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A Generalization of Kharitonov’s Four-Polynomial
Concept for Robust Stability Problems with
Linearly Dependent Coefficient
Perturbations

B. ROSS BARMISH, MEMBEFR, IEEE

Abstract—From a systems-theoretic point of view, Kharitonov's
seminal theerem on stability of interval polynomials suffers from two
fundamental limitations. Firsi, the theorem only appiies to polynomials
with independent coefficient perturbations. Note that uncertainty in the
physical parameters of a linear system typically results in dependent
perturbations in the coefficients of the characteristic polynomial. Sec-
ondly, Kharitono¥’s theorem only applies to zeros in the left-half plane—
more general zero location regions are not acc odated. En view of this
motivation, the main result of this paper is a generalization of Khari-
tonov's four-polynomial concept to ihe case of linearly dependent
coefficient perturbations and more general zero location regions. To this
end, a specially constructed scalar function of a scalar variable is
instrumental (o the robusiness analysis,

1. INTRODUCTION AND TERMINOLOGY

HE seminal theorem of Kharitonov |1} has provided much

impetus for recent research on the so-called robust stability
problem, e.g., see Barmish [2] for a review of the continuous-
time case and Bose and Zeheb [3] for the discrete-time case. To
motivate the type of stability problems under consideration,
consider a linear system whose characteristic polynomial depends
on some vector of underilying physical parameters ¢ € R”. For
example, the components ¢; of g might represent various mass
loadings, spring constants, and coefficients of friction. Within this
framework, the characteristic polynomial is of the form

L

p(s, @) = Y, ailg)s' ()

i={

and it is apparent that as ¢ varies over some prescribed bounding
set QO C R?, we obtain a family of polynomials ®. More
precisely,

® = {p.q9):q € Q}.

Given the setup above, the system designer often wants to know
if the zeros of all polynomials in & lie interior to some
prespecified region D in the complex plane. That is, 3 might
represent a specification on the closed-loop poles of a dynamic
system and a robust design is one which guarantees that p(s, q)
has all its zeros in ® for all ¢ € . When this condition is
satisfied, we say that @ is ©-stable. Note that this terminology is
svitable for both continuous-time and discrete-time problems—3
can be the left-half plane, the unit disk, or a wide variety of other
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regions motivated by considerations such as damping, degrce of
stability, cfc.

The breakthrough of Kharitonov {1] provides a complete
solution to one special case of the $-stability problem. Namely,
9) is taken to be the left-half plane and @ is a so-called interval
polvnomial family. More precisely, letting

a(g) = {a(@ailg) * - al@]”
Kharitonov assumes that the sef of possible coefficient varia-
tions

@ = {alq@):q € 0}

isan (# + 1)-dimensional rectangle obtained from a lower bound
and an upper bound on each individual polynomial coefficient.
Subsequently, it is established that ® is ®-stable if and only if
four distinguished polynomials, chosen from the 27+1 extremes,
all have their zcros in the strict left-half plane. Hence, the stability
problem for the interval polynomial family & is reduced to four
applications of the Routh-Hurwitz stability criterion; for a
simplification of Kharitonov's critcrion for low-order polynomi-
als, see Anderson, Jury, and Mansour [5].

There are two important motivations for the considerable
research effort following Kharitonov [1]. First, Kharitonov’s
assumption that @ is an {# + 1)-dimensional rectangle severely
inhibits application of the result to practical problems. This
rectangularity assumption is fantamount to having independent
coefficient perturbations. Hence, when a physical parameter 4
enters into more than one coefficient, one either abandons
Kharitonov's theorem or applies it to an overbounding rectangle
@ which contains @. This latter altcrnative leads to conservative
results because the sct of polynomials associated with (& may be
stable but the set of polynomials associated with @ * may turn out
to be unstable, e.g., sec Barmish, Fu, and Saleh {4].

The second motivation for further research stems from Khari-
tonov’s assumption that D is the left-halfl plane, Even when @ is
an {n + 1)-dimensional rectangle, it is easy to construct iy
regions (other than the left-half plane) for which 3-stability of the
set of 27~ L extreme polynomials is #o! sufficient for D-stability of
®. This point is established via counterexamples by a number of
authors, c.g., see Bosc and Zeheb [5] and Cieslik [6] for the case
when D is the unit disk (discrete-time systems).

These counterexamples and the difficulties encountered treating
dependent cocfficient perturbations has driven much of the recemt
research in this area. Perhaps the strongest post-Kharitonov result
to date is the edge theorem of Bartlett, Hollot, and Lin {7]; see
also Fu and Barmish [8] for a refincment of the edge theorem.
Bartlett, Hollot, and Lin assume that 3 is simply connected and
coefficient perturbations are polytopic. This polytopic require-
ment means that @ can be expressed as the convex hull of finitely
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many generating polynomials p,(s), p5(s), **, pi(s). That is,

@ =conv {p((s), p2(s), **+, p(5). (2)

This assumption on @ is weaker than Kharitonov’s rectangularity
assumption because it allows for linearly dependent coefficient
perturbations. To illustrate one of the many possible ways [2]
arises, suppose that each physical parameter ¢; is restrained to an
interval [g~, ¢/]. Then the bounding set  has at most 27
extreme points. Letting

g = lqg; - a1”
denote the th such extreme point, note that
aj=a; orq;

forj = 1,2, -+, p, and moreover, the associated generating
polynomial for the polytope ® is given by

)=, aighs’. 3)

i=0

With ® being a polytope and the assumption of simple connected-
ness on D, Bartlett, Hollot, and Lin [7] prove that ® is D-stable if
and only if the set of exposed edges of ® are D-stable, Hence, it is
sufficient to show that for each pair i, j € {1, 2, ---, I}, the
polynomiat

Pi(8, A) = Apil(s)+(1- W) p;(s) 4

is B-stable for all A € [0, 1]. This result is important because the
associated computational test for stability only involves a one-
parameter sweep. This can be readily accomplished by viewing (1
— M)\ as a variable parameter & and generating a root locus
diagram for p;(s) + kp,(s). Now, one simply checks if this root
locus remains entirely within the region D.

A number of authors provide various solutions and alternatives
to the A sweeping problem above for special cases of interest. For
example, when D is the lefi-half plane, a certain type of
eigenvalue test can be performed to ascertain D-stability of py(s,
A for all A € [0, 17; see Bialas [9] and Fu and Barmish [10).
When @ corresponds to a low-order interval polynomial family
with D being the unit disk (discrete-time), the results of Kraus,
Anderson, Jury, and Mansour [11] indicate that for polynomials
of degree 5 or less, it suffices to simply check the D-stability of
the extreme polynomials p,{(s) and various supplementary polyno-
mials which lie on the edges. Finally, for the special case when @
is an interval polynomial family which depends on a single
parameter and D is the unit disk, D-stability can be ascertained
via determinant-type calculations; see Bose, Jury, and Zeheb [12].

Meore recently, some additional alternatives to the A sweep have
appeared. Eigenvalue tests have been developed for discrete-time
systems which are quite similar in spirit to those given in Bialas
i9] and Fu and Barmish [10] for continuous-time systems; see
Bartlett and Hollot [13] and Ackermann and Barmish [14]. The
work of Zeheb [15] allows for more general D regions—only
simple connectedness of ® is assumed. Instead of 2 A sweep,
Zcheb performs a sweep involving a scalar variable used in a
parametric representation of the boundary of . A similar
boundary sweep is also the takeoff for the robust stability analysis
of Saridereli and Kern [16]. Instead of having to deal with the
combinatories of edges, their technique requires solution of a
small linear program at each point zlong the boundary of ©. This
tine of attack is also provided by Vicino [17}.

In this paper, our main result is a generalization of Khari-
tonoy’s four-function concept to the case of linearly dependent
coefficient perturbations, We also begin by sweeping the bound-
ary of D but unlike Saridereli and Kern [16], we avoid having to
solve a linear program at each boundary point. To this end, we
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construct a real continuous scalar function FI{5) of a real variable
8 and prove that ® is D-stable if and only if for cach 8 € R, H(®)
> 0; see Section III. Henceforth, we refer to H(8) as a robust
siability testing function. From an implementation point of
view, it is argued that our positivity test on H(3) need only be
carried out for 8 in a bounded precomputable interval A.

Some important points to note about this result are as follows.

1) For the special case when @ is an interval polynomial family
and 3) is the left-half plane, the four Kharitonov polynomials fall
out immediately from H(8); see Section IV. This provides unity
with the Kharitonov theory.

2) As the number of parameters g; increase, the previously
discussed D-stability results involving the pairwise combinations
Py(s, A all require enormous computational effort. For example,
if there are eight physical parameters g,, then & has 256
generating polynomials leading to 32 640 pairwise combinations
Pii(s, M) to be considered. When the number of g; increases to 11,
the number of pairwise combinations p;{(s, A) increases to
2 096 128. More generally, if there are p physical parameters g;,
the number of pairwise combinations which result is given by

Np;p=229‘1—2"‘1.

In short, as p increases, one must contend with a combinatoric
explosion in Npy. In contrast, the theory in this paper does not
require separate calculations (such as a root locus or one of the
other alternatives discussed above) for each exposed edge of ®.
The function H(3) is generated using only the extreme points of
®

3) The theory presented here accommodates rather general
regions . For example, in Section V, we consider an example
with a dominant pole specification of the following sort. The
designer wants two closed-loop poles within a radius of 1.0 from
~2 £ jand the remaining closed-loop poles with real part less
than - 5.

4) It is felt that the approach described here for linearly
dependent coefficient perfurbations suggests lines of attack for
more general classes of coefficient perturbations. This point is
briefly discussed in Section V.

Finally, to complete this overview of related literature, it
should be mentioned that there have also been considerable
research developments involving the so-called /* uncertainty
description, e.g., see Bhattacharyya [ 18] for a detailed exposition.

II. MoTivaTioN: THE SPECIAL CASE OF INTERVAL POLYNOMIALS

Before presenting the main results in Sections I1I and [V we use
common sense considerations to derive a robust stability testing
function F(5) for the special case of interval polynomials, i.e., the
set of possible coefficient variations @ is an {# + 1)-dimensional
rectangle. This simple five-step derivation provides motivation
for the type of result we seek for the more general polytope
problem. At this lower level of generality, it is easy to see how
Kharitonov’s four polynomials fall out from H(8). In Section IV
of this paper, it will be shown that our more general formula for
H(8) degenerates into the same formula obtained here.

A. Step I: Description of an Interval Polynomial Family ®

We consider the polynomial p(s, ¢) as in (1) and obtain an (n
+ 1)-dimensional rectangle for the set of coefficients @ by taking

g = [goq, -+ .17 € R+,

a{q)=q;

fori = 0,1, 2, - -+, nand the bounding set Q for ¢ to be the (n +
1)-dimensional rectangle
i=0,1, -

O={qg ERP:q, =q;=q}; v, n}
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where the coefficient bounds g and g, are prescribed a priori,
Hence, a typical polynomial p(s, g) in @ looks like

pis, @)=>, qis’
i=1

with

fori € {0, 1,2, ---, n}.
Finally, to avoid trivialities, we assume that ® contains at least
one $-stable polynomial.

B. Step 2: Description of the Four Kharitonov Polynomials

Using the notational setup above, the four Kharitonov polyno-
mials are

Ki(sy=q; +qrs+tqisi+qysi+q;s*+q7s+qfsé+ oo
Ko(sy=qf +qfs+q;si+q;sitqlist+qglsi+q;5%+ -
Kis)=qy +q, s+q; s> +q s +qs'+g s +q, 584,
Ki(s)=g, +q;s+q7s*+q; s +qrs8+qis>+qfst+---.

C. Step 3: The Generaiors for the Interval Polynomial Family
P

There are at most 27*! generating polynomials' for ® of the
form

P =S g 15" Y an_35" T4 @it astay (6)

with a; = q; nrqj" forj =0,1,2, -+, n.

D. Step 4: Bounding p(s, gq) fors = jb
A number of authors (see, for example, Dasgupta and Bhagwat
[19] and Yeung and Wang [20]) have noticed that a distinguishing
feature of the Kharitonov polynomials is that fors = j§ with § €
R, they provide the sharpest possible bounds on the real and
imaginary parts of p{ j6, ¢). More precisely, fors = jdand d €
R, we introduce the following notation for the real and imaginary
parts of the Kharitonov polynomials:
R7{8) = Re K,(jb);
R*{8) = Re K, (jo);
{8y = Im K:(/jé);
I*H(8) = Im K (/o). M

To illustrate, for # = 5, we obtain

R-(8Y-q ' —q;6 +qy;
RY*(®)=q;d*—q;8°+q];
I~(0)=g;8-q;8+478;
I'(4)=q;6°—q;6%+q, 5.

Now, it is easy to verify that [or & = 0, the sharpest possible
bounds for the real and imaginary parts of polynomials p{s, g) in
® are given by

R (8)=Re p(j8, g)=R" () 8)

! Notice that there are less than 27+ " distinct generators when some of the
¢ and ¢ are equal.
L i eq
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I~(®)=Im p(Js, @)=i"(d) )]

and for 6 < 0, the bounds become
(10
(11

R-(8)=Re p(jb, ) =R (6);

r+(8)<Tm p(jé, g)=<I (5).

E. Step 5: The Stability Testing Function H(b5)

To obtain the desired robust stability testing function H(8), we
need two observations.

Observation I: With © taken o be the left-half plane, the
interval polynomial family ® is D-stable if and only if

pUs, @)#0 (12)

forall 6 € Rand all g € Q. That is, since & contains at least one
D-stable polynomial and the zeros of p(s, ¢) vary continuously
with g, D-stability is guaranteed if and only if, forall ¢ € Q, p(s,
q) does not vanish on the boundary of D-—in this case, the
boundary of & is the imaginary axis. This type of boundary
sweeping condition is used frequently in the literature, e.g., see
Fam and Meditch [21], Argoun |22], and Hertz, Jury, and Zcheb
[23].

Observation 2: 1n view of T-stability condition {12} and the
rectangular bound above for p{s, ) (its real and imaginary part),
it follows that ® is D-stable if and only if for each 6 = 0, at
Ieast one of the four conditions R (6} > 0 or R*(8) < Oor [ (6)
> 0 or I{8) < 0holds, and, for each & < 0, at least one of the
following four conditions R=(5) > Dor R'{(8) < Qor I* (&) > 0
or I (8) < 0 holds. Equivalently, if we define

, fmax (R-(8), —R"(6), T-(3), ~1*(®))
HE) = {max{R‘(a)_ SR@),  17(6) 1)

if =0
if6<0

it now follows that ® is D-stable if and only if
H(8)>0

for all § € R. Hence, for this special case, we have derived a
robust stability testing function whose positivity is both necessary
and sufficient for D-stability. It is this concept which we now
generalize.

III. ToE MaIN REsuLTs

In this section, the main objective is to generalize the definition
of H(§) given for interval polynomials to accommodate maore
general polytopes of polynomials and more general D regions. To
this end, we introduce our two main assumptions.

Assumption 1: ® is a polytope as in (2) containing at least one
$r-stable polynomial.?

Assumption 2: O is the union of a finite number, call it #z, of
pathwise connected regions in the complex plane. We temporarily
assume (for simplicity of notation) that #;, = 1 and describe the
extension for ng, > | following the exposition of the main result
in Section IIL.3

A. Notation for Two Boundary Sweeping Functions

In this subscction, we introduce two boundary sweeping
functions, $4(5) and $(p). For various choices of 1, the first of
these functions, &g, is exploited in a number of recent papers on
D-stahility and related polynomial problems, ¢.g., see Fun and

* In fact, for the problem to be meuninglul. there is no loss of generality in
assuming that the generating polynomials 2 (8), p:{5), - -+, pds) arc D-stable.

*The theory in this paper can also be used to determine if & has a
prescribed number of zeros in each connected component of 3. To handle this
case, we need only assume that therc is at least one polynomial in @ satisfying
this given specification.
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Meditch [21], Zeheb [15], and Vicino [17]. The second of these
functions, $r, is new and will be seen to play an important role in
the construction of H(8). Since $5 and @ will be nonuniquely
defined, it is important to note that the main result to follow is
independent of the specific choice of these functions subject to the
stated restrictions. From the point of view of numerical computa-
tion, however, it will be seen that choosing ®r to be piecewise
linear turns out to be quite convenient. :

B. The Function ®5(5)

We adopt the notation ¢5,:R — 33D to denote a continuous
mapping of the scalar variable & onto the boundary of D, e.g., if
D is the half plane described by Re s = — ¢ for some ¢ = 0, then

$5,(8)= —o+jb
will suffice and if D is a disk centered at s = o + j3, we can use

if0=é=l;

_ } (a+cos 2x8) +j (8 + sin 278}
®5(8)= { 0 otherwise.

C. The Function r(p)

Let T be any region in the complex plane (chosen by the user)
which has a continuous boundary 31" and contains the origins = 0
in its interior. We adopt the notation ®p:[0, 1} — 4T to denote a
continuous mapping of a scalar variable p onto the boundary of T'.
For example, one simple choice would be to take I' to be the unit
disk and

Pr(p)=cos mo+J sin 2wp

for p € [0, 1]. Note that this choice is valid for both continuous-
time and discrete-time systems,

D. Remarks About &3, and $p

The important point to note is that the user of the theorem to
follow does not need to generate closed-form expressions for
by, (8) and ®r{p). The mechanization of the D-stability criterion
in the theorem to follow simply involves sweeping the complex
variable s along the boundaries of 93 and 91" That is, one simply
takes $5,(8) = s when 5 is being swept over the boundary of D
and ¥r(p) = s when s is being swept over the boundary of I'.
Hence, in numerical computations, we do not need to have
explicit formulas for &4,(8) and $1(p). We simply view 4 (§) and
$r(p) as symbolic notations.

E. Generation of the Robust Stability Testing Function H(5)

As a preliminary step, we introduce the following inner product
notation. Given two complex numbers z; and z,, let

(21, 22) = Re gy * Re +Im g; * Im 2.

Then, for each fixed pair (p, 8) € [0, 1] X R, let

hip, 8) = . (®r(p), Pi(22(8D). 13

Now, for each fixed § € R, let p*(8) denote any maximizer of
h(p, 8) with respect to p € [0, 1]. Then we define
H(8}=h(p*(6), 8) (14)

or equivalently,

H(8)= max h{p, 6) (15)

PENLI]
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F. Theorem (See the Appendix for Proof)

Consider the polytope of polynomials @ and the region D
satisfying Assumptions 1 and 2. Then ® is D-stable if and only if
for each 6 € R,

H(8)>0. (16)

G. Extension for ny, > [

Recalling the temporary assumption that np = 1, an examina-
tion of the proof in Appendix A readily reveals that when ny, > 1,
the test for D-stability of @ is trivially modified as follows. One
generates a separate H(8) function for each of the components of
D—nyg of them in this case. Subsequently, D-stability of @ is
guaranteed if and only if all of these functions satisfy the positivity
requirement in the theorem above. This is illustrated in Section V
via an example.

H. Restriction of the § Sweep io @ Bounded Interval A

Since the set of polynomials coefficients associated with & is
compact, the zeros of polynomials in @ lie in a bounded subset of
the complex plane. The consequence of this fact is that when O is
unbounded (for example, when 3 is a half plane), it is not
necessary to perform a sweep over the entire boundary of D in
testing for positivity of H(6). By computing a crude bound for the
zeros of polynomials in &, we can restrict the boundary sweep to
a bounded subset of 3. Equivalently, the §-sweep can be
restricted to a bounded interval A € R. For example, given a
polynomial

ps)=3, as'

i=l

it is well known (see, for example, Marden [24)) that all the zeros
of p(s) are interior to a circle of radius

r = 1+max {|a/a,!: i=0,1,2, ---,n—1}.

Hence, for a polytope of polynomials ® as in (2} whose ith
generator is given by (3), it is easy to verify that any polynomial in
® must have its zeros interior to a circle of radius

max {|g;(g")] 1i=1,2, -+, 1;j=0,1, -+, n—1

R = - —
“ min {lay(@)] < i=1,2, - 1}

(17

It now follows that the § sweep can be restricted to the
intersection of the sphere of radius R and the boundary of D. For
example, if D is the left-half plane, then with $4(8) = j6, one
need only consider § € A = [~ R, R]. Itis also easy to show that
H(8) = + oo as |[§] — oo. Hence, in practice, it is usually not
necessary (o compute a priori bounds for the & sweep. Of course,
if D is already bounded (for example, if D is the unit disk), the
bounding procedure above is not necessary. Finally, it is also
worth noting that the sweep can also be reduced when one part of
the boundary of D is the complex conjugate of another part of the
boundary. For example, when 3 is the left-half plane and ®5(5)
= j&, one need only consider & = 0.

1V. KHARITONOV POLYNOMIALS AS A SPECIAL CASE AND

COMPUTATIONAL SIMPLIFICATION

In this section, we consider the special case of the theorem
above which results when T is taken to be the /' unit ball, i.e.,

P={y,+iv2:In|+lyd=1}.
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There are two reasons for considering this special case. First,
when @ is an interval polynomial family and D is the left-half
plane, this choice of T' is shown to lead to the same robust stability
testing function H(8) which was obtained for the Kharitonov
analysis in Section II. That is, we obtain a unification with the
Kharitonov theory.

The sccond motivation for this choice of I' stems from
computational considerations. Although the choice of ' is rather
arbitrary as far as validity of the theorem is concerned, numerical
computation is quitc a different matter. When T is the /* unit ball,
we oblain a degree of simplification in the computation of H(8)—
even when (P and © are unrestricted. For fixed 8, it will be seen
that i{p, &) turns out to be a piecewise linear concave function of
p € [0, 1]. This is seen to facilitate numerical computation of
p*(5) and H(5).

A. Step I: Description of ®(p) with T as the I! Unit Bali

It is straightforward to verify that the interval [0, 1] is mapped
continuously onto the boundary of the {' unit ball by
(1--4p)+jdp
(1-4p)+/(2-4p)
(—=3+4p)+j(2-4p)
(=3+4p)+j(-4+4p)

if0sp=l1/4;
if 1/4<p=1/2;
if 1/2<p=3/4;
it 3/4<p=<1,

b (p)=

B. Siep 2: Computation of hfp, 8) with Polvtopic @, General
D, and 1" being the ' Unit Ball

By substituting the expression for ®;{p) above into (13), we
obtain

i, 8)  if0=p=1/4;
ha{p, 6) if 1/4<p=1/2;

Mo Y=\ o, 8) i 1/2<p<3/8;
hip, 8)  if3/4<p=l

where, for fixed 5§ € R, the functions #;(p, 8) above are piecewise
lincar and concave with respect to p € [0, 1] and given by

hy{p, 8) = min {{1 —4p) Re p, (25, (5)) + 4p Im p(P5(8))};

Jz2(p, 8) = min {(1-4p) Re pi(5(8)) +(2—4p) Im pi(25(8)};

i=

Ao, 8) = min {(—3+4p) Re p,($(8)}

F(2—4p) Im pi($5 (8D}
Ry(p, 8) = min {(—3+4p) Re p;($4(6))
=l

+(—4+4p) Tm p(®5(8))}.

C. Step 3: Computation of H(8} with Polytopic ®, General D,
and T being the ' Unit Ball

Now, in accordance with (15), A(R, &) must be maximized with
respect o p € [0, 1]. In view of Step 2, this leads to the formula

H (&) =max {H, (8}, H:(8), H:(8), Hi(8)}
where
Hi(8)=

max hilp, 6}

pE— 117406740

fori =1,2,3, 4.
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Note that the generation of the scalar functions H,(8) above is
quite straightforward and readily lends itself to computer-aided
graphics. For fixed 8, one can easily display the piecewisc linear
scalar function A;{-, 8} and the maximum valuc H;(d) can be
simply picked off the graph. Subsequently, as & varies, the graph
of A,(-, 8) shifts and H{(8) is obtained as the upper envelope of
this one-parameter family of functions.

D. Step 4: Further Specialization—Kharitonov’s Problem

The main objective in this subsection is to compute a closed
form for H(8) for the special case when @ is an interval
polynomial family, D is the left-half plane, and p is the / ! unit
bali—this is the problem considered by Kharitonov. It will be
shown that our general formula for H(5) degenerates into the
same formula derived in Section ITI by common sense consider-
ations,

Indeed, we take the generating polynomials p;(s) for @ as given
in (2) and begin with the computation of F,(8). Now, for 6=0
and p € [0, 1/4], we have

hi(p, 8)=min {(1—4p) Re p{ ®5,(8)) +4p Im pi(25(8))}
iz
=(1—4p)R ~(8)+ 4pI ().

Hence, it is immediately apparent that the maximum of A, (p, 8)
with respect to p € [0, 1/4] is attained at either p = O orp = 1/4.
That is, for § = 0,

H (&)=max {R (8), I~(8)}.
A similar calculation for & < 0 results in

H(8)=max {R (8), I*(8)}.

The computations of F;(8), H;(8), and FH,(3) are performed in an
identical manner and lead to '

[ max {-R-(6), 1-(3)}  if6=0;
H(8)= {max {—R*(3), I"(®)}  if 6<0;
_ § max {-R*(&), -1+ (8)} if 6=0;
H30)= [max {—R*(®), —I(8)} ifds<0y
_{max {R (&), —1-(3)} ifs=0;
Hy(8)= [max {R-(8), —I*(8)) ifé<0.

Finally, substituting the H;(5) into the expression for H(§), we
obtain

H(8)=max { H1(8), H2(8), H(8), Huld)}

_{max {R-(8), —R"(8), I7(&), —~17(8);
T max {R(8), —R*(8), —I(8), I*(8)}

which is identical to the H(6) function obtained in Section II-A.

if 6=0;
ifd<0

V. NUMERICAL ExamPLES

In this section, two numerical cxamples are provided to
illustrate the application of the main results.

A. Example I: Dominant Pole Problem
We consider a perturbed polynomial of the form (1) given by
pls. @)=+ (10+g)s* + (29+4,)s+ (304 ¢ + @)
and observe that the nominal polynomial p(s, 0) has zeros at 5 =

—6ands = —2 + j. To illustrate application of the theory,
suppose that the objective is to guarantee that two of the zeros
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remain within circles of radiie = 1 centeredats = —2 + jand
the third zero has real part < — 5. We take uncertainty bounds of
the form

lail<g;

where ¢; = 0 for i = 1, 2. To further simplify, we take

fi=qr=4q

and study the satisfaction of the zero location specification as a
function of ¢. That is, how large can § be before D-stability is
lost?*

To begin the analysis, note that Assumptions ! and 2 of Section
III are satisfied becausé the & region for this problem is the union
of three pathwise connected sets (a half plane and two disks) and
p(s, 0) is D-stable. For various values of §, calculations were
subsequently performed as follows.

1) Four exireme polynomials were formed as prescribed by
(3).

2) The boundary sweeping function &y, for a half plane and two
disks was taken as in Se¢tion lII-B withe = 5, = =2, and § =
—1.

3) The set T" was takcn to be the /' unit ball.

4) A bounded interval A for the & sweep was determined using
the crude bound (17).

5) The robust stability testing function was generated in
accordance with the recipe in Section IV and plotted.

The plots given in Figs. 1-3 indicate the H(8) function for three
representative values of the perturbation bound §. By inspection,
we see that H(8) goes slightly negative § = 0.40 [see Fig. 1(a)
and (b)] indicating that this value of § is near the marginal stability
point. For illustrative purposes, also notice that. H(6) goes
negative for § = 5.0and § = 10.0 [see Fig. 2(a) and (b) and Fig.
3(a) and {b)]—indicating a lack of ®-stability. In order to find the
maximum tolerable perturbation bound ., a number of addi-
tional runs were made for values of g between 0.25 and 5.0. It
was concluded that

Gmax =0.35.

B. Example 2: Discrete-Time Interval Polynomial

This example was previously considered in Bose, Jury, and
Zeheb [12]. By generating the H{8) function, we show that the
perturbation bound (g = 0.47) obtained by these authors can be
increased by more than a factor of two. Indeed, we take D to be
the unit disk and investigate the D-stability of the interval
polynomial family described by

p(s, @)=(5+gu)s* + (1 +@3)s* + (1 + )57+ (1 +g)5+ (1 + g9)

with perturbation bound
lail=g

fori =0, 1, , 5. The objective is to determine the largest
value of § for which D-stability is guaranteed. The analysis
proceeds in the same way as indicated in 1)-5) of Example 1. In
Fig. 4, we see that for § = 0.4, A(5) remains positive and D-
stabality is therefore gnaranteed. On the other hand, in Fig. 5, we
see that for § = 1.25, H(5) dips negative indicating the absence
of ®-stability. Finally, in Fig. 6, we show the marginal D-
stability case. That is, for

§= Gnax=1.0,

the minimum value of H{(8) is close to zero; we computed a
minimum value of 0.0106.

* It is important to note that the specification on the zeros of p(s, q) is
satisfied when ¢ = 0. This fact is important because the D region has three
components.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VQOL. 34, NO. 2, FEBRUARY 1989

2. 00

16,90

iz.o0
—
™
o

».00

H IDELTH)
- .
>y

“b.a0 0.z 0.u0 weo | fee i.00
(a)
22 Ve
° 4
'Inhn. LT uan L1 g o.u0 [T )
(b)
Fig. 1. (a) H(8} for Example 1 with § = 0.4 (disk). (b) H(5) for Example 1
with § = 0.4 (axis).
g
g
&/ \\
g \
25‘* / \\ f/\‘
\ \«\M._/
g
7

Too o.2a LT D) a.B0 1Lon
QELTA

240

iae

o]
“'_'“::-
f:’

HIDELTA)
_,;
=

9,80

0,00

-0, B0
-~
==
‘5‘
‘v_’

Fig. 2. (a} H($) for Example 1 with § = 5.0 (disk). (b) H($} for Example 1

with § = 5.0 (axis).



BARMISH: KHARITONOV'S FOUR-POLYNOMIAL CONCEPT

Fig. 3.

H(DELTA)

{a) H(8) for Example | with é. = 10.0 {disk). (b) H(&) for Example |

Ll

4,00 .00

HIDELTA1
z.9d

a. bk
%x
-

:.J
|

Nl ’_
F. ||II' hl |I| |I|

i | h ||h'|“r|'. I '|H|' i i
y il |"'||_|'i'I i '.r!ll H
i

r;)FI"H

with § = 10.0 (axs).

L7RI
8
i

HIDEL™R

]
iy
——
=l
=
o
T

a
2

=06 7.z [T .50 [T
OELTA

Fig. 4. H(§) for Example 2 with § = 0.4,

3

I il
il 1l
=1 |I |1 i
|
)| R
- | |
- | |
5 I| |
Bg Lo nof
= .!'U.'r|| l'.__,J"|I I'l
| A
i || (A ! i
a bt [ '|I.| \I | (
IR IV
Wy N
2 '\J' ||r;'
[T o.an oo [T 0.0y oo

CE.TA

Fig. 5. H(8) for Example 2 with § = 1.25.

.
gl 1y W
= i || A |I |
! TR I !
| WINNA
= V] Il'l I| ||I i | I'. |
a ol Vo [ . |
I. Il ' ]n"J Il |I L ! I| ||I
g , "\.I L| 1
AT 720 0,40 T aBr 1o
DELTR

Fig. 6. H(3) for Example 2 with § ~ 1.0
VI. CONCLUSION

To keep the concluding discussion simple, suppose 3 is the
strict left-half plane. Then this paper and a number of others all
begin their technical analysis from the same siarting point.
Namely, under the stated assumptions, robust stability is guaran-
teed if and only if the point s = 0 is excluded from the set of
polynomial values

Qw)={pjw, q) 1 q € O}

for all frequencies @ € R. This relationship between zero
exclusion and robustness has been known for a long time, e.g.,
when the coefficients ;(g) are multilincar functions of g, the
robustness problem is set up precisely in this manner in Zadeh and
Desoer [25]. What fuels current research is the issue of
computational tractability, i.e., are therc classes of robustness
problems for which the test for zero exclusion is reasonable 10
perform. The polytope structure provided here is one such
example.

For the more general multilinear problem, Saeki |26] provides
a sufficient condition for robust stability by working with the
recent paper by de Gaston and Safonov [27}, which provides an
algorithmic approach for testing the zero exclusion condition.
They provide a cutting hyperplane-type algorithm to ascertain
whether or not 0 € {}(w), and in a follow-up paper, Sideris and de
Gaston [28] extend these ideas to handle the case when the a{q)
arc polynomic functions of g.

The research presented here raises the possibility that for the
multilinear coefficient perturbation problem, there may be an
analytical test for stability, e.g., perhaps it is possible to
generalize the definition of the robust stability testing function
H(8) so as to handle this case. To this end, note that the so-called
mapping theorem in Zadeh and Desoer [25] can be used to prove
that the smallest convex set containing the set of possible
coefficients @ is a polytope having generators given by (3); this is
one of the main ideas in a paper by Saeki [26]. Hence, onc is
tempted to conjecture that in the multilinear case, the same
formula (15) can be used for F{8). Unfortunately, this conjecture
is false; the conservatism associated with this convex hull
approach was first recognized in de Gaston and Safonov [27] and
in Barmish, Fu, and Saleh [4], a counterexample of the following
sort is provided. All coefficients in @ represent strictly stable
polynomials but the convex hull of @ includes coefficient vectors
associated with unstable polynomials. Hence, using the convex
hull of @ instead of & itself clearly introduces a degree of
conservatism into the analysis. That is, positivity of H(8) is
sufficient but no longer neccssary for D-stability.

APPENDIX: PROOF OF THEOREM

Preliminaries: First, it should be observed that every polyno-
mial in & is & convex combination of the form

!
ps, M) = 3 Apils)

i=1
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with
A= [)\]?\2 T }\;]T

in the unit simplex

‘
A= {)\ € R': \=0for al]a"andz ?\,—=l] .

i=1

The proof will be carried out in three steps. Note that the first step
of the proof involves a rather standard connectivity argument
which we include for the sake of completeness.

Step 1: We claim that @ is D-stable if and only if

p(&p(8), M)#0 {18)

forall & € R and ali A € A, First, the necessity of condition (18)
is trivial because if p(®5,(6%), A*) = 0 for some §* € R and some
X* € A, then we have a contradiction to the D-stability of @; i.e.,
there is a polynomial in (¢ having a zero outside the interior of 9.
The sufficiency of condition (18) is also proved by contradic-
tion. Indeed, suppose condition (18) holds but & is not D-stable.
Then for some A € A, the polynomial p(s, A" has at least one
zero outside the interior of . Now, we let p,(s) denote any D-
stable polynomial in & (recall Assumption 1) and with ¢ € [0, 1],
we define the a-parameterized family of polynomials in ® by

f(s, @) = (1=a)p(s)+ap(s, \)

and notice that this family is contained within ®. Moreover,
Sf(s, 0} = p,(s) has all its zeros interior to D and f(s, 1} = p(s,
A% has at least one zero outside the interior of ©. Hence, by
continuity of the zeros of f{s, o) with respect to o, it follows that
there exists some a* € (0, 1] such that f(s, «*) has a zero in dD;
say s = z* € 9D is this zero. Now, choosing 6* € R such that
P (%) = z*, and A* € A such that

pls. M)=Ff(x, a*)
for all s, it follows that
p(Pp(8%), A¥)=0

which is the contradiction we seek.

Step 2: In this step of the proof, we use a separating hyperplane
argument. To this end, for each § € R and each A € A, we break
D(®5(5), M) into its real and imaginary parts

P(®5(8), N)=Re p($5(8), N+ +j Im p(25(8), A)

and simply note that the satisfaction of D-stability requirement
(18) is equivalent to the following condition. For each § € A,
either

Re p($94(8), M)#0 {19)

or
Im p(®y(8), A)#0. 20
Now, for each fixed § € R, we define the polytope
Y& ={p(2p(8). M) : N € A}
=conv {pi($5(8)), P2{®s(8)), -, PP (8N}

It now follows that the satisfaction of (19) and (20) is equivalent to
the requirement that the origin in the complex plane can be
separated from the polytope £}{8) by a line. Hence, ® is D-stable
if and only if for each 6 € R, there exists some nonzero vector g
= [y 72] such that

1 Re p(Pgp(6), M)+ 19z Im p($5(8), X} >0
for all A € A.

@n
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Step 3: In this final step of the proof, we examine the
ramifications of the separating hyperplane condition (21) for -
stability. The first point to note is that we restrict attention to y €
aB because of the homogeneity with respect to # on the left-hand
side of (21).

The second point to note is that the 3)-stability condition (21)
need not be checked for all A € A. That is, 0 can be separated
from §(§) if and only if 0 can be separated from the set of extreme
points of 2(8). Hence, it follows that ® is D-stable if and only if
for each 8 € R, there exists some 5 € 8T such that

m Re pi(P5(8))+ 92 Im p($5(8)) >0 (22)
fori € {1,2, ---, I}. Equivalently, ® is )-stable if and only if
for each &6 € R, there exists some p € [0, 1] such that

Re &r(p} * Re pi($5(8))+1m &r(p) + Im pi($p(8D>0

fori € {1, 2, ---, I}. Substituting for A(p, 8) above, we arrive at
the following point: @ is D-stable if and only if for each § € R,
there exists some p € [0, 1] such that

h(p, 6)>0.

The proof is now completed by re-expressing this condition in
terms of the maximum of #(p , 6) with respect to p € 10, 1]. That
is, ® is D-stable if and only if for each € R,

0<h(p*(8), &)=H(8).
The proof of the theorem is now complete.
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