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A GENERALIZATION OF H. WEYL'S "UNITARY TRICK"
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J. LEPOWSKYt1)

ABSTRACT. H. Weyl's "unitary trick" is generalized to the context of semi-

simple symmetric Lie algebras with Cartan subspaces, over fields of characteristic

zero. As an illustration of its usefulness, the result is used to transfer to character-

istic zero an important theorem in the representation theory of real semisimple

Lie algebras.

1. Introduction. H. Weyl's "unitary trick", as formalized by C. Chevalley and

S. Eilenberg (see [3, Chapter IV, §7] ), enables one to transfer certain kinds of theo-

rems from compact real semisimple Lie algebras to semisimple Lie algebras over

arbitrary fields of characteristic zero. Here we shall generalize this process to semi-

simple symmetric Lie algebras with Cartan subspaces, over characteristic zero, in the

sense of [1, §1.13] and [5(b)]. This work was mentioned in the Introduction of

[4(b)].

As an application, we shall answer an algebraic question left open in [4(a)], by

transferring to characteristic zero a well-known result proved by analytic methods

over the real numbers; see §2. This solves Problem 35, p. 336, of [1], but an alge-

braic proof of the result would still be interesting. Using [5(a)], the result implies

that if & is an algebraically closed field of characteristic zero, g = E © jo a semi-

simple symmetric Lie algebra over k and a a Cartan subspace of jo, then the irre-

ducible 9 -modules containing a nonzero t -fixed vector are naturally indexed (up

to equivalence) by the Weyl group orbits in the dual of a (cf. [1, 9.1.12, 9.5.6

and 9.7.5(b)]); this is a well-known theorem of Harish-Chandra when k is the

field of complex numbers.

J. Dixmier has pointed out that the Lefschetz principle can also be used to

answer the algebraic question just mentioned. We shall discuss this in §2.

We thank G. McCollum for several helpful conversations on the subject of

this paper. A joint approach using real closed fields has been planned, but proved

to be unnecessary.
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230 J. LEPOWSKY

2.  Formulation of the main results.  In [3, Chapter IV, §7], Weyl's uni-

tary trick is expressed essentially as follows:   Let F be a property of Lie algebras

over fields. Call F linear if whenever 9 is a Lie algebra over a field k and K is any

extension of k, then g satisfies P if and only if 9^  (= 9 ®k K) does.  The uni-

tary trick is made up of two results:   First, any linear property satisfied by aU

compact real semisimple Lie algebras also holds for aU complex semisimple Lie

algebras. (This follows from the existence of a compact real form for a complex

semisimple Lie algebra.)  Second, any linear property vaUd for all semisimple Lie

algebras over one field of characteristic zero also holds for all semisimple Lie alge-

bras over any other field of characteristic zero. (This foUows from the existence

of a rational form for a semisimple Lie algebra over an algebraicaUy closed field of

characteristic zero.) Combining these two results, we can conclude that a linear

property valid for all compact real semisimple Lie algebras actually holds for aU

semisimple Lie algebras of characteristic zero.

In this paper, we shaU generalize these results to the following context:  A

symmetric Lie algebra over a field k of characteristic not 2 is a pair (g, 0) where g

is a (finite-dimensional) Lie algebra over k and 0 is an automorphism of g such

that 62 = 1 (see [5(b), §2] and [1, §1.13]). Let g = t ® p be the ±l-eigen-

space decomposition of g with respect to 0. A Cartan subspace of p is a nil

subspace a of p such that a is the intersection of p and the generalized zero

eigenspaces of ad x for all x E a (see [5 (b), §3] ).  If k is infinite, Cartan sub-

spaces exist [5(b), CoroUary 1 of Theorem 3.2]. CaU (g, 0, a) a symmetric

triple (over k). If AT is an extension of the infinite field k, then (g^-, 6K, aK)

(where the subscripts have the obvious meanings) is a symmetric triple over K

(see [5(b), Theorem 3.4(3)]). Call this triple (g, 0, a)^.

Now define a property F of symmetric triples over infinite fields to be lin-

ear if (g, 0, a) satisfies F if and only if (g, 0, a)^ does, using the above notation.

The condition that (g, 0, a) be semisimple of characteristic zero (i.e., that g be

of this type) is such a property. Hence it makes sense to speak of Unear prop-

erties of semisimple symmetric triples of characteristic zero.

If (g, 0, a) is semisimple of characteristic zero, then the Cartan subspaces

of p are the maximal abelian subspaces of p consisting of semisimple elements

[5(b), Corollary of Theorem 5.2]. If A: is the field of real numbers, call (g, 0, a)

Cartan if it is semisimple and 0 is a Cartan involution in the classical sense (i.e.,

the KiUing form of g is negative definite on t and positive definite on p); in

this case, the Cartan subspaces are the Cartan subspaces of p in the classical sense,

i.e., the maximal abeUan subspaces of p.

CaU a symmetric triple (g, 0, a) over k split if a is a splitting Cartan sub-

space of p, i.e., for aU x E a, all the eigenvalues of ad x Ue in k.   A Cartan sym-

metric triple is split, as is any symmetric triple over an algebraicaUy closed field.
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Also, any extension of a split symmetric triple of characteristic zero is split (see

[5(b), Corollary 2 of Theorem 4.2]). We say that a property P of split semi-

simple symmetric triples of characteristic zero is split-linear if such a triple ( g, 0,

a ) satisfies P if and only if (g, 6, a)K does, for any extension K of k.

In the following three theorems, "linear property" means "linear property

of semisimple symmetric triples of characteristic zero", and "split-linear property"

means "split-linear property of split semisimple symmetric triples of characteristic

zero". We shall prove:

Theorem 2.1. Any linear or split-linear property satisfied by all Cartan

symmetric triples over R also holds for all semisimple symmetric triples over C.

The context of this result is actually well known (see §3). R and C of

course denote the real and complex fields.

Theorem 2.2. Any linear property valid for all semisimple symmetric

triples (resp., any split-linear property valid for all split semisimple symmetric

triples) over one field of characteristic zero also holds for all semisimple symmet-

ric triples {resp., all split semisimple symmetric triples) over any other field of

characteristic zero.

Combining these two results, we have:

Theorem 2.3. Any linear {resp., split-linear) property satisfied by all Car-

tan symmetric triples over R also holds for all semisimple symmetric triples

{resp., all split semisimple symmetric triples) over any field of characteristic zero.

Remark .   These results do in fact generalize Weyl's unitary trick as formu-

lated above. In fact, let P he an arbitrary linear property of semisimple Lie alge-

bras of characteristic zero, and apply the above theorems to the linear property

"If 0 = 1, then P holds for g" of semisimple symmetric triples (g, 6, a) of

characteristic zero.

Remark.   It is easy to apply Theorem 2.3 to answer the open question

discussed in the Introduction of [4(a)], namely:  Is the Chevalley polynomial re-

striction map F* in Theorem 3.1 of [4(a)] onto S(a*)w, and is the Harish-

Chandra map in Theorem 4.1 of [4(a)] onto A^, in the characteristic-zero set-

ting of that paper? These maps are well known to be onto for Cartan symmetric

triples over R (see for example [2(a), Chapter X, Theorem 6.10 and Lemma 6.14] ).

Since the surjectivity of these maps is easily seen to be a split-linear property of

split semisimple symmetric triples of characteristic zero, Theorem 2.3 answers

the question affirmatively. J. Dixmier has observed that the Lefschetz principle

can also be used to answer this question. Cf. the next Remark.

Remark.   The Lefschetz principle can be used to prove Theorem 2.3.
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Actually, it enables us to pass directly from Theorem 2.1 to 2.3, bypassing Theorem

2.2. (But Theorem 2.2 is independently interesting.) Specifically, let (g, 0, a) be

a semisimple symmetric triple over the field k of characteristic zero with sym-

metric decomposition 9 = £ © p, let q be any linear complement of a in p,

and form a basis of 9 by combining bases of E, a and q. Let fc' be the subfield

of k generated over the rationals by the structure constants of 9 with respect to

this basis. Since k' is finitely generated over the rationals, k' is isomorphic to a

subfield of C. Thus we get a semisimple symmetric triple (9', 0', a') over k' such

that (g', 0', o.')k — (g, 0, a) and (g', 0', a')c is a semisimple symmetric triple

over C. If (g, 0, a) is split, let 9 = rn © a © II 9^ be the restricted root space

decomposition of g, where (¿> ranges through the restricted roots of 9 with respect

to a, and m is the centralizer of a in t (see [4(a), §2]). Choose bases of the

g * for <p ranging through a system of positive restricted roots, apply 0 to get bases

of the g * for negative i¿>, and combine these with bases of m and a to get a basis

of g. The subfield k' of k generated over the rationals by the corresponding struc-

ture constants for g is finitely generated over the rationals, giving rise to a k'-sub-

algebra 9' of g.  Since 9' is 0-invariant, we clearly get a split semisimple sym-

metric triple (9', 0', a') over k' such that (g', 0', a')k = (g, 0, a). (Cf. the

proof of Theorem 2.2 in §4.) Thus we see that Theorem 2.3 follows from Theo-

rem 2.1.  Of course, the final statement in the above formulation of Weyl's unitary

trick foUows similarly from the first statement in the formulation (on the existence

of compact real forms).

Now we must prove Theorems 2.1 and 2.2.

3. Proof of Theorem 2.1. Theorem 2.1 is an immediate consequence of the

following well-known result, whose proof we include for completeness:

Theorem 3.1.  Let (g, 0, a) be a semisimple symmetric triple over C.  Then

(g,0, a) has a Cartan real form, i.e., (g,0, a) = (9\0', a')c for some Cartan

symmetric triple (g', 0', a') over R.

Proof.  Let g = I ® p be the symmetric decomposition of g, and let Í

be a Cartan subalgebra of the centraUzer of a in i. Then \¡ — I © a is a Cartan

subalgebra of g. Let u be a compact real form of g, and t a maximal abelian

subspace of u, so that t c is a Cartan subalgebra of g. Conjugating tc to §, we

may assume that tc = Í). Let r be the involution of 9 which is 1 on u and —1

on (—l)*4 u, so that r is a Cartan involution of g. By [2(b), p. 29, Theorem 3.1]

and its proof, there exists an automorphism cj of g (regarded as a real Lie alge-

bra) such that coreo-1 commutes with 0, and co is a real polynomial in (0r)2

(since co is the positive definite fourth root of the positive definite operator (0t)2).

Hence co is complex-linear (since (0t)2 is), and co preserves £, (since 0 and r do).
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Replacing u by cou, we may thus assume that d preserves u.  Also, 0 preserves

u n i) = t. It is now clear that g' = ( E n u) © (p n (-1),/2 u) is a real form

of g, 0' = 0 i g ' is a Cartan involution of g', a' = a n g ' is a Cartan subspace of

p n g', and (g, 0, a) = (g\ 6', a')c.   Q.E.D.

4. Proof of Theorem 2.2. Since any field of characteristic zero can be ex-

tended to its algebraic closure on the one hand and is an extension of the field Q

of rational numbers on the other hand, Theorem 2.2 follows immediately from

the first part of:

Theorem 4.1. Let (v!, 6,a) be a semisimple symmetric triple over an algebraic-

ally closed field K of characteristic zero. Then (g, 0, a) has a split rational form, i.e.,

(g, 0, a) = (g', 0', a ')K for some split semisimple symmetric triple (g', 0', a ')

over Q.  Moreover, let I be a Cartan subalgebra of the centralizer of a in E (the

A-1-eigenspace of 6 in 9).  Then (g', 0', a') may be chosen so that if V = t O

g ', then I ' = t n g ' is a splitting Cartan subalgebra of the centralizer of a' in t ',

and I = l'K_

Proof.   Let § = I © a, so that § is a (splitting) Cartan subalgebra of g

(see [1, Proposition 1.13.7] or [5(b), Theorem5.2]). Let R E 6>* be the corre-

sponding set of roots, R' E R the set of roots vanishing on a, and R" the comple-

ment of R' in R.   Then the root spaces corresponding to the roots in R' lie in the

centralizer m of a in E , and in fact R' may be identified with the set of roots of

m with respect to I. Let 2+ C a* be a system of positive restricted roots, R+

the set of roots in R" whose restrictions to a lie in S+ , and R'+ a positive system

in R'. Then R+ = R'+ U Z?+ is a positive system in R.   Let II be the correspond-

ing simple system, II' = R' n II and n" = R" n II.

The automorphism 0 of g induces a linear automorphism, also called 0, of

§*, which we identify with I* © a*. Then 0 is 1 on I* and —1 on a*, and 0

preserves R. Also let a = - 0 on fy*. Then (R, o) is a normal o-system, in the

sense of [6, p. 21] (except that o might be ± 1), by [4(a), Lemma 2.3] (cf. also

[1, 1.14.14]). Thus [6, Lemma 1.1.3.2] is applicable. Hence there is a bijection

co of n " such that to2 = 1 and for all a E U ",

oa = ua + £ ßi,

where the ßt are in II' and are not necessarily distinct. Thus

(*) 6a = -ua-Y.ßi,

and also

(**) 0coa = - a- X ßi,

since ßtE i*.
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For each a G IT, define xa E § by the condition B(x, xa) = a(x) for all x E

E,, where B is the KiUing form of g, and let ha = 2xJ(a, a), where ( •, • ) is the

nonsingular symmetric bilinear form on (j* induced by B. For each a, let ea he

an arbitrary nonzero element of the root space ga, and then determine fa E g-"

uniquely by the condition [ea,fa] = ha. Then the rational Lie subalgebra gA

of g generated by {ha, ea, fa |a E IT} is a rational form of g, by [3, p. 124,

Theorem 2] (i.e., g~ is a rational Lie algebra such that g = (g')K). If we can

modify the ea (by multiplying them by scalars in K) so that the corresponding

rational form g' is 0-invariant, then our theorem will clearly be proved, since we

may then take 0' = 01 g ', a ' = a n g ' and I ' = í n g '.

For each a EU, let pa be a nonzero element of K. Define e'a = paea and

f'a = (pa)~ 1fa , so that {ha , e'a , f'a \ a E IT } generates over Q a rational form 9 '

of g. We claim that if the p^s can be chosen so that 0 e'a E g ' for all a G II,

then 0 9 ' = 9 '. To see this, note that it is sufficient to show that 0 f'a E 9 ' for

aU a E IT. But 6e'a is a root vector in 9' for the root 8a, 8f'a is a root vector in

9 for the root —8a, and

B(8 e'a ,8f'a)= B(e'a ,f'a) = B(ea , fa) = 2/(a, a),

which is rational. Hence 8f'a must be a rational multiple of any root vector in 9 '

for the root —8a. Thus 0/^ G g', proving the claim.

For a G IT, 8ea = ea, so that we may take ju^ = 1 (and hence e'a = ea

and /^ = /o,) for these a.

Now let a G IT ". Since 8R = R, - coa - 2(3f = 0a G i?, by (*). Thus

there is a permutation yx, . . . , ym of coa and the ß. such that for aU / =

I, . . . ,m,yx + • • • + 7. G.R (see [3, p. 123]). Hence

x=[fy  ,[L      ,...,[L,L\ ... ]] ±0
•m 'm — 1 '2     '1

(see [3, p. 123]), and x is a root vector in g" for the root 8a. It foUows that

there is a nonzero element caEK such that 8ea = cax.  If coa = a, then we

may take pa = (ca)~,Á. In fact, with this choice, 6e'a = 8pa ea = (c^x =

Ox^)-1^.  But all except one y¡ is in IT', and the remaining y¡ is a. Thus

ovr1* = u;m, [f;m_t,.... [/jj./y ... n e9',

and so 8e'a E g'.

If coa is not necessarily a, we must say more.  By (**), there is a permu-

tation 5 j, . . . , Sm of a and the j3f such that

-V=t/«m'[/'^-l'""[/52'/«l]   •■•U*0'
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and y is a root vector in g " for the root 0 coa. Thus there is a nonzero element

cua E K such that 0elt}0l = cway.  Applying 0 to this equation, and recalling

(letting a = 8r) that /s. E m for / ¥= r, we have

eua = U/sm. Wa,   [/«,_!'•••> [fs2>fsx]  •••]]  •••]•

Since [/6      ,..., [/6  ,/6 ]...]=£ 0 and is a root vector in g~ , we have

ewa = cwaiyi' l>2> • ■ •> [?,» VJ •••]].

where the j,- are root vectors in g~ for various negative roots. Letxx,. . . ,xs

he root vectors in g * for the corresponding positive roots. Then repeated appli-

cation of [3, p. 116, formula (20)] shows that there exists q E Q*  (=Q- {0})

such that

ofa = q(co}a)~1[xS' K-l.[*i.*«d ••• ]].

and the bracket expression is a root vector in g" for the root — 0a.  But from

the above, 9ea = cax, and x is a root vector in g~ for the root 0a. Since

B(9fa, 9ea) = B(fa, ea) = 2/(a, a) G Q*,

we must have q{ccja)~xca E Q*. and so {cwa)~xca E Q*.

We may now take pa = pU)Cl = (ca)-1/2. Indeed, 9e'a = 9paea = (cjâx =

(ßua)~xx. But in the above formula defining jc, all but one y¡ is in II', and the

remaining y¡ is coa. Hence

OWT1* =  [f'ym,  [fym_x, ■-.,  [fy2,fyx]    ■■■]]£*',

so that 9e'a E 9'.  Finally (and it is here that we use the fact that (cua)_1ía E

Q*),

= Pca(ca)~Vly = p(cJAy = p(paYly,

where p E Q*. In the above formula defining y, all but one 8¡ is in II', and the

remaining S. is a. Thus

iPaT'y = [f¡m. lf¿m_x> ■■■, U¡>2>ÜX\ ... ]] e g',

and so 9e'wot=p(payxy E g'.

Since we have chosen nonzero elements pa E K for all a G n such that 0 e'a

= 9paea E g' for all a G II, we are finished.   Q.E.D.
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