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The Pratt-Arrow measure of local risk aversion is generalized for the n-dimensional
state-preference model of choice under uncertainty in which the decision maker may

have inseparable subjective probabilities and utilities, unobservable stochastic prior wealth,
and/or smooth nonexpected-utility preferences. Local risk aversion is measured by the
matrix of derivatives of the decision maker’s risk-neutral probabilities, without reference to
true subjective probabilities or riskless wealth positions, and comparative risk aversion is
measured without requiring agreement on true probabilities. Risk-neutral probabilities and
their derivatives are shown to be sufficient statistics for approximately optimal investment
and financing decisions in complete markets for contingent claims.
(Criteria for Decision Making Under Risk and Uncertainty; Risk Aversion; Uncertainty Aversion;
Expected-Utility Theory; Nonexpected-Utility; Smooth Preferences)

1. Introduction
Risk aversion is commonly defined as a departure
from expected-value-maximizing behavior: A risk-
averse person always prefers a riskless wealth posi-
tion to a risky position with the same expected
value. For a decision maker with expected-utility pref-
erences, determinate probabilities, state-independent
utility, and observable wealth, this definition is as
good as any other, and the decision maker’s degree of
risk aversion is conveniently represented by the Pratt-
Arrow measure (de Finetti 1952, Pratt 1964, Arrow
1965), which quantifies the local curvature of her
Bernoulli utility function. However, in many econom-
ically interesting situations involving uncertainty, the
definition of risk aversion by reference to expected
values and riskless wealth can be problematic, espe-
cially from the viewpoint of an observer. Probabilities
may be subjective and utilities may be state depen-
dent, in which case probabilities and expected val-
ues are not uniquely revealed by preferences. If the

individual has nonexpected-utility preferences—e.g.,
if she exhibits aversion to uncertainty—her beliefs
may not even be representable by additive probabili-
ties. Individuals may also have significant unobserved
prior stakes in events and they may face uninsurable
risks, in which case riskless wealth positions may be
ill defined or unattainable, and without independent
knowledge of correlations with prior wealth it is not
clear whether the acquisition of another “risky” asset
produces an increase or decrease in overall risk. Yaari
(1969) has suggested a more elementary definition of
risk aversion that does not depend on observability
of probabilities or prior wealth, namely that a deci-
sion maker is risk averse if her preferences are payoff
convex, that is, convex with respect to deterministic
mixtures of payoffs within states of the world. The
latter definition, which we shall adopt here, agrees
with the conventional one for decision makers who
are expected-utility maximizers, and it also applies
in a straightforward way to decision makers with
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Figure 1 Indifference Curves of Four Individuals for Wealth in Two States
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state-dependent utility or nonexpected-utility prefer-
ences,1 although it is not the only possible definition
of risk aversion in the latter cases (e.g., Machina 1995,
Epstein 1999). This paper derives a matrix-valued
measure of risk and uncertainty aversion that gener-
alizes the Pratt-Arrow measure to the broader frame-
work of Yaari’s definition.
To motivate the discussion, Figure 1 shows the

indifference curves of four hypothetical individuals
with respect to distributions of wealth over two states
of the world. The curves are aligned so that the ori-
gin of coordinates corresponds to the status quo for
each individual, although it is not a riskless posi-
tion for anyone: They all have stochastic prior wealth.
Alice claims to be an expected-utility maximizer
having the utility function U�w� = −p exp�−rw1�−
�1− p�exp�−rw2�, with p = 1/3	 r = 0
2, and prior
wealth distribution (w1	w2� = �2
8	4
3�. Thus, Alice
exhibits constant absolute aversion to risk with a risk
aversion coefficient of 0.2, and she evidently assigns
probability 1/3 to State 1. Bob has a Cobb-Douglas
utility function, U�w� = w�

1w
1−�
2 , with � = 0
355 and

1 Risk aversion concepts for nonexpected-utility preferences under
risk are discussed by Chew et al. (1987), Chew (1995), Cohen (1995),
and Courtault and Gayant (1998). Here the focus is on choice under
uncertainty, where probabilities of events are at best subjective and
at worst indeterminate.

prior wealth distribution (2.5, 3.0). Of course, this
is equivalent to having expected-utility preferences
with logarithmic utility and a probability of 0.355 for
State 1, but Bob insists that he does not subscribe
to expected-utility theory and has no opinion con-
cerning the probabilities of the states; his preferences
just “are what they are.” Carol has state-dependent
expected-utility preferences represented by the utility
function U�w� = −p exp�−r1w1�− �1− p��exp�−r2w2�

with r1 = 1, r2 = 0
05. Thus, Carol is much more risk
averse than Alice in State 1 (as measured by concav-
ity of utility for State-1 wealth), while she is less risk
averse in State 2. However, she is evasive about her
other utility parameters: She says it’s possible that
her probability of State 1 is p = 1/3, her rate of util-
ity substitution between states is �= 1, and her prior
wealth is (2.8, 2.0). However, it could be that p = 1/2
and �= 2. Or, perhaps her prior wealth is (3.023, 2.0)
while p = 1/3 and � = 0
8. As she is fond of point-
ing out, it really doesn’t matter: Her preferences for
changes in wealth would be the same in all three
cases. Carol also suspects that Alice has been less than
truthful: She thinks that Alice has additional, undis-
closed wealth in State 1 and that Alice’s true probabil-
ity for State 1 is really greater than 1/3, but she can’t
prove it merely by watching how Alice bets or trades
with others.
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Finally, Dan has nonexpected-utility prefer-
ences represented by the utility function U�w� =
−exp�−r�pw1 + �1−p�w2��−exp�−r�qw1+�1−q�w2��,
with p = 0
05, q = 0
95, r = 2, and a prior wealth
distribution of (1.25, 1.0).2 Coincidentally, everyone
has the same marginal rate of substitution for wealth
between States 1 and 2, namely that $3 in State 1
is equivalent to $2 in State 2—in other words, the
risk-neutral probability of State 1 is 0.4 for everyone—
perhaps because they have already engaged in trade
with each other, or perhaps because they are in con-
tact with an external market in which the price of a
State-1 Arrow security is 0.4.
Suppose that we wish to measure and compare the

degrees of local risk aversion of these four individu-
als to determine their relative propensity to gamble,
purchase risky assets, or take other decisions under
uncertainty, starting from their status quo wealth
positions rather than primordial riskless positions.
The usual definitions of risk aversion and risk pre-
mia do not apply because probabilities and current
wealth positions are ill defined or unobservable, and
only Alice’s local risk preferences can be characterized
by a scalar Pratt-Arrow measure. However, all four
are plainly risk averse in the sense of having prefer-
ences that are payoff convex, and they can even be
strictly ordered in terms of their degrees of local risk
aversion: Alice< Bob<Carol<Dan. The indifference
curves passing through their status quo wealth posi-
tions are the frontiers of their respective sets of accept-
able gambles—which are observable—and following
Yaari (1969), an individual with a strictly smaller
set of acceptable gambles is “more risk averse.” To
compare local risk preferences in these terms, it is
unnecessary to know anyone’s probabilities, utility
functions for money, or prior wealth: It suffices to con-
sider the slope and curvature of their respective indif-
ference curves. Yaari explored the two-dimensional

2 A utility function of this form can be used to model uncertainty
aversion and rationalize the Ellsberg and Allais paradoxes (Nau
2002, Klibanoff et al. 2002). Here, it is as if Dan has linear util-
ity for money but he is uncertain about the probability of State 1,
which he feels is equally likely to be either 0.05 or 0.95, and he
has “constant absolute aversion to uncertainty” with an uncertainty
aversion coefficient of 2.

case, showing that the degree of local risk aver-
sion could be measured by the second derivative of
the parameterized indifference curve. However, the
latter measure does not generalize easily to higher
dimensions.
This paper derives a measure of local risk aver-

sion for the general n-dimensional case, in which
the curvature of indifference curves is measured by
the matrix of derivatives of the decision maker’s
risk-neutral probabilities—i.e., the derivatives of the
normalized gradient of her ordinal utility function.
In the special case where preferences are separable
across mutually exclusive events, the new risk aver-
sion measure is additively separable and reduces to
a state-dependent form of the Pratt-Arrow measure,
in which case the decision maker is uncertainty neu-
tral.3 For such an individual, the risk-neutral distribu-
tion is the “correct” probability distribution to use in
conjunction with the Pratt-Arrow measure when cal-
culating risk premia in the presence of background
risk and/or state-dependent utility. Under more gen-
eral preferences, the new measure incorporates both
second-order risk aversion and second-order uncer-
tainty aversion. A nonneutral attitude toward uncer-
tainty is revealed when a decision maker is uniformly
more risk averse toward bets on some events than
toward others, as discussed in a companion paper
(Nau 2002).
The organization of this paper is as follows.

Section 2 presents the modeling framework and def-
initions of risk aversion and risk premia. Section 3
derives the main result, namely a generalization
of the Pratt-Arrow measure for the general n-state
model. Section 4 considers the special case of sep-
arable preferences—essentially, state-dependent sub-
jective expected utility without uniquely determined
probabilities—for which the risk aversion measure is

3 A decision maker is “uncertainty averse” if she dislikes bet-
ting on events with ambiguous probabilities, as in Ellsberg’s para-
dox, and “uncertainty neutral” otherwise. Second-order aversion
to risk or uncertainty arises from the curvature of indifference
curves, whereas first-order aversion arises from kinks in indiffer-
ence curves (Segal and Spivak 1990). In the Choquet and maxmin
expected-utility models, uncertainty aversion is exclusively a first-
order effect, whereas the focus of this paper is on second-order
effects—i.e., smooth rather than kinked preferences.
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vector valued. Section 5 discusses comparative risk
aversion and marginal investment behavior; §6 con-
siders decision making in markets under uncertainty;
§7 applies the market results to a project valuation
decision, and §8 presents concluding comments.

2. The Model
The analytic framework used here is that of
state-preference theory (Debreu 1959, Arrow 1964,
Hirshleifer 1965), which includes, as special cases,
models of expected utility, subjective expected util-
ity, state-dependent utility, and Choquet and maxmin
expected utility as they apply to monetary acts. In
the state-preference framework, objects of choice are
distributions of monetary wealth over states of the
world, represented by vectors in �n. The decision
maker’s preferences among such wealth distributions
are minimally assumed to satisfy the basic axioms
of consumer theory (completeness, transitivity, con-
tinuity), which imply that they can be represented
by an ordinal utility function U and visualized in
terms of indifference curves in payoff space, as illus-
trated in Figure 1. In general, U is determined only
up to monotonic transformations and is therefore
unobservable.
A decision maker who is risk neutral has lin-

ear indifference curves in payoff space, while one
who is risk averse does not. The conventional def-
inition of risk aversion, namely that a risk-averse
individual always prefers a riskless wealth position
to a risky position with the same expected value,
has the following geometric interpretation: An indif-
ference curve drawn through a point on the “45-
degree certainty line” in payoff space must lie on or
above the iso-expected-value line through the same
point. A stronger definition, drawing on Rothschild
and Stiglitz’s (1970) concept of increasing risk, is
that a risk-averse individual dislikes mean-preserving
spreads in payoff distributions, which means that
any movement along an iso-expected-value line away
from the 45-degree certainty line (i.e., in a direc-
tion that takes payoffs in all states farther from the
expected value) is dispreferred to the status quo, even
if the status quo is already risky. A third defini-
tion of risk aversion, due to Yaari (1969), is that a

risk-averse individual has preferences that are pay-
off convex,4 which implies that her ordinal utility
function U is quasi-concave. The three definitions are
equivalent for decision makers with expected-utility
preferences,5 but they differ for decision makers with
nonexpected-utility preferences. Although the mean-
preserving-spread definition characterizes a form of
“local” risk aversion, in the sense that the definition
has local implications even at risky wealth positions,
it nevertheless admits local behavior that is arguably
risk loving. In particular, it admits the possibility that
for some risky wealth position w and finite gamble
z, both w+ z and w− z are strictly preferred to w.
(For an illustration, see Machina 1995; see also Karni
1995.) Thus, for example, the decision maker might
be willing to pay a fee for the privilege of placing a
bet on an event and also (alternatively) willing to pay
a fee for the privilege of placing the very opposite
bet. This sort of behavior, which resembles gambling
for its own sake, is expressly forbidden by Yaari’s
definition. On the other hand, the mean-preserving-
spread definition requires prior wealth to be observ-
able so that the certainty line can be located, and
it requires the decision maker to be “probabilisti-
cally sophisticated” (Machina and Schmeidler 1992)
so that expected values are uniquely determined,
whereas Yaari’s method makes no such requirements.
For these reasons, Yaari’s definition of risk aversion
as payoff convexity of preferences (or equivalently, as
quasiconcavity of utility) will be adopted henceforth.
Assume that preferences over wealth distributions

are smooth, so that the utility function U that repre-
sents them is twice differentiable.6 By virtue of mono-
tonicity, the gradient of U at w is a nonnegative

4 The preference relation “≥” is [strictly] payoff-convex if x≥ z and
y ≥ z imply �x+ �1−��y ≥ �>�z for � ∈ �0	1�.
5 For a decision maker with expected-utility preferences, local risk
aversion at riskless wealth positions is sufficient to ensure concavity
of the Bernoulli utility function (the univariate utility function for
money), which implies that preferences are everywhere locally risk
averse and also payoff convex.
6 The smoothness assumption rules out Choquet or maxmin
expected-utility preferences, but it permits nonexpected utility pref-
erences that are arbitrarily close to Choquet expected utility in the
fashion of Dan’s preferences in Figure 1.
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vector and it can be normalized to yield a probability
distribution:

��w�≡ �U�w�∥∥�U�w�∥∥
1

= �U�w�
1 ·�U�w� 


��w� is invariant to monotonic transformations of
U and is observable. It is commonly known as a
risk-neutral probability distribution because the decision
maker prices very small assets in a seemingly risk-
neutral manner with respect to it. More precisely, let
z denote the payoff vector of a risky asset and let
P�z�w� denote the marginal price that the decision
maker is willing to pay for z at wealth w, in the sense
that she is willing to pay �P�z�w� to receive �z in the
limit as � goes to zero. Then, P�z�w� is determined by

lim
�→0

�U�w+�z−�P�z�w��−U�w��/�= 0	

for which the first-order condition is

P�z�w�= z ·��w�≡ E��w��z�


Hence, the marginal price is the risk-neutral expectation
of the asset under the local risk-neutral distribution
��w�. z will be said to be a neutral asset at the current
wealth position if E��w��z� = 0
 The marginal price of
z is the per-unit price at which the decision maker
would buy or sell an infinitesimal share. Her buying
price for z in its entirety, denoted B�z�w�, is deter-
mined by

U�w+z−B�z�w��−U�w�= 0	

while her selling price C�z�w�, otherwise known as
her certainty equivalent for z, satisfies

U�w+z�−U�w+C�z�w��= 0


The buying and selling prices are generally similar,
but not identical, as illustrated in Figure 2, and they
are related by C�z�w�=−B�−z�w+z�.
The functional dependence of ��w� on w reveals

the decision maker’s attitude toward risk and uncer-
tainty. If the decision maker is risk neutral (i.e., if
U is both quasi-concave and quasi-convex), then she
has linear indifference curves, ��w� is constant, and
P�z�w� = B�z�w� = C�z�w� at all w. If she is risk
averse, ��w� varies with w according to the local

curvature of the indifference curves. Intuitively, a
decision maker who is risk averse has diminishing
marginal utility for all risky assets, hence her buy-
ing and selling prices for an asset will typically be
less than its marginal price. To make this notion pre-
cise, let the buying risk premium associated with z at
wealth w, here denoted b�z�w�, be defined as the
difference between the asset’s marginal price and its
buying price

b�z�w�= E��w��z�−B�z�w�

The selling risk premium7 is similarly defined by

c�z�w�= E��w��z�−C�z�w�

(Refer again to Figure 2.) Pratt’s (1964) risk pre-
mium is the special case of the selling risk premium
that obtains when U has the expected-utility repre-
sentation U�w� = ∑n

j=1 pju�wj�, where u is a twice-
differentiable state-independent utility function for
money, p is a known probability distribution, and the
decision maker begins in a state of riskless wealth
w = x1, which is a point on the 45-degree certainty
line in payoff space.
If the decision maker is an (possibly state-

dependent) expected-utility maximizer, her risk-
neutral probabilities are simply the product of her
true probabilities and relative marginal utilities for
money. That is, �j �w� ∝ pju′

j �wj�, where u′
j is the first

derivative of the utility function for money in state
j (Drèze 1970). Under Pratt’s assumptions of state-
independent utility and riskless prior wealth, true
probabilities and risk-neutral probabilities happen to
coincide, and the selling risk premium can be inter-
preted as the amount of expected value the decision
maker would give up to eliminate all risk following
the involuntary acquisition of z. The familiar result is
that if z is small and “actuarially” neutral (Ep�z�= 0),

7 Buying and selling risk premia are called “compensating” and
“equivalent” risk premia by Kimball (1990), who points out
that they are essentially equivalent for small risks under state-
independent expected utility and riskless prior wealth. In the
context of state-dependent utility, Karni (1983, 1985) uses a general-
ization of the selling premium, while Kelsey and Nordquist (1991)
prefer the buying premium, noting that the selling premium creates
technical problems under some state-dependent utility functions.
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Figure 2 Construction of Buying and Selling Prices and Risk Premia
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Notes. The vector ��w� is the risk-neutral distribution, i.e., the normalized gradient of the utility function U , at wealth w. The dashed line is the tangent
hyperplane (the subspace of neutral assets) at w, whose normal vector is ��w�. The marginal price of an asset at w is its inner product with ��w�. Asset z is
neutral at wealth w, because its marginal price is zero, while z′ is not. w+ z and w+ z′ lie on the same indifference curve, below that of w. The small dashed
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P �z�w�= 0 B�z�w�=−a C�z�w�=−b b�z�w�= a c�z�w�= b

P �z′�w�=−c B�z′�w�=−�c+d� C�z′�w�=−b b�z′�w�= d c�z′�w�= b−c

then the selling risk premium is approximately

c�z�x1�≈ 1
2 r�x�Ep�z

2� = 1
2 r�x�Varp�z�

= 1
2 Covp�z	 r�x�z�	 (1)

where p = ��x1� is the true distribution that coin-
cides with the risk-neutral distribution and r�x� =
−u′′�x�/u′�x� is the Pratt-Arrow measure of absolute
risk aversion. (The buying risk premium converges to
the same limit when z is small enough for (1) to be
accurate, as will be seen.) Thus, 1

2 r�x� is the decision
maker’s local price of risk, where risk is measured in
terms of the variance of the asset, and the selling risk
premium is nonnegative at constant wealth level x if
and only if r�x� is nonnegative. The function r�x� also
permits comparative risk aversion to be characterized
in a simple way: If r1�x� and r2�x� are the risk aver-
sion measures of Agents 1 and 2, respectively, then

Agent 1 is as risk averse as Agent 2 (in the sense of
assigning greater or equal risk premia) if r1�x�≥ r2�x�
for all x, and Pratt and Arrow showed that in this case
Agent 1 will also invest less than Agent 2 in a risky
asset when given a choice between a single risky asset
and a safe asset.
The buying risk premium rather than the selling

risk premium will be used henceforth as the yard-
stick for measuring local risk aversion, for several
reasons. First, the question that the selling premium
is designed to address, namely how much (expected)
value the decision maker would give up to elim-
inate all the risk she currently faces, is moot in
the present setting of unobservable stochastic prior
wealth and state-dependent or nonexpected-utility
preferences. It is more natural to ask how much addi-
tional (marginal) value the decision maker would
require as compensation for taking on a new risk.
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Second, the buying risk premium has the convenient
property that b�z+x�w�= b�z�w� for any constant x,
which is not true for the selling risk premium except
in special cases. Third, and most importantly, the buy-
ing risk premium is a more natural indicator of risk
aversion in the general state-preference framework
because it directly measures the local quasi-concavity
of utility. In particular,

Proposition 1. The decision maker is risk averse if and
only if her buying risk premium is nonnegative for every
asset at every wealth distribution.

Proof. Nonnegativity of the buying risk premium
is essentially a definition of quasi-concavity: A func-
tion U is quasi-concave if and only if �U�w� ·
�w′ −w� ≥ 0 whenever U�w′� ≥ U�w� (e.g., Theorem
M.C.3 in Mas-Colell et al. 1995), and if U is mono-
tonic, it suffices for this to hold when U�w′�= U�w�.
Letting w′ = w+ z− B�z�w�, we have �U�w� · �z−
B�z�w��≥ 0, which is equivalent to E��w��z�≥ B�z�w�,
which in turn is equivalent to b�z�w�≥ 0. �

3. A General Measure of
Risk Aversion

The objective of this section is to characterize risk
aversion in terms of second-order properties of pref-
erences. As is well known, U is quasi-concave, and
hence the decision maker is risk averse by our defi-
nition, if and only if at every w the Hessian matrix
D2U�w� is negative semidefinite in the subspace of
neutral assets. This is not immediately helpful or eco-
nomically significant, however, because D2U�w� is
not observable—that is, it is not uniquely determined
by preferences. The observable second-order informa-
tion resides instead in the matrix of derivatives of
the risk-neutral probabilities, D��w�, whose jkth ele-
ment is

D�jk�w� = ��j �w�/�wk

= D2Ujk�w�−�j �w�
∑n

h=1D
2Uhk�w�

1 ·�U�w� 	 (2)

where D2Ujk�w� denotes �2U�w�/�wjwk. In principle,
the elements of D��w� could be directly measured
by asking the decision maker to contemplate small

changes in her wealth in each state and to assess how
her risk-neutral probabilities (i.e., her betting rates
on individual states) would change as a result. If wk

is increased by a small amount  wk, the decision
maker’s risk-neutral probability in state j increases by
D�jk�w� wk+o� wk�, ceteris paribus, and when total
wealth changes from w to w+ w, her risk-neutral
probability distribution changes from � to � + �,
where  � =D��w� w+o�
 w
�. D��w� is generally
asymmetric and has less than full rank. In particular,
its columns sum to zero, which guarantees that the
solution to  � = D��w� w satisfies

∑n
j=1 �j = 0, a

necessary condition for no-arbitrage.
The main result of this section is that the decision

maker’s local and global attitudes toward risk and
uncertainty are completely summarized by D��w�,
generalizing the state-independent expected-utility
analysis of Pratt-Arrow and the two-dimensional
state-preference analysis of Yaari:

Proposition 2. (a) The risk premium of a small neu-
tral asset satisfies

b�z�w�≈− 1
2z ·D��w�z


(b) The risk premium of a small nonneutral asset satisfies

b�z�w� ≈ − 1
2Q�z�w�	 where

Q�z�w� ≡ �z−z ·��w�� ·D��w��z−z ·��w��

(c) The risk premium of any asset satisfies

b�z�w�=−
∫ 1

0
�1−x�Q�z�w+xz−B�xz�w�� dx


Consequently,
(d) The decision maker is risk averse if and only if, at

every w, D��w� is negative semidefinite in the subspace
of neutral assets.

A detailed proof is given in the Appendix, but
an informal direct proof of parts (a) and (b) will be
sketched here. If z is neutral (E��w��z�= 0), its buying
price is −b�z�w� by definition. If the decision maker
buys it at this price, thus keeping her utility constant,
her final wealth will differ from her initial wealth
by the vector amount z+ b�z�w� and the first-order
change in her risk-neutral probability distribution will
be D��w��z+ b�z�w��. Suppose that she purchases z
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in small, equal increments at the prevailing marginal
prices, thus holding her utility roughly constant. In
the process, her risk-neutral distribution will change
linearly from � to � +D��w��z+ b�z�w�� and her
marginal price of z will increase linearly from 0 to
z ·D��w��z+ b�z�w�� as her wealth follows a locally
quadratic trajectory along an indifference curve. The
average marginal price is the midpoint, namely 1

2z ·
D��w��z+ b�z�w��, which is also the total price by
the linearity of the price trajectory. Hence, the risk
premium satisfies

−b�z�w�≈ 1
2z ·D��w��z+ b�z�w��


If z is sufficiently small—in particular, if 
 z ·D��w� 
�
1—then the factor of b�z�w� inside the parentheses on
the right-hand side is insignificant, whence b�z�w�≈
− 1

2z ·D��w�z. If z is not neutral, the more general
form b�z�w�≈− 1

2Q�z�w� of part (b) follows from the
identity b�z+x�w�= b�z�w� with x =−z ·��w�.
Thus, in the n-dimensional state-preference frame-

work, the expression r�x�Ep�z2� in Pratt’s risk pre-
mium formula for a neutral asset (1) is replaced by
the more general matrix expression −z ·D��w�z. Evi-
dently, D��w� encodes both the decision maker’s
beliefs and local risk preferences, and indeed it can be
factored into a product of two matrices, one of which
contains the decision maker’s risk-neutral probabili-
ties and the other of which is constructed from ratios
of second and first derivatives of the ordinal utility
function, generalizing the Pratt-Arrow measure. To
show this, define the local risk aversion matrix as the
matrix R�w� whose jkth element is the following ratio
of second to first derivatives:

rjk�w�=−��2U�w�/�wjwk�/��U�w�/�wj�


Under expected-utility preferences, R�w� would be
an observable diagonal matrix, and with state-
independent utility and riskless prior wealth w =
x1, the diagonal elements would be rjj �x1� = r�x� for
every j , as will be discussed in more detail in the fol-
lowing section. But under general preferences, R�w� is
neither a diagonal matrix nor is it observable, because
it is not invariant to monotonic transformations of U .
In particular, if Û �w� = f �U�w��, where f is mono-
tonic and twice differentiable, then Û represents the

same preferences as U , but the corresponding risk
aversion matrix R̂�w� differs from R�w� by an addi-
tive constant in each column:

R̂�w�= R�w�+��&�w�	
where �&�w� is the matrix whose rows are all equal
to ��w�T, i.e., the matrix whose elements in the kth
column are all equal to �k�w�� and �= �1 ·�U�w��×
�f ′′�U�w��/f ′�U�w��� where f ′ and f ′′ are the first
and second derivatives of f . To eliminate the arbitrary
constants, let a normalized risk aversion matrix �R�w� be
defined by

�R�w�= R�w�−�&�w�R�w�

The jkth element of �R�w� is then

r̄jk�w�= rjk�w�−E��w��rk�w��	 (3)

where rk�w� denotes the kth column of R�w�. It fol-
lows that E��w���R�w� w� = 0 for any vector  w. The
normalized risk aversion matrix is invariant to mono-
tonic transformations of U and is observable. Com-
parison of terms in (2) and (3) reveals that D��w� and
�R�w� are related by

D��w�=−&�w��R�w�	 (4)

where &�w�= diag���w��. From (4) it is seen that the
jkth element of �R�w� is −���j �w�/�wk�/�j �w�, which
is minus the relative rate of change of the risk-neutral
probability of state j as wealth increases in state k. In
these terms, we have

Corollary 2.1. The risk premium of a small neutral
asset z satisfies

b�z�w�≈ 1
2z ·&�w��R�w�z = 1

2z ·&�w�R�w�z
= 1

2 Cov��w��z	R�w�z�


Proof. The first identity follows from (4). The sec-
ond follows from the fact that R can be substituted for
�R when z is neutral, as it differs only by the colum-
nwise addition of constants that drop out when it is
premultiplied by z ·&�w�. �

Comparison with (1) shows that, under general
conditions, the “true” distribution p in the risk pre-
mium formula is replaced by the local risk-neutral
distribution ��w�, while the scalar Pratt-Arrow mea-
sure r�x� is replaced by the matrix risk aversion
measure R�w�, or equivalently by its normalized,
observable form �R�w�.
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4. The Special Case of Separable
Preferences (State-Dependent
Utility)

In the special case where the decision maker has pref-
erences that are separable across mutually exclusive
events—i.e., preferences that satisfy the independence
axiom8—her utility function has the cardinal, addi-
tively separable representation:

U�w�= v1�w1�+· · ·+vn�wn�

(Debreu 1960, Fishburn and Wakker 1995). This rep-
resentation of preferences is equivalent to subjective
expected utility with state-dependent utilities and
not-necessarily-unique subjective probabilities, for it
is always possible to write vj�wj�= pjuj�wj� where the
numbers (pj } are arbitrarily chosen probabilities sum-
ming to 1 and the functions (uj�wj�) are correspond-
ingly scaled state-dependent utilities.9 Because events
are not uniquely ordered by probability under this
representation, separability of preferences is not suf-
ficient for probabilistic sophistication, which Epstein
(1999, also Epstein and Zhang 2001) has equated
with uncertainty neutrality in a Savage-act frame-
work. However, in the present framework separabil-
ity is sufficient for uncertainty neutrality because it
ensures that preferences have an expected-utility rep-
resentation even if it is not unique.

8 Let �xA	y∼A� denote the wealth distribution that agrees with x in
event A (a subset of states) and agrees with y otherwise. The inde-
pendence axiom, which is Savage’s (1954) Postulate P2, requires
that �xA	y∼A�≥ �x′A	y∼A� if and only if �xA	y′

∼A�≥ �x′A	y′
∼A� for all x,

y, x′, y′, and every event A. In other words, if two wealth distribu-
tions agree on some subset of states, then the direction of preference
between them doesn’t depend on how they agree there. A behav-
ioral violation of the independence axiom could be due to a dislike
of ambiguous probabilities (as in Ellsberg’s paradox) or some other
cause (e.g., an attraction to sure things, as in Allais’ paradox).
9 Even under Savage’s axioms, preferences among material acts do
not uniquely determine subjective probabilities when utilities are
potentially state dependent, a troublesome issue that has been dis-
cussed by Aumann (1971), Shafer (1986), Schervish et al. (1990),
Karni and Mongin (2000), and Nau (1995, 2001) among others.
Notwithstanding, Karni (1983, 1985) and Kelsey and Nordquist
(1991) require that probabilities be uniquely determined for pur-
poses of defining risk aversion under state-dependent utility, e.g.,
by the method of Karni et al. (1983).

When U is additively separable, its cross-
derivatives are zero and R�w� = diag�r�w��, where
r�w� is a vector-valued Pratt-Arrow measure of risk
aversion whose jth element is

rj �w� = −��2U�w�/�w2
j �/��U�w�/�wj�

= −u′′
j �wj�/u

′
j �wj�	 (5)

and uj is the Bernoulli utility function for money in
state j in an arbitrary expected-utility representation.
(The confounded probabilities and utility-scale factors
conveniently drop out when r is computed.) Cor-
respondingly, the elements of �R�w) satisfy r̄jk�w� =
rk�w��1jk −�k�w��, which can be inverted to obtain
rj �w� = r̄jj �w�− r̄kj �w� for j �= k, whence r�w�, like
�R�w�, is directly observable. The matrix D��w� of
derivatives of the risk-neutral probabilities has the
generic element

D�jk�w�=−�j �w�rk�w��1jk−�k�w��	

and the risk premium approximation formula is
accordingly specialized as:

Corollary 2.2. For a decision maker with separable
preferences, the risk premium of a small neutral asset z is

b�z�w�≈ 1
2E��w��r�w�z

2�= 1
2 Cov��w��z	 r�w�z�


It follows that a sufficient condition for the decision
maker to be risk averse is r�w� ≥ 0 at every w, and a
necessary condition is that at most one element of r�w�
may be negative.10

By taking expectations with respect to the observ-
able risk-neutral distribution rather than the unob-
servable true distribution, the problems of stochastic
prior wealth and state-dependent utility have been
finessed away: The decision maker’s true probabili-
ties and the correlations between the risky asset and
her prior wealth are irrelevant once ��w� and r�w�
have been observed. In the special case where the
Pratt-Arrow measure is constant across states (e.g., if
the decision maker has state-independent exponential

10 It is permissible for the Pratt-Arrow measure to be negative in
one state because a gamble that yields a nonzero payoff in that state
must also yield a nonzero payoff in one or more other states, and if
the Pratt-Arrow measure in all other states is sufficiently positive,
the net effect is still risk aversion.
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utility), R�w� ≡ diag�r� where r is a scalar, in which
case D��w� is symmetric and has zero row sums as
well as zero column sums. The risk aversion mea-
sure can then be taken outside the expectation in the
approximation formula for the local risk premium:

b�z�w�≈ 1
2 rE��w��z

2�= 1
2 r Var��w��z�


However, even here the local risk-neutral distribu-
tion ��w�, rather than the true distribution p, is used
to evaluate the variance when marginal utilities vary
across states due to prior stakes. The exact risk pre-
mium similarly satisfies

b�z�w�= r
∫ 1

0
�1−x�Var��w+xz−B�xz�w���z� dx	

which is a weighted average of 1
2 r Var��w��z� along

the indifference curve through w, so that the risk
premium is transparently the price of variance
( 12 r) multiplied by a weighted average of the risk-
neutral variance of z in the vicinity of current wealth.
The results of this section can be summarized as

follows: If the decision maker has convex preferences
that are separable across states, her local preferences
under uncertainty are completely characterized by
(at most) a pair of numbers for every state—a risk-
neutral probability and a risk aversion coefficient.
Such a person is “risk averse but uncertainty neutral.”
The risk aversion coefficients may be state dependent,
but—unlike subjective probabilities or utilities—they
are uniquely determined by preferences, and hence
they are observable. If separability does not hold, the
more general matrix representation of Proposition 2
applies, and (like Dan in Figure 1) the decision maker
may exhibit aversion to uncertainty as well as risk.

5. Marginal Investment and
Comparative Risk Aversion

Under state-independent expected-utility preferences,
it is possible to describe comparative risk aversion
and comparative investment behavior in terms of
properties of the Bernoulli utility function, as summa-
rized by its Pratt-Arrow measure. Naturally, Agent 1
is “more risk averse” than Agent 2 if r1�x� > r2�x�

at every level of riskless wealth x, where ri is
the Pratt-Arrow measure of agent i. If Agent 1 is

more risk averse than Agent 2 in this sense, she
will purchase smaller quantities of any risky asset
than Agent 2 when both start from the same risk-
less initial wealth position. When prior wealth is
risky (stochastic), the situation is more complicated,
and stronger notions of comparative risk aversion
and restrictions on the joint distributions of old and
new risks are needed to obtain similar results. The
most tractable and thoroughly studied case is that
of probabilistic independence between prior wealth
and new risks (e.g., Kihlstrom et al. 1981, Pratt 1988,
Gollier and Pratt 1996, Eeckhoudt et al. 1996; a dif-
ferent approach is taken by Ross 1981). Significantly,
when two expected-utility-maximizing decision mak-
ers with the same probabilistic beliefs contemplate the
same risky asset that is independent of their prior
wealth, they will agree on the risk-neutral distribu-
tion of the new asset: Their risk-neutral distributions
for the asset will simply coincide with its assumed
true distribution because their expected marginal util-
ities for money will not depend on the new asset’s
value.
In the much more general setting considered in

this paper, it is not possible to surgically remove a
Bernoulli utility function from the decision maker:
Risk premia and investment behavior may depend
on unobserved stochasticity of prior wealth, state-
dependence of utility, and aversion to uncertainty
as well as risk. Nevertheless, in the spirit of Yaari’s
(1969) characterization of “more risk averse,” the local
and nonlocal risk preferences of different decision
makers can be compared in terms of the curvature of
their indifference curves for wealth, as quantified by
the matrices of derivatives of their risk-neutral prob-
abilities in appropriate neighborhoods of the status
quo. It is not necessary for decision makers to agree
on the probability distributions of assets—or even
to have probabilistic beliefs—although when compar-
ing risk attitudes toward a particular asset it will be
necessary to assume that they initially agree on the
asset’s marginal price—i.e., its risk-neutral expecta-
tion. They can always reach such an agreement, if
necessary, by trading the asset between them, even if
other risks that they face are not insurable.
The local curvature of indifference curves in the

direction of z is measured by the quadratic form z ·
D��w�z. Optimal purchases of a single risky asset are
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inversely proportional to this measure of curvature,
appropriately averaged, as shown in the following:

Proposition 3. If a risk-averse individual has the
opportunity (only) to purchase shares of a new asset
with net payoff vector z having a positive marginal price
�P�z�w�= z ·��w� > 0�:
(a) She will optimally purchase a quantity � that

satisfies

−
∫ �

0
z ·D��w+xz�zdx = z ·��w�

and
(b) if �z ·��w��/�z� is sufficiently small, the optimal

quantity satisfies �≈−�z ·��w��/�z ·D��w�z�.
Proof. For part (a), note that the marginal price

of z must be zero following an optimal purchase. As
wealth changes from w+xz to w+ �x+dx�z, the risk-
neutral distribution changes by D��w+ xz�zdx, and
the marginal price of z changes by z ·D��w+xz�zdx.
Hence, the total change in marginal price when �z is
acquired is

∫ �
0 z ·D��w+ xz�zdx, and at the optimal

value of �, this quantity must equal −z ·��w�. The
approximation formula in part (b) applies when the
relative marginal price �z ·��w��/�z�, which is the sine
of the angle between z and its projection in the sub-
space of neutral assets, is small enough for D��w� to
be effectively constant over the range of integration.

Corollary 3.1. Suppose that two individuals with
wealth, prices, risk premia, etc., subscripted by i ∈ {1, 2},
have the opportunity to purchases shares of a new asset with
net payoff vector z such that P1�z� w1� = P2�z� w2� > 0,
and Individual 1 optimally purchases quantity �. Then
Individual 2 will optimally purchase no less than individual
1 if z ·D�1�w1+xz�z≤ z ·D�2�w2+xz�z11 for all x ≤ �.
Corollary 3.2. If �1�w1� = �2�w2� and D�1�w1�−

D�2�w2� is negative semidefinite, then Individual 2 will
purchase no less than Individual 1 of any asset for which

11 These quadratic forms are typically negative for risk-averse indi-
viduals, so the inequality in Corollary 3.1 means that the left-hand
side is more negative (and hence larger in magnitude) than the
right-hand side. The sense of both corollaries is that Individual 1
is more risk averse than Individual 2 if D�1 is “more negative
semidefinite” than D�2 in an appropriate neighborhood of current
wealth.

�z ·�i�wi��/�z� is sufficiently small. If both agents have
separable preferences, a sufficient condition for the negative
semidefiniteness requirement is r1�w1�≥ r2�w2� pointwise,
where ri is the vector risk aversion measure of agent i.

6. Markets under Uncertainty
If the decision maker is embedded in a market for
contingent claims where the relative prices of assets
are summarized by a market risk-neutral distribu-
tion �∗, the first-order condition of utility maximiza-
tion is that her own risk-neutral probabilities should
equilibrate with those of the market; i.e., ��w� =
�∗.12 Under these conditions, her responses to small
changes in wealth or prices are completely deter-
mined by ��w� and D��w�. For example, suppose
the decision maker receives a lump-sum amount of
income  x. It is of interest to determine the change
 w in her state-contingent wealth that will obtain
after she has re-equilibrated with the market, holding
prices fixed. This vector lies along the wealth expan-
sion path emanating from the decision maker’s current
wealth distribution, and it is the solution of the equa-
tions D��w� w= 0 (risk-neutral probabilities remain
unchanged) and ��w� · w=  x (the market value of
the wealth change is  x). Another quantity of inter-
est is the self-financed change in wealth  w that
will be observed if the market’s risk-neutral proba-
bilities change by a small amount  �, analogous to
the Slutsky equation of consumer theory. The change
in wealth is the solution to D��w+ 1

2 w� w =  �
(risk-neutral probabilities change by  �, using the
midpoint value of D� between w and w+ w) and
(��w�+ �� · w = 0 (the new market value of the
wealth change is zero). These details of these solu-
tions are given by

Proposition 4. In a complete market for contingent
claims:
(a) the change in wealth induced by a small lump-sum

income  x, holding prices fixed, is

 w ≈ R−1�w�1
E��w��R−1�w�1�

 x	

12 Schlee and Schlesinger’s (1993) concept of a “generalized” risk
premium is defined in terms of the value to the decision maker
of the opportunity to trade contingent claims at exogenous market
prices.
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hence, R−1�w�1 is the direction of the wealth expansion
path at w� and
(b) the self-financed change in wealth induced by a small

change  � in market risk-neutral probabilities is

 w ≈ R−1�w�
( − �
��w�+ 1

2 �
+y1

)
	

where

y ≡
E��w�+��

[
R−1�w�

��

��w�+ 1
2 �

]
E��w�+���R−1�w�1�




Proof. For part (a), recall that D��w� = −&�w�×
�R�w�− �&�w�R�w�� and verify by substitution that
the wealth expansion condition, D��w� w= 0, is sat-
isfied by  w ∝ R−1�w�1. The market value condi-
tion, ��w� · w =  x, is then satisfied by choosing
 x/E��w��R−1�w�1� as the scale factor. For part (b),
note that the term involving y is in the direction of
the wealth expansion path (by part (a)), so it has
no effect on risk-neutral probabilities, and y is deter-
mined precisely so that the self-financing condition,
���w�+ �� · w = 0, is satisfied. It remains to show
that the term involving − �/���w�+ 1

2 �� yields
the desired change  � in risk-neutral probabilities,
i.e., that D��w+ 1

2 w�R
−1�w��− �/���w�+ 1

2 ���≈
 �. This, in turn, can be verified through substitution
by expressing the midpoint value of the derivative
matrix, D��w+ 1

2 w�, as −�&�w�+ 1
2 &�w���R�w�−

��&�w�+ 1
2 

�&�w��R�w��, on the assumption that R�w�
is effectively constant (which is equivalent to ignoring
third-order effects). �

The matrix R−1�w�, which measures the decision
maker’s local risk tolerance, plays a prominent role
in these results.13 Part (a) establishes that R−1�w� is
the linear transformation that maps small changes
in income into changes in the optimal distribution
of wealth; thus, the decision maker prefers to redis-
tribute income across states in proportion to risk toler-
ance. Part (b) establishes that R−1�w� is also the linear

13 The formulas in the proposition are stated in terms of the non-
singular but unobservable matrix R, rather than its observable but
singular counterpart �R=R−�&R. However, the formulas are invari-
ant to the addition of constants to columns of R, so R could be
replaced by �R+A, where A is any matrix with nonzero constant
columns.

transformation that maps small changes in relative
market prices into changes in the optimal distribution
of wealth. It is suggestive to rewrite the formula in
part (b) as follows:

R�w� w ≈ − �
��w�+ 1

2 �
+y
 (6)

The term on the left can be interpreted as the change
in wealth expressed in dimensionless, risk-adjusted
units, i.e., units of “wealth divided by risk tolerance.”
By virtue of the result in part (a), the constant term y
on the right has no effect on the decision maker’s
risk-neutral probabilities, as it corresponds to a move
along the wealth expansion path (assuming R�w� ≈
R�w +  w��. Hence, the term − �/���w�+ 1

2 ��,
which is the negative of the relative change in prices,
is entirely responsible for producing the required
change in the decision maker’s risk-neutral probabili-
ties. Now, intuitively, the decision maker should react
to movements in prices by shifting wealth away from
states where the relative prices of contingent claims
have increased. The rewritten formula (6) shows that
equilibrium with the market is restored by making
a change in risk-adjusted wealth that is exactly equal
and opposite to the relative change in prices. The constant
term y merely recenters the transaction so that it is
self-financing at the new prices.
When preferences are separable, the preceding

results can be simplified by replacing the risk aver-
sion matrix R�w� with the (observable) risk aversion
vector r�w�. Correspondingly, the risk tolerance matrix
R−1�w� is replaced by the risk tolerance vector t�w� ≡
r�w�−1.

Corollary 4.1. For a decision maker with separable
preferences in a complete market for contingent claims:
(a) the change in wealth induced by a small lump-sum

income  x, holding prices fixed, is

 w ≈ t�w�
E��w��t�w��

 x	

hence the risk tolerance vector t�w� is the direction of the
wealth expansion path at w; and
(b) the self-financed change in wealth induced by a small

change  � in market risk-neutral probabilities is

 w ≈ t�w�
( − �
��w�+ 1

2 �
+y

)
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where

y ≡
E��w�+ �

[
t�w�  �

��w�+ 1
2 �

]
E��w�+ ��t�w��




7. An Application to
Project Valuation

Proposition 4 and its corollary are potentially appli-
cable to the problem of choosing among alternative
risky projects in the setting of a complete market
for contingent claims. A project is characterized by a
stream of state- and time-dependent cash flows. The
decision maker (e.g., a firm) is assumed to have a
utility function whose arguments are state- and time-
dependent amounts of consumption, and asset pur-
chases can be used to transfer consumption across
time and states. If the market is complete, the solu-
tion to the project selection problem does not depend
on the decision maker’s own risk preferences. Rather,
the optimal project is the one whose cash flow stream
has the highest expected net present value, where
the market risk-free interest rate is used for purposes
of discounting and the market risk-neutral probabil-
ities are used for computing expected values (Ross
1976, 1978; Rubinstein 1976). The decision maker’s
risk preferences play a role only in the financing
problem—i.e., given the optimal project, what addi-
tional asset purchases should be made for optimal
borrowing and risk hedging? The financing prob-
lem is solved by purchasing assets so as to restore
the equilibrium between the decision maker’s risk-
neutral probabilities and those of the market, after
the project has been added to the existing portfolio.
If the decision maker is in equilibrium with the mar-
ket prior to the project decision, the optimal financing
decision is to “short” the project cash flows by sell-
ing a replicating portfolio and then invest the arbi-
trage profit according to the formula in part (a) of the
proposition or its corollary. If the decision maker is
not yet in equilibrium with the market, the optimal
financing decision can be (approximately) determined
by applying the formula in part (b) after adding the
project to current wealth.
The same modeling framework applies equally well

to intertemporal decision problems, where wealth
varies across time as well as states, and the elements

of the vector ��w� are more appropriately called nor-
malized state prices rather than risk-neutral probabili-
ties. As an example of an intertemporal application,
consider the simple capital budgeting problem due
to Trigeorgis and Mason (1987) and discussed by
Nau and McCardle (1991) and Smith and Nau (1995).
There are two dates (0 and 1) and two states of the
world (“good” and “bad” returns on investment) at
Date 1. The firm has three decision alternatives with
respect to the construction of a new plant: “invest,”
“defer,” and “decline.” The firm can also buy or sell
two securities, one risky and one risk-free. The net
cash flow streams associated with the alternatives and
the securities are as presented in Table 1.
Let a consumption stream be represented by a cor-

responding three-vector (w0	w1g	w1b). The firm’s util-
ity function is assumed to have the time-additive
exponential form

U�w0	w1g	w1b�

=−exp�−w0/200�−0
5exp�−w1g/220�

−0
5exp�−w1b/220�


Thus, it is as if the firm assigns equal probability to
the two states at Date 1 and has constant absolute
risk aversion with risk tolerances of 200 and 220 at
Dates 0 and 1, respectively. From the asset prices and
the utility function, assuming constant prior wealth,
the state prices can be derived for the market and
for the firm, the latter depending on the alternative
chosen (see Table 2).
Notice that the firm’s state price distribution (the

normalized gradient of U�w�) is fairly close to that
of the market under the “Defer” and “Decline” alter-
natives (absent any asset purchases), but it deviates
sharply under the “Invest” alternative. The optimal

Table 1 Cash Flows of Projects and Unit Asset Purchases

Date 1, good Date 1, bad
Date 0 state state

Invest −104 180 60
Defer 0 67�68 0
Decline 0 0 0
Buy 1 share of risk-free asset −1 1�08 1�08
Buy 1 share of risky asset −20 36 12
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Table 2 Normalized State Prices for Market and Firm

Date 0 Date 1, good state Date 1, bad state

Market 0�519 0�192 0�289
Firm w/invest 0�755 0�090 0�155
Firm w/defer 0�559 0�187 0�254
Firm w/decline 0�524 0�238 0�238

overall strategy for the firm is to choose the alterna-
tive whose cash flow stream has the highest value
under the market’s state prices and then purchase
assets so as to equalize the firm’s state prices with
those of the market. Table 3 compares the market val-
ues of the three alternatives, as well as the exactly and
approximately optimal asset purchases under each
alternative, where the approximation formula from
Corollary 4.1(b) has been used. The “Defer” alterna-
tive is the optimal choice, and the approximation for-
mula yields asset quantities very close to the exact
values.
The approximation is slightly less good for the

“Invest” alternative than for the others, because the
necessary adjustment to state prices is much larger
in that case, but nevertheless the approximation is so
close that the buying risk premium for the difference
in wealth distributions, which measures the impact of
the error in monetary terms, is only 0.026—negligible
in comparison to the project value.
If the firm is already in equilibrium with the

market—i.e., in possession of the optimal asset posi-
tion for the “Decline” alternative—part (a) of Corol-
lary 4.1 can be applied instead to determine the
change in the asset position that is needed when

Table 3 Project Valuations and Optimal Asset Purchases

Optimal shares of Optimal shares of
Market value Risk-free asset Risky asset

Normalized Unnormalized Exact Approx. Exact Approx.

Invest −2�077 −4�000 −80�24 −80�09 −1�283 −1�142
Defer 13�015 25�067 −34�24 −34�19 0�897 0�895
Decline 0 0 −78�22 −77�96 3�717 3�704

Note. The unnormalized value (which is the expected net present value at
market probabilities and discount rates) is obtained by scaling the state
prices so that the Date 0 state price is 1.

choosing the “Defer” option. The solution is to sell
the “Defer” alternative at its market value (i.e., sell
a replicating portfolio), then invest the income ( x =
13
015 in normalized units) according to the formula
in 4.1(a), i.e., redistribute the income across the three
time-state contingencies in proportion to local risk tol-
erances (200, 220, and 220, respectively). Under con-
stant absolute risk aversion, the latter method yields
an exact solution to the financing problem, whereas
the formula in 4.1(b) yields only an approximation
(albeit a very good one). The point of this exercise
is to show that, for a decision maker with sepa-
rable preferences in a complete market, risk-neutral
probabilities and statewise risk tolerances are suffi-
cient statistics for choosing among small or moder-
ate risks and determining optimal hedging strategies.
Under more general preferences, the risk-neutral
probabilities and their matrix of derivatives would be
sufficient.

8. Concluding Comments
The concepts of probabilistic beliefs, riskless wealth
positions, and consequences with state-independent
utility have traditionally played key roles in mod-
els of choice under uncertainty. However, a growing
body of literature casts doubt on their uniqueness and
observability, if not their existence, and consequently
it is of interest to determine whether economic phe-
nomena such as aversion to risk and uncertainty can
be modeled without reference to them. Yaari’s (1969)
payoff-convexity definition of risk aversion, which
does not refer to probabilities or riskless wealth,
suggests that a simple and general measure of risk
aversion ought to be available for a broad class of
preferences under uncertainty. This paper has derived
such a measure in terms of the matrix of derivatives
of the decision maker’s local risk-neutral probabili-
ties. The measure applies to fairly general preferences,
including expected-utility preferences that need not
be state-independent and smooth nonexpected-utility
preferences that need not be probabilistically sophis-
ticated. It has been shown that various aspects of
risk-averse behavior and financial decision making
can be modeled entirely in terms of the decision

1102 Management Science/Vol. 49, No. 8, August 2003



NAU
A Generalization of Pratt-Arrow Measure

maker’s risk-neutral probabilities, consistent with the
central role that risk-neutral probabilities play else-
where in models of markets under uncertainty (e.g.,
asset pricing by arbitrage). If the decision maker has
separable preferences with stochastic prior wealth
and/or state-dependent utility, her risk-neutral dis-
tribution is the appropriate distribution with which
to compute the variance in Pratt’s risk premium for-
mula, and her local decision making behavior is com-
pletely characterized by the risk-neutral distribution
and a vector measure of risk aversion. In these terms,
risk aversion may be compared between individu-
als without observing or agreeing on true probabili-
ties and without reference to the 45-degree certainty
line, whose location may be unknown. Under more
general smooth nonexpected utility preferences, the
risk aversion measure is matrix-valued. A compan-
ion paper (Nau 2002) shows how aversion to uncer-
tainty as well as risk may be encoded in the matrix of
derivatives of the decision maker’s risk-neutral prob-
abilities.
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Appendix
Proof of Proposition 2. For part (c), consider the explicit
sequence of wealth positions (w0	w1	 
 
 
 	wm) defined by w0 = w
and wi =w+�i/m�z−B��i/m�z�w�, which lie along the indifference
curve from w to w+z−B�z�w� and are generated by the purchases
of m equal increments of z at their respective buying prices, thus
holding utility constant. Let �i and D�i denote the risk-neutral
probabilities and their derivatives at wi, and let  wi = wi −wi−1.
Define a sequence of approximations to �i by �̂0 = � and

�̂i = �̂i−1+D�i−1 wi = �+
i−1∑
k=1
D�k−1 wk

and note that (assuming continuity of D��

�i = �̂i+o�m−1�

and

 wi = z/m− �z/m� ·�i−1+o�m−1�

= z/m− �z/m� · �̂i−1+o�m−1�	

whence

b�z�w� = −B�z�w�=
m∑
i=1
 wi−z

= −
m−1∑
i=1
�m− i��z/m� ·D�i−1 wi+O�m−1�

= −
m−1∑
i=1
�m− i��z/m� ·D�i−1�z/m− �z/m� ·�i−1�

+O�m−1�


Next, �z/m� can be replaced by z/m− �z/m� ·�i−1 on the left
side of D�i−1, because it differs only by a constant that is irrele-
vant because the column sums of D�i−1 are zero. This yields the
quadratic form

�z/m− �z/m� ·�i−1� ·D�i−1�z/m− �z/m� ·�i−1�

= �z−z ·�i−1� ·D�i−1�z−z ·�i−1�/m
2	

which in turn is equal to to Q�z�wi−1�/m
2 by definition, whence

b�z�w� = −
m−1∑
i=1
�m− i�Q�z�wi−1�/m

2+O�m−1�

= −
m−1∑
i=1
�1− i/m�Q�z�wi−1�/m+O�m−1�

→ −
∫ 1

0
�1−x�Q�z�w+xz−B�xz�w��dx as m→�


Parts (a) and (b) follow from part (c) by taking Q to be constant
over the range of integration. The “if” part of (d) follows from (c),
and the “only if” part follows from (a). �
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