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Abstract. In his landmark 1977 paper [2], Hellman extends the Shannon theory 
approach to cryptography [3]. In particular, he shows that the expected number 
of spurious key decipherments on length n messages is at least 2 R(x~-"n - 1 for any 
uniquely encipherable, uniquely decipherable cipher, as long as each key is equally 
likely and the set of meaningful cleartext messages follows a uniform distribution 
(where H(K) is the key entropy and D is the redundancy of the source language). 
Here we show that Hellman's result holds with no restrictions on the distribution 
of keys and messages. We also bound from above and below the key equivocation 
upon seeing the ciphertext. The results are obtained through very simple purely 
information theoretic arguments, with no need for (explicit) counting arguments. 
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1. Definitions and Review of Hellman's Results 

Consider any uniquely encipherable, uniquely decipherable, secret-key cryptosystem. 
Let K be the key space and let H(K) be the key entropy.  Let M and  C be the 
cleartext and ciphertext message spaces, respectively. Assume that  the cryptosystem 
is endomorph ic  (i.e., M = C) or  at least that  M and C have the same number  of  
elements. Fo r  each k ~ K, let Ek: M ~ C and Dk: C ~ M be the corresponding 
enciphering and deciphering functions. 

For  any m ~ M, let p(m) be the a priori probabi l i ty  of cleartext message m. For  
any k ~ K, let p(k) be the probability that  key k will be used. F r o m  the above two 
distributions, we can easily define for any c ~ C the probabil i ty p(c) that  ciphertext 
c will be produced,  the key and message equivocat ions H(KIc) and H(MIc) upon  
seeing c, and the set Kc = {k ~ Klp(Dk(C)) > 0} of  possible keys that  can account  
for c. Finally, the key equivocation is defined by H(KrC) = ~c  p(c)H(Kfc). 

Hellman uses l(c) to denote # Kc, the number  of  elements in Kc. He also denotes 
max{(/(c) - 1), 0} by nk(C), which is the number  of spurious key decipherments 
that  are possible upon  seeing ciphertext c. The expected number  of spurious key 
decipherments offered by the cryptosystem is given by fik = ~ P(C)nk(C). 
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Let us now assume that the cryptosystem is used to send messages of length n. 
Let D stand for the redundancy of the source language. In order to get his results, 
Hellman assumes that each key is equally likely and that the cleartext messages split 
between those that are impossible and the meaningful ones, the latter being all 
equally likely. Under these assumptions, Hellman proves that ffk is very close to 
2 mr)-"° for a so-called random cipher and (which is much more interesting) that it 
is always at least 2 mr)-"D - 1 for any uniquely encipherabte, uniquely decipherable 
cipher. 

2. Our Result 

It is very nice that gk > 2mr)-"° - 1 holds not only for random ciphers but for every 
cipher. However, we feel that the assumptions used by Hellman on the key and 
cleartext distributions are too strong. Although it is good practice to choose the 
keys with uniform distribution, we know that this is not always done (consider 
what happened with the ill-fated Enigma's so-called telegram keys [1]). Moreover, 
using H(K) in this context makes the formula look unnecessarily esoteric: Hellman's 
theorem could be reformulated more simply as gk > # K~ 2"° - t. As for the as- 
sumption on the meaningful message distribution, it is obviously unreasonable. 

The point of this paper is that these assumptions are not needed to prove that 
nk >-- 2mr)-nD -- 1. 

Theorem. 

H(K) - n D  <_ H(K[C) _< lOgz(gk + 1). 

Proof. (i) In his paper [3], Shannon proves by purely information theoretic 
arguments that 

H(KIC) = H(K) + H(M) - H(C). 

By definition of redundancy, H(M) = (log2 # M) - n D .  By a general theorem about 
entropy, H(C) < log2 # C. By assumption, # M  = # C. It follows immediately that 
H(KIC) >_ H(K) - n D .  

(ii) Consider any cryptogram c. Recall that Kc = {k s Klp(Dk(C)) > 0}. Assume 
that p(c) > 0, hence # Kc > 0. Recall that nk(c ) = # Kc -- 1. Again by a basic 
property of the entropy, H(KIc) < log2 # K¢ = log2(nk(C) + t). Hence 

H(K[C) = ~ p(c)H(KIc) 
¢ 

<_ ~ p(c) logz(nk(c) + 1) 
¢ 

<log2(~p(c) (nk(c)+l) )  (by Jensen's lemma) 

< log2(~ k + 1). [ ]  

Corollary. The inequality ~ > 2 mr)-"° - 1 holds for any uniquely encipherable, 
uniquely decipherable, endomorphic, secret-key cryptosystem. 
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Note. Using similar techniques, we can also show that: 

(1) H(Kt C) = H(K) - n D  if and only if the probability distribution on the cipher- 
texts is uniform. 

(2) H(KI C) = 1og2(nk + 1) if and only if there exists a positive integer q such that, 
for all c E C such that p(c) > O, 
(i) # Kc = q, and 

(ii) the conditional key probability is uniform: p(klc) = 1/q for each k e Kc. 
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