuza, 46(1) (2000), 3-24.
[4] M. Abbas, T. Nazir and S. Radenovic, Some periodic point results in generalized metric spaces, Applied Math. and Comput., 217 (2010), 4094-4099.
[5] Z. Kadelburg, H.K. Nasine and S. Radenovic, Common coupled fixed point results in partially ordered G-metric spaces, Bull. of Math. Anal. Appl., 4(2) (2012), 51-63.
[6] S. Radenovic, S. Pantelic, P. Salimi and J. Vujakovic, A note on some tripled coincidence point results in G-metric spaces, International J. of Math. Sci. and Engg. Appl., (IJMSEA), 6(VI) (2012).
[7] W. Long, M. Abbas, T. Nazir and S. Radenovic, Common Fixed Point for Two Pairs of Mappings Satisfying (E.A) Property in Generalized Metric Spaces, Abstract and Appl. Anal., 2012, Article ID 394830, 15 pages, doi: 10.1155/2012/394830.
[8] B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling, 54(1-2) (2011), 73-79.
[9] H. Aydi, B. Damjanovic, B. Samet and W. Shatanawi, Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. and Computer Modelling, 54 (2011), 2443-2450.
[10] H. Aydi, W. Shatanawi and C. Vetro, On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62 (2011), 4222-4229.
[11] H. Aydi, A fixed point result involving a generalized weakly contractive condition in G-metric spaces, Bull. of Math. Anal. Appl., 3(4) (2011), 180-188.
[12] H. Aydi, W. Shatanawi and M. Postolache, Coupled fixed point results for (ψ, ϕ)-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl., 63 (2012), 298-309.
[13] H. Aydi, A common fixed point of integral type contraction in generalized metric spaces, Jour. of Advanced Math. Studies, 5(1) (2012), 111-117.
[14] JJ. Nieto and R. Rodriguez-L.Opez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239.
[15] J.Y. Cho, R. Saadati and Sh. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl., 61 (2011), 1254-1260.
[16] H.K. Nashine, Z. Kadelburg, S. Radenovic and J.K. Kim, Fixed point theorems under Hardy-Rogers contractive conditions on 0-complete ordered partial metric spaces, Fixed Point Theory and Appl., 2012(180) (2012), doi:10.1186/1687-1812-2012-180.
[17] L. Gajic and Z.L. Crvenkovic, On mappings with contractive iterate at a point in generalized metric spaces, Fixed Point Theory Appl., 2010 (2010), doi:10.1155/2010/458086. Article ID 458086, 16 pages.
[18] M. Abbas and B.E. Rhoades, Common fixed point results for non-commuting mappings with-out continuity in generalized metric spaces, Appl. Math. Comput., 215 (2009), 262-269.

376 Zeid I. AL-Muhiameed, M. Bousselsal, M. Laid Kadri and Sidi Hamidou Jah
[19] M. Abbas, A.R. Khan and T. Nazir, Coupled common fixed point results in two generalized metric spaces, Appl. Math. Comput., 217 (2011), 6328-6336.
[20] M. Eshaghi Gordji, M. Ramezani, Y.J. Cho and S. Pirbavafa, A generalization of Geraghty's theorem in partially ordered metric space and application to ordinary differential equations, Fixed Point Theory and Appl., 2012(74) (2012), doi:10.1186/1687-1812-2012-74.
[21] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608.
[22] NV, Luong and NX, Thuan, Coupled fixed point in partially ordered metric spaces and applications, Nonlinear Anal. TMA., 74 (2011), 983-992. doi:10.1016/j.na.2010.09.055.
[23] R. Saadati, S.M. Vaezpour and Lj.B. Ciric, Generalized distance and some common fixed point theorems, J. Comput. Anal. Appl., 12(1A) (2010), 157-162.
[24] R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modelling, 52 (2010), 797-801.
[25] S. Gahler, 2-Metrische Raume and ihre Topologische Struktur, Math. Nachr., 26 (1963), 115-148.
[26] S. Gahler, Zur Geometric 2-Metrische Raume, Rev. Roumaine Math. Pures Appl., 11 (1966), 665-667.
[27] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. TMA., 65 (2006), 1379-1393.
[28] V. Lakshmikantham and Lj. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. TMA., 70 (2009), 4341-4349.
[29] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacet. J. Math. Stat., 40 (2011), 441-447.
[30] W. Shatanawi, Fixed point theory for contractive mappings satisfying ϕ-maps in G metric spaces, Fixed Point Theory and Appl., 2010 (2010), Article ID 181650, 9 pages.
[31] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. Thesis, The University of Newcastle, Callaghan, Australia, (2005).
[32] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289-297.
[33] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, in: Proc. Int. Conf. on Fixed Point Theory and Appl., Valencia, Spain, July 2003, pp. 189-198.
[34] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory and Appl., 2009 (2009), Article ID 917175, 10 pages.
[35] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Appl., 2008 (2008), Article ID 189870, 12 pages.
[36] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci., 2009 (2009), Article ID 283028, 10 pages.
[37] M. Bousselsal and Z. Mostefaoui, (ψ, α, β)-weak contraction in partially ordered G metric spaces, Accepted in Thai Journal of Math.
[38] R. Agarwal and E. Karapinar, Remaks on some coupled fixed point theorems in $G-$ metric spaces, Fixed Point Theory and Appl., 2013(2).
[39] N. Tahat, H. Aydi, E. Karapinar and W. Shatanawi, Common fixed points for singlevalued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl., 2012:48 (2012).
[40] H. Aydi, E. Karapinar and W. Shatanawi, Tripled fixed point results in Generalized Metric spaces, J. Appl. Math., 2012 Article Id:314279.
[41] H.S. Ding and E. Karapinar, A note on some coupled fixed point theorems on G-metric space, J. Inequalities and Appl., 2012(170) (2012).
[42] E. Karapinar, I.M. Erhan and A.Y. Ulus, Cyclic contractions on G-metric spaces, Abstr. Appl. Anal., 2012 (2012), Article Id:182947.
[43] H. Aydi, E. Karapinar and W. Shatanawi, Tripled common fixed point results for generalized contractions in ordered generalized metric spaces, Fixed Point Theory Appl., 2012(101) (2012).

[^0]: ${ }^{0}$ Received January 9, 2014. Revised June 8, 2014.
 ${ }^{0} 2010$ Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 ${ }^{0}$ Keywords: Fixed point, coincidence point, partially G-metric spaces, contraction, initial value.

