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Abstract. Given an ordered family of compact convex sets in the plane, if every 
three sets can be intersected by some directed line "consistent" with the ordering, 
then there exists a common transversal of the family. This generalizes Hadwiger's 
Transversal Theorem to families of compact convex sets which are not necessarily 
pairwise disjoint. If every six sets can be intersected by some directed line "con- 
sistent" with the ordering, then there exists a common transversal which is "con- 
sistent" with the ordering. If the family is pairwise disjoint and every four sets can 
be intersected by some directed line "consistent" with the ordering, then there exists 
a common transversal which is "consistent" with the ordering. 

1. Introduction 

Let A be a family of compact convex sets in the plane. A common transversal 

for A is a line which intersects every one of the elements of  A. Given some 
ordering of the elements of  A a directed line l is consistent with that ordering if, 
for every pair of  disjoint sets a and b intersected by l, a precedes b in the ordering 
if and only if l intersects a before b. A common transversal is consistent with 
some ordering if one of  the two directed lines corresponding to the common 
transversal is consistent with that ordering. 

Hadwiger proved that given an ordered family of  pairwise disjoint compact 
convex sets in the plane, if every three sets can be intersected by some directed 
line consistent with the ordering then there exists a common transversal of  the 
family [3], [4]. We generalize this result by dropping the condition that the sets 
must be pairwise disjoint. In so doing we offer a new proof  of  Hadwiger's 
Transversal Theorem. 

Hadwiger's Transversal Theorem says nothing about the order in which the 
common transversal will intersect the family. We give necessary and sufficient 
conditions for the existence of  a common transversal with a specific ordering. 
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2. Generalizations of Hadwiger's Transversal Theorem 

I f  a directed line intersects a pair  of  compact  convex sets, then we say that the 
direction of  the line is a stabbing direction for the pair. A stabbing direction 
induces an ordering on a pair of  disjoint compact  convex sets, namely the order 
in which any directed line with the given direction stabs the pair. 

Lemma 1. There exists a common transversal for a family of  compact convex sets 
in the plane i f  and only i f  there exists some direction which is a stabbing direction 
for every two sets. There exists a common transversal for a family of  compact convex 
sets in the plane which is consistent with a given ordering i f  and only i f  there exists 
some direction which is a stabbing direction .for ever), two sets and the induced 
ordering on disjoint sets is consistent with the given ordering. 

Proof. Assume that there exists some direction which is a stabbing direction for 
every two sets. Project the sets onto a line which is orthogonal to the stabbing 
direction. The projection of each set is a closed line segment and every pair of  
these line segments intersect. By HeUy's Theorem there exists some point in the 
intersection of all the line segments [1]. The line through this point with the 
given stabbing direction is a common transversal for the entire family. 

Now assume that there exists some direction which is a stabbing direction for 
every two sets and the induced ordering on disjoint sets is consistent with the 
given ordering. By the argument above, there exists a directed line with the given 
stabbing direction which stabs the family. Every two disjoint sets are stabbed by 
some translate of  this directed line in the given order so the directed line must 
stab every two disjoint sets consistent with the given ordering. [] 

A line separates two convex sets if each convex set lies in a different closed 
half-plane defined by the line. A line strictly separates two convex sets if it 
separates the two sets and does not intersect either of  the sets. I f  a directed line 
I strictly separates two convex sets, a, b, then we say that the direction of the 
line is a separation direction for the pair. We say that a is to the left of  l if a 
appears  to the left when facing in the direction/.  Each separation direction can 
be associated with an ordering of  ab, a to the left o f  b, or ba, b to the left o f  a. 

Lemma 2. Any direction is either a stabbing direction or a separation direction for 
a pair of  compact convex sets but not both. 

We leave the proof  to the reader. Both Lemmas 1 and 2 generalize easily to 
conditions for the existence of  hyperptane stabbers in higher dimensions. In fact, 
Lemma 1 can be generalized to a condition for k-flat stabbing in R d. 

Directions in the plane can be mapped to points on a circle. The stabbing 
directions of  two intersecting compact  convex sets map to the entire circle. The 
stabbing directions of  two disjoint compact  convex sets, a, b, map to two disjoint 
arcs on the circle. Each of  these arcs can be associated with a different ordering 
of  the sets, either ab or ba. The separation directions also map to two disjoint 
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ares on the circle. Each of  these arcs can be associated with a different ordering 
of  the sets, either ab or ha, representing a to the left of  b or b to the left of  a. 
Lemma 2 states that the circle is covered by the four arcs representing stabbing 
and separation directions and the intersection of any two of  these arcs is disjoint. 
By combining Lemmas 1 and 2 we get the following corollary. 

Corollary 1. Given a family of  compact convex sets in the plane, i f  there is some 
direction which is not a separation direction for  any pair o f  sets, then there exists a 
common transversal for  the family. 

Finally, we have our generalization of  Hadwiger's Transversal Theorem. 

Theorem 1. Given an ordered family o f  compact convex sets in the plane, i f  every 
three sets can be intersected by some directed line consistent with the ordering, then 
there exists a common transversal o f  the family. 

Proof. Let A be the family of  compact convex sets. Let S be the set of  all arcs 
corresponding to separation directions for every pair of disjoint sets in A. 
Corollary 1 is equivalent to saying if the arcs in S do not cover the circle, then 
there exists a common transversal of A. 

We can associate with each arc in S a unique label ab or ba depending on 
whether a or b is to the left of separating lines with the given direction. Let S~ 
be the set of  all arcs labeled ab where a precedes b in the given ordering and 
let $2 be the set of  all other arcs. 

We claim that the intersection of  any two arcs in $1 and $2 is empty. Let ab 
be some arc in S, and let yx  be an arc in $2. Let l be a line separating a from 
b and let l' be a parallel line separating y from x. Assume l lies to the left of  i'. 
a lies to the left of I and b and x to the right, x lies to the right of l' and a and 
y to the left. Convex sets a and x are distinct, since x and a are separated by a 
line. x cannot come before a in the ordering because a line which intersected x, 
a, b in that order would cross l twice, a cannot come before x in the ordering 
because a line which intersected y, x, a in that order would cross l' twice. By a 
similar argument, I cannot lie to the right of l' or coincide with 1'. It follows that 
the intersection of  ab and yx  is empty. 

Assume all the arcs in S cover the circle. S must not be empty, so Sa and $2 
must not be empty. Let Pi be the union of all the arcs in Si, i = 1, 2. P, and P2 
are open nonempty sets which cover the circle. Since the circle is connected, P~ 
intersects P2. This contradicts the previous argument that no arc in S~ intersects 
an arc in $2. We conclude that S does not cover the circle. Thus there exists 
some direction such that every pair of  sets in A are stabbed in that direction. By 
Lemma 1, there exists a common transversal for A. [] 

Hadwiger et al. used a similar argument to prove Proposition 27 in [4]. 
To prove Theorem 2 we use the following well-known theorem. If  every three 

arcs in a family of circular arcs have a point in common and every arc is smaller 
than a semicircle, then all the arcs of  the family have a common point. For a 
proof, see Proposition 17 in [4]. 
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Theorem 2. Given an ordered family of  at least six compact convex sets in the 
plane, i f  every six sets can be intersected by some directed line consistent with the 
ordering, then there exists a common transversal consistent with the ordering. 

Proof. Let S be the set of  all arcs corresponding to stabbing directions for pairs 
of  disjoint sets which are consistent with the given ordering. Each arc has measure 
less than 180 ° and every three arcs intersect, so the arcs have a common point. 
Lemma 1 gives a common transversal consistent with the given ordering. [] 

Theorem 3. Given an ordered family of  at least four pairwise disjoint compact 
convex sets in the plane, i f  every four sets can be intersected by some directed line 
consistent with the ordering, then there exists a common transversal consistent with 
the ordering. 

Proof. We first show that Theorem 3 is true for a family of five sets. Let 
{a, b, c, d, e} be a family of pairwise disjoint compact convex sets in the plane 
with the alphabetic ordering. For every four sets there is a directed line stabber 
consistent with the alphabetic order. Let P~bc~ be the point on the circle corre- 
sponding to the stabber of  abcd. In the same manner define points P~bce, Pabae, 
Pa~d*, and Pb,de- Any three of  these points are covered by some arc corresponding 
to a stabbing direction for a pair of  ordered sets. For instance P~b~d, Po~e, and 
Po~e are covered by the arc corresponding to the stabbing directions for ab. Thus 
every three of  these points must lie within some half-circle. If the center of  the 
circle lies within the convex hull of  these five points, then it lies within the convex 
hull of  three of the points by Carath6odory's theorem [1], and these three points 
would not lie in a half-circle. It follows that all the points must lie in some 
half-circle 0. 

Let S be the set of  all arcs corresponding to stabbing directions for pairs of  
disjoint sets which are consistent with the alphabetic ordering. Intersect each of 
the arcs in S with the half-circle 0 to form the set S'. The intersection of each 
pair of  arcs in S' contains one of  the five points. By Helty's theorem and Lemma 
1, the intersection of  all the arcs is nonempty and there exists a stabber consistent 
with the alphabetic ordering. 

We now show that Theorem 3 is true for a family of  six sets, {a, b, c, d, e,f} 
where every four sets have a stabber consistent with the alphabetic ordering. By 
the argument above, every five of  the sets have a stabber consistent with the 
alphabetic ordering. Choose the points Pabcde, Pabcdf, P~be,:, Pabdef, Pacde:, and Pbcdef 
corresponding to the six stabbers. By the same argument as before, all these 
points lie in some half-circle 0, the pairs of  arcs corresponding to stabbing 
directions intersect in O and there is a stabber consistent with the alphabetic 
ordering. 

Given any ordered family of pairwise disjoint compact convex sets in the 
plane we just showed that if every four sets can be intersected by some directed 
line consistent with the given ordering, then every six sets can be so intersected. 
By Theorem 2, there exists a common transversal for the entire family consistent 
with the given ordering. [] 
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Fig. 1. Six line segments with no common transversal in order abcdef. 

The numbers four and six in Theorems 2 and 3 are tight. Figure 1 contains 
an example of  a family of  line segments where every five can be intersected 
consistent with the alphabetic ordering but no six can. Figure 2 contains an 
example of  a family of  pairwise disjoint line segments where every three can be 
intersected by a line consistent with the given ordering while no four can. 

3. Generalizing the Generalization 

The restriction in Hadwiger 's  Transversal Theorem to families of  convex sets can 
be changed to a restriction to families of  connected sets. Given a family of  
compact  connected sets in the plane and some ordering of  the sets, if every three 
sets can be intersected by a directed line consistent with the ordering then there 
exists a common transversal of  the family. In this case, a directed line ! is 
consistent with an ordering if, for every pair of  sets a and b intersected by l 
whose convex hulls are disjoint, a prcedes b in the ordering if and only if l 
intersects a before b. The proofs remain exactly the same. 

Katchalski generalized Hadwiger 's  Transversal Theorem to the following: 

Given an ordered family of  pairwise disjoint compact convex sets in R a, if 
every three sets can be intersected by a line consistent with the ordering then 
there exists a hyperplane which intersects each member  of  the family [5]. 

Applying the same exact arguments for generalizing Hadwiger 's  Transversal 
Theorem, we can eliminate the pairwise disjointness condition in Katchalski 's 

Fig. 2. Four line segments with no common transversal in order abcd. 
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theorem. This generalization was found with the help of Richard Pollack. Jacob 
E. Goodman and Richard Pollack observed that the arguments would allow an 
even more general statement of Katchalski's theorem, namely: 

Given an ordered family of compact convex sets in R d and a connected, 
centrally symmetric region O on the hypersphere in R d, if every three sets can 
be intersected by a line consistent with the ordering then there exists a 
hyperplane which intersects each member of  the family with a normal in O. 

Pollack and Goodman generalized Hadwiger's Transversal Theorem to provide 
necessary and sufficient conditions for the existence of  a hyperplane transversal 
in d-space [2]. Their generalization included the condition that no d members 
of  the family were intersected by a d -2 - f l a t .  It is an open question whether this 
condition can be removed as it was for Hadwiger's Transversal Theorem and 
Katchalski's theorem. 
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N o t e  added  in p r o o f  Richard Pollack and Rephael Wenger recently generalized 
Hadwiger's Transversal Theorem to necessary and sufficient conditions for the 
existence of  a hyperplane transversal in d-space. Their result is valid for all 
families of  compact convex sets, solving the open problem mentioned above. 


