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Abstract. We generalize Roberts’ counterexample to the fourteenth problem of

Hilbert, and give a sufficient condition for certain invariant rings not to be finitely generated.

It shows that there exist a lot of counterexamples of this type. We also determine the initial

algebra of Roberts’ counterexample for some monomial order.

1. Introduction. The fourteenth problem of Hilbert asks whether the K-algebra L∩A

is finitely generated. Here, K is a field, A is a polynomial ring over K , and L is a subfield of

the quotient field of A containing K . The first counterexample to this problem was found by

Nagata in 1958. It was given as the invariant subring of a polynomial ring in 32 variables for

a linear action of the 13-dimensional additive group (cf. [12]). Recently, Mukai [11] showed

that there exists a similar counterexample which is the invariant subring of a polynomial ring

in 18 variables for a linear action of the three-dimensional additive group.

In 1990, Roberts gave a simple new counterexample of different type as follows.

THEOREM 1.1 (Roberts [14, Theorem 1]). Let A = K[x1, x2, x3, y1, y2, y3, y4] be a

polynomial ring in seven variables over a field K of characteristic zero. For each nonnegative

integer t , let Lt be the subfield of the quotient field of A generated by

x1 , x2 , x3 , x1y4 − x t
2x

t
3y1 , x2y4 − x t

1x
t
3y2 , x3y4 − x t

1x
t
2y3(1.1)

over K . If t ≥ 2, then the K-algebra Lt ∩ A is not finitely generated.

Following this result, Deveney and Finston [2] showed that this counterexample can be

obtained as the invariant subring of A for a nonlinear action of the one-dimensional additive

group Ga . Kojima and Miyanishi [6] generalized Roberts’ counterexample. They constructed

a Ga-invariant subring of the polynomial ring of each dimension greater than or equal to

seven which is not finitely generated. Furthermore, Freudenburg [4] gave a counterexample

in dimension six, while Daigle and Freudenburg [1] gave one in dimension five.

In the present paper, we will generalize Roberts’ counterexample further, and show that

there exist a lot of counterexamples of this type. We give in Theorems 1.3 and 1.4 sufficient

conditions for a certain kind of Ga-invariant subring of a polynomial ring not to be finitely

generated. In Section 3, we will discuss Roberts’ counterexample Lt ∩A in terms of the theory
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of SAGBI (Subalgebra Analogue to Gröbner Bases for Ideals) bases. As a consequence, we

determine a generating set of it in Theorem 3.3. We also remark on a sufficient condition for

finite generation in Section 4.

Throughout this paper, let K denote a field of characteristic zero. Assume that R is a

commutative K-algebra, and A is a commutative R-algebra. An R-homomorphism D : A →
A is called an R-derivation on A if D(ab) = D(a)b + aD(b) holds for any a, b ∈ A. Then,

its kernel

AD = {a ∈ A | D(a) = 0}

is an R-subalgebra of A. An R-derivation D on A is said to be locally nilpotent if, for each

a ∈ A, there exists r ∈ Z≥0 such that Dr (a) = 0. Here, we denote by Z≥0 the set of

nonnegative integers. We remark that a locally nilpotent R-derivation D on A defines an

action A → A ⊗R R[t] of the one-dimensional additive group scheme Ga = Spec R[t] over

R on A by a �→
∑

k≥0 Dk(a)⊗ (tk/k!). The invariant subring AGa of A for this action of Ga

is equal to AD (cf. [10]).

Let R = K[x] = K[x1, . . . , xm] be the polynomial ring in m variables over K , and

A = K[x][y] = K[x][y1, . . . , yn] that in n variables over K[x]. A K[x]-derivation D on

K[x][y] is said to be elementary if D(yj ) is in K[x] for each j . Note that an elementary

K[x]-derivation is locally nilpotent. An elementary K[x]-derivation D on K[x][y] is said to

be monomial if each D(yi) is a monomial, i.e., x
a1

1 · · · xan
m for some (a1, . . . , am) ∈ (Z≥0)

m.

In this paper, we discuss the problem of finite generation of the kernel K[x][y]D of an el-

ementary monomial K[x]-derivation D. As we remarked above, it is equal to the invariant

subring of K[x][y] for an action of Ga , since D is locally nilpotent. Note that K[x][y]D is

finitely generated over K if and only if it is so over K[x].
In the case of n = m + 1, the K[x]-derivation

Dt,m = x t+1
1

∂

∂y1
+ · · · + x t+1

m

∂

∂ym

+ (x1 · · · xm)t
∂

∂ym+1
(1.2)

on K[x][y] is elementary and monomial. The kernel K[x][y]Dt,m of this K[x]-derivation

has been studied well. Deveney and Finston [2] showed that Roberts’ K-algebra Lt ∩ A in

Theorem 1.1 is equal to the kernel K[x][y]Dt,m for m = 3 (see also Maubach’s result found

in [3, Section 9.6]). Furthermore, Kojima and Miyanishi showed the following.

THEOREM 1.2 (Kojima-Miyanishi [6]). Assume that n = m + 1. If t ≥ 2 and m ≥ 3,

then the kernel K[x][y]Dt,m of the K[x]-derivation Dt,m is not finitely generated over K .

We will study the kernel K[x][y]D of an elementary monomial K[x]-derivation D on

K[x][y] of more general form. Let D(yi) = xδi for each i = 1, . . . , n. Here, we denote

by xa the monomial x
a1

1 · · · xam
m for a = (a1, . . . , am) ∈ Zm. Similarly, we denote by yb

the monomial y
b1

1 · · · ybn
n for b = (b1, . . . , bn) ∈ Zn. Put εi,j = δi − δj for i, j , and for

k = 1, . . . ,m, let εk
i,j and δk

i be the k-th components of εi,j and δi , respectively.

In Sections 1 and 2, we deal with the case where n ≥ 4, m ≥ n − 1 and εi
i,j > 0 for

any 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n with i �= j . The derivation Dt,m satisfies this condition with
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εi
i,j = t + 1 if j �= m + 1, and εi

i,j = 1 otherwise. We define

η =
ε1

1,n

min{ε1
1,j | j = 2, . . . , n − 1}

,(1.3)

and

ηk,i = η min{max{εi
1,k, ε

i
2,k}, 0}(1.4)

for i = 2, . . . , n − 1 and k = 3, . . . , n − 1. For each k = 3, . . . , n − 1, we set Lk,n−2 to be

the system of linear inequalities






















u1 + · · · + un−2 = 1

u1 ≥ η, ui ≥ 0 (i = 2, . . . , n − 2)
n−2
∑

j=1

min{εi
n,1, ε

i
n,j+1}uj + ηk,i ≥ 0 (i = 2, . . . , n − 1)

(1.5)

in the n − 2 variables u1, . . . , un−2.

Here is our main result.

THEOREM 1.3. Assume that n ≥ 4, m ≥ n − 1 and εi
i,j > 0 for any 1 ≤ i ≤ n − 1,

1 ≤ j ≤ n with i �= j . If the system Lk,n−2 of linear inequalities has a solution in Rn−2 for

each k = 3, . . . , n − 1, then K[x][y]D is not finitely generated over K .

By this theorem, we get the following simple criterion for n = 4.

THEOREM 1.4. Assume that m ≥ 3, n = 4 and εi
i,j > 0 for any 1 ≤ i ≤ 3, 1 ≤ j ≤ 4

with i �= j . If

ε1
1,4

min{ε1
1,2, ε

1
1,3}

+
ε2

2,4

min{ε2
2,3, ε

2
2,1}

+
ε3

3,4

min{ε3
3,1, ε

3
3,2}

≤ 1 ,(1.6)

then K[x][y]D is not finitely generated over K .

The examples of Roberts are included as special cases of this theorem for m = 3. In

case (m, n) = (3, 4), there exist 2450001 derivations on K[x][y] which satisfy (1.6) and

gcd{xδ1 , xδ2, xδ3 , xδ4} = 1 even if we impose the restriction δk
i ≤ 10 for all i, k.

In the following corollary, the case where m ≥ 4 and t = 1 is new, while the case m ≥ 3

and t ≥ 2 was proved in [6].

COROLLARY 1.5. Assume that n = m + 1. If m ≥ 3 and t ≥ 2, or m ≥ 4 and t = 1,

then the kernel K[x][y]Dt,m of the K[x]-derivation Dt,m is not finitely generated over K .

We will prove Theorems 1.3, 1.4 and Corollary 1.5 in Section 2.

We remark that, if t = 0, then the kernel K[x][y]Dt,m of Dt,m is finitely generated

for any m by Weitzenböck’s theorem (cf. [12, Chapter IV]). In fact, it is isomorphic to a

polynomial ring in 2m variables over K by the remark after Lemma 4.2 below. If m ≤ 2, then

K[x][y]Dt,m is also isomorphic to a polynomial ring in 2m variables over K for any t ≥ 0
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by [5, Theorem 3.1]. For (t,m) = (1, 3), Kurano [7] showed that K[x][y]Dt,m is generated

by nine elements over K[x].
The author would like to thank Professor Masanori Ishida for helpful comments and

encouragement. He also thanks Professor Kazuhiko Kurano for informing him of the result

on the kernel of D1,3.

2. Construction of invariants. In this section, we prove Theorem 1.3, and show The-

orem 1.4 and Corollary 1.5 as its consequences. Throughout this section, we assume that n ≥
4, m ≥ n − 1 and that D satisfies εi

i,j > 0 for any 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n with i �= j . We

denote K[x, x−1
n , . . . , x−1

m ][y] = K[x][y] ⊗K[xn,...,xm] K[xn, . . . , xm, x−1
n , . . . , x−1

m ]. Note

that D is uniquely extended to a K[x]-derivation on each K[x]-subalgebra of K[x, x−1][y].
Theorem 1.3 follows from the following two lemmas.

LEMMA 2.1. If a monomial of the form xay l
n with l > 0 appears in an element of

K[x][y]D , then at least one of the first n − 1 components of a ∈ (Z≥0)
m is positive.

PROOF. Suppose to the contrary that there appears in f ∈ K[x][y]D a monomial

xay l
n with the first n − 1 components of a zero with nonzero coefficient. Then, the mono-

mial xaxδny l−1
n appears in D(f ). Since D(f ) = 0, its coefficient in D(f ) is zero. Hence,

xaxδny l−1
n appears as a monomial in D(xa′

yb′
) for some monomial xa′

yb′ �= xay l
n of f .

Such xa′
yb′

must be equal to xaxεn,iyiy
l−1
n for some i < n. Since εi

n,i < 0 for i < n, we

have xa′
yb′ �∈ K[x][y]. This contradicts f ∈ K[x][y]. Thus, at least one of the first n − 1

components of a ∈ (Z≥0)
m is positive. ✷

The lemma below asserts the existence of an infinite system of invariants.

LEMMA 2.2. Under the assumption in Theorem 1.3, there exists a positive integer α

such that a Laurent polynomial of the form

xα
1 y l

n + (terms of lower degree in yn)(2.1)

belongs to K[x, x−1
n , . . . , x−1

m ][y]D for each l > 0.

First, we show Theorem 1.3 by assuming these lemmas. Suppose that K[x][y]D is gen-

erated by a finite number of elements g1, . . . , gp . Then, by Lemma 2.1, there exists r > 0

such that each monomial appearing in gi of the form x
β
1 xby l

n with l > 0 and the first n − 1

components of b zero satisfies l/β < r for every i. Since every element of K[x][y]D is

written as a sum of products of g1, . . . , gp, a monomial appearing in an element of K[x][y]D
is a product of monomials contained in g1, . . . , gp. Hence, any monomial appearing in an

element of K[x][y]D of the form x
β

1 xby l
n with l > 0 and the first n− 1 components of b zero

also satisfies l/β < r . By Lemma 2.2, there appears in some f ∈ K[x, x−1
n , . . . , x−1

m ][y]D
a monomial xα

1 y l
n with l/α > r . Since xaf is in K[x][y]D for some a ∈ (Z≥0)

m whose

first n − 1 components are zero, we are led to a contradiction. Thus, K[x][y]D is not finitely

generated.
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Let us denote by K[y]l the K-vector subspace of K[y] = K[y1, . . . , yn] of homoge-

neous l-forms in y1, . . . , yn. For each f =
∑

b∈Zn λby
b ∈ K[y], we define the support

supp(f ) of f by

supp(f ) = {b ∈ Zn | λb �= 0} .(2.2)

For each a ∈ Zm, we define the K-linear map τxa : K[y] → K[x, x−1][y] by τxa (yb) =
xa′

yb. Here, b = (b1, . . . , bn) and a′ = a +
∑n

j=1 bjεn,j . We define an elementary K-

derivation E on K[y] by

E = ∂

∂y1
+ · · · + ∂

∂yn

.(2.3)

Then, it follows that D(τxa (f )) = xδnτxa (E(f )) for each a ∈ Zm and f ∈ K[y]. We set

B = K[y2 − y1, y3 − y1, . . . , yn − y1] .(2.4)

Then, τxa (B) ⊂ K[x, x−1][y]D for a ∈ Zm. Actually, D(τxa (f )) = xδnτxa (E(f )) = 0 for

f ∈ B, since E(f ) = 0. We define R-linear maps li : Rn → R by

l1((b1, . . . , bn)) = ε1
n,1b1 + min{ε1

n,j | j = 2, . . . , n − 1}
n−1
∑

j=2

bj(2.5)

and

li((b1, . . . , bn)) =
n−1
∑

j=1

min{εi
n,1, ε

i
n,j }bj(2.6)

for i = 2, . . . , n − 1. We put Bl = B ∩ K[y]l for each l ∈ Z≥0.

We reduce Lemma 2.2 to the following lemma.

LEMMA 2.3. Under the assumption in Theorem 1.3, there exists a positive integer α

such that, for each positive integer l, we may find f ∈ Bl such that (0, . . . , 0, l) ∈ supp(f )

and every b ∈ supp(f ) satisfies l1(b) + α ≥ 0 and li(b) ≥ 0 for i = 2, . . . , n − 1.

Lemma 2.2 is proved by this lemma as follows. As we mentioned above, τxα
1
(f ) is in

K[x, x−1][y]D . It has the form of (2.1). We show that it is in K[x, x−1
n , . . . , x−1

m ][y]. By def-

inition, every monomial appearing in τxα
1
(f ) is written as xα

1 xa′
yb, where b = (b1, . . . , bn) ∈

supp(f ) and a′ =
∑n

j=1 bjεn,j . By assumption, we have

n
∑

j=1

bjε
1
n,j + α ≥ l1(b) + α ≥ 0

and

n
∑

j=1

bjε
i
n,j ≥ li(b) ≥ 0
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for i = 2, . . . , n − 1. Hence, xα
1 xa′

yb does not have negative power in x1, . . . , xn−1. Thus,

τxα
1
(f ) is in K[x, x−1

n , . . . , x−1
m ][y]D. This proves Lemma 2.2.

Let PD be the set of b = (b1, . . . , bn) ∈ (R≥0)
n with

b1 = bn = 0, b2 + · · · + bn−1 = 1 , li(b) ≥ 0 (i = 2, . . . , n − 1) .(2.7)

Here, we denote by R≥0 the set of nonnegative real numbers. For each b = (b1, . . . , bn−2) ∈
Rn−2, we set ι(b) = (0, b1, . . . , bn−2, 0). Note that, if b ∈ (R≥0)

n−2 is a solution of Lk,n−2,

then li(ι(b))+ηk,i ≥ 0 for i = 2, . . . , n−1. This condition is equivalent to the condition that

ι(b), ι(b) + η(ek − e2) ∈ PD , where e1, . . . , en are the coordinate unit vectors of Rn. Indeed,

if εi
n,k < εi

n,1, then

ηk,i = η min{max{εi
1,k, ε

i
2,k}, 0}

= η min{εi
n,k − min{εi

n,1, ε
i
n,2}, 0}

= η min{min{εi
n,k, ε

i
n,1} − min{εi

n,1, ε
i
n,2}, 0}

= min{ηli(ek − e2), 0} .

(2.8)

If εi
n,k ≥ εi

n,1, then εi
1,k ≥ 0. The equality ηk,i = min{ηli(ek − e2), 0} also holds in this case,

since the right hand sides of the first and the third equality in (2.8) are zero.

For a convex subset P ⊂ Rn, we denote rP = {rb | b ∈ P } for r ∈ R≥0.

LEMMA 2.4. Under the assumption in Theorem 1.3, there exists α′ > 0 such that, for

any r > α′ and u3, . . . , un−1 ≥ 0 with
∑n−1

k=3 uk ≤ η(r −α′), there exist p3, . . . , pn−1 ∈ Z≥0

such that

re2 +
n−1
∑

k=3

(skuk + pk)(ek − e2) ∈ rPD(2.9)

for any s3, . . . , sn−1 ∈ [0, 1].

PROOF. Since Lk,n−2 has a solution, there exists bk ∈ PD with bk + η(ek − e2) ∈ PD

for each k = 3, . . . , n − 1. Let P be the convex hull of

{bk, bk + η(ek − e2) | k = 3, . . . , n − 1}

in Rn, and d a positive number such that the d-neighborhood of a point a ∈ P is contained

in P . Here, we consider the Euclidean topology induced from that on the affine subspace

H = e2 +
∑n−1

k=3 R(ek − e2). Then, define α′ = (1/d)
√

(n − 2)(n − 3). We show that this α′

satisfies the desired property.

Take any r > α′. Note that it suffices to show (2.9) for u3, . . . , un−1 ≥ 0 with
∑n−1

k=3 uk =
η(r − α′). We set u′

k = uk/(η(r − α′)) for each k. Then,

n−1
∑

k=3

u′
k(bk + skη(ek − e2)) ∈ P(2.10)
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for any s3, . . . , sn−1 ∈ [0, 1]. Actually, since P is convex,

bk + skη(ek − e2) = (1 − sk)bk + sk(bk + η(ek − e2))

is in P for each k. Since
∑n−1

k=3 u′
k = 1, we get (2.10).

For each q ∈ H , define a map Tq : P → rH by Tq(c) = α′q + (r − α′)c. Since

0 < α′ < r , we have Tq(P ) ⊂ rP if q ∈ P . Put b′ = Ta(
∑n−1

k=3 u′
kbk), and choose p′

k ∈ R≥0

so that b′ = re2 +
∑n−1

k=3 p′
k(ek − e2). Then, let pk be the nonnegative integer we obtain by

adding an element in (−1/2, 1/2] to p′
k for each k. Put b = re2 +

∑n−1
k=3 pk(ek − e2) and

a′ = a + (α′)−1(b − b′). Then,

|b − b′| =

√

√

√

√

( n−1
∑

k=3

(pk − p′
k)

)2

+
n−1
∑

k=3

(pk − p′
k)

2 ≤
√

(n − 2)(n − 3)

2
.

So, we have

|a − a′| = (α′)−1|b − b′| ≤ d/2 .

By the choice of a, the point a′ is in P . Hence, Ta′(P ) ⊂ rP . Moreover,

Ta′(c) − Ta(c) = α′(a′ − a) = b − b′

for c ∈ P . Thus, we get

(b − b′) + Ta(P ) ⊂ rP .(2.11)

On the other hand, we have

(b − b′) + Ta

( n−1
∑

k=3

u′
k(bk + skη(ek − e2))

)

= b +
n−1
∑

k=3

skuk(ek − e2)

= re2 +
n−1
∑

k=3

(pk + skuk)(ek − e2) .

It is in (b − b′) + Ta(P ) for any sk ∈ [0, 1] by (2.10). Then, (2.9) follows from (2.11), since

rP is contained in rPD . Therefore, α′ satisfies the desired property. ✷

Now, let us prove Lemma 2.3. First, we show that the assumption that each Lk,n−2 has

a solution implies that εi
n,1 ≥ 0 and ε1

n,i > 0 for i = 2, . . . , n − 1. Suppose to the contrary

that εi
n,1 < 0 for some 2 ≤ i ≤ n − 1. Then, for any (u1, . . . , un−2) ∈ (R≥0)

n−2 with
∑n−2

j=1 uj = 1, we have

n−2
∑

j=1

min{εi
n,1, ε

i
n,j+1}uj + ηk,i ≤ εi

n,1 + ηk,i < 0 .

This contradicts the assumption that Lk,n−2 has a solution. Thus, εi
n,1 ≥ 0 for i = 2, . . . ,

n − 1. Suppose that ε1
n,i ≤ 0 for some 2 ≤ i ≤ n − 1. Then, it implies that η ≥ 1, since

ε1
1,n − min{ε1

1,j | j = 2, . . . , n − 1} = − min{ε1
n,j | j = 2, . . . , n − 1} ≥ −ε1

n,i ≥ 0 .
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If Lk,n−2 has a solution u = (u1, . . . , un−2), then η = u1 = 1 and uj = 0 for j = 2, . . . ,

n − 2. For this u, it follows that

n−2
∑

j=1

min{ε2
n,1, ε

2
n,j+1}uj + ηk,2 = min{ε2

n,1, ε
2
n,2} + ηk,2 ≤ ε2

n,2 < 0 .

This is a contradiction. Thus, ε1
n,i > 0 for i = 2, . . . , n − 1.

Take α′ > 0 as in Lemma 2.4, and set α to be an integer greater than or equal to α′ε1
1,n.

Let l be an arbitrary positive integer, andF the set of f ∈ Bl such that (0, . . . , 0, l) ∈ supp(f )

and every b ∈ supp(f ) satisfies li(b) ≥ 0 for i = 2, . . . , n − 1. Since

li (je1 + (l − j)en) = jεi
n,1 ≥ 0

for i = 2, . . . , n − 1 and j = 0, . . . , l, we have (yn − y1)
l ∈ F . Hence, F �= ∅. We show

that there exists F0 ∈ F such that l1(b)+α ≥ 0 for each b ∈ supp(F0). Suppose the contrary.

Then, for each f ∈ F , an element O(f ) = (d, e) in Z2 is defined by setting d to be the

maximum among the n-th components of b ∈ supp(f ) with l1(b) + α < 0, and e to be the

maximum among the first components of b ∈ supp(f ) whose n-th components are d . We

define the total order  on Z2 by (d1, e1)  (d2, e2) if d1 < d2 or d1 = d2, e1 ≤ e2. For

v1, v2 ∈ Z2, we denote v1 ≺ v2 if v1  v2 and v1 �= v2. Choose F ∈ F with O(F) = (d, e)

such that (d, e)  O(h) for any h ∈ F , and set f ∈ K[y2, . . . , yn−1] to be the coefficient of

ye
1y

d
n in F .

For b ∈ supp(F ) whose first and n-th components are e and d , respectively, we have

l1(b) + α = ε1
n,1e + min{ε1

n,j | j = 2, . . . , n − 1}(l − d − e) + α

= ε1
n,1e + (ε1

n,1 + min{ε1
1,j | j = 2, . . . , n − 1})(l − d − e) + α

= min{ε1
1,j | j = 2, . . . , n − 1}(l − d − e) − ε1

1,n(l − d) + α

≥ min{ε1
1,j | j = 2, . . . , n − 1}(l − d − e) − ε1

1,n(l − d − α′)

= min{ε1
1,j | j = 2, . . . , n − 1}((l − d − e) − η(l − d − α′)) .

(2.12)

Since ε1
1,j > 0 for j �= 1, the right hand side of the third equality in (2.12) is negative by the

maximality of e. By the last equality in (2.12) we get

l − d − e < η(l − d − α′) .(2.13)

LEMMA 2.5. In the above notation, E(f ) = 0.

PROOF. Suppose that E(f ) �= 0. Let yb be a monomial appearing in E(f ) with

nonzero coefficient. Let λ′
j be the coefficient of yjy

b in f , and bj the j -th component of

b for each j . Then, the coefficient µ′ of yb in E(f ) is written as

µ′ =
n−1
∑

j=2

(bj + 1)λ′
j .
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Let λj be the coefficient of yjy
b(ye

1y
d
n ) in F for each j . Then, λj = λ′

j for j = 2, . . . , n − 1.

The coefficient µ of yb(ye
1y

d
n ) in E(F) is written as

µ = (e + 1)λ1 +
n−1
∑

j=2

(bj + 1)λj + (d + 1)λn = (e + 1)λ1 + µ′ + (d + 1)λn .

Since E(F) = 0, we have µ = 0. Moreover, λ1 = 0 by the maximality of e. Since µ′ �= 0,

we have λn �= 0, that is,

b′ = b + ee1 + (d + 1)en

is in supp(F ). Note that l1(b
′ + e2 − en) + α is negative, since it is equal to the left hand side

of the first equality in (2.12). Hence,

l1(b
′) + α = l1(b

′ + e2 − en) + α + l1(en − e2)

< l1(en − e2) = − min{ε1
n,j | j = 2, . . . , n − 1} < 0 .

This contradicts the maximality of d . Thus, we get E(f ) = 0. ✷

We claim that K[y]E ⊂ B. This is a special case of Lemma 4.2 which we shall prove

later. By Lemma 2.5, this fact implies that f is in Bl−d−e.

LEMMA 2.6. In the above notation, there exists G ∈ Bl of the form G = fye
1yd

n + g ,

where g ∈ K[y]l such that every b ∈ supp(g) satisfies the following. li(b) ≥ 0 for i =
2, . . . , n − 1. If e′ and d ′ are the first and n-th components of b, respectively, then (d ′, e′) ≺
(d, e).

PROOF. Since f is in Bl−d−e ∩ K[y2, . . . , yn−1], we have

f =
∑

u

λu

n−1
∏

k=3

(y2 − yk)
uk

for some λu ∈ K . Here, the sum in the equality above is taken over u = (u3, . . . , un−1) ∈
(Z≥0)

n−3 with
∑n−1

k=3 uk = l − d − e. By (2.13), we get
∑n−1

k=3 uk < η(l − d − α′) for each

u. Hence, there exist p3, . . . , pn−1 ∈ Z≥0 such that

(l − d)e2 +
n−1
∑

k=3

(skuk + pk)(ek − e2) ∈ (l − d)PD(2.14)

for any s3, . . . , sn−1 ∈ [0, 1] by Lemma 2.4. We set

h′
u = y

e−p

2

n−1
∏

k=3

(

(y2 − yk)
uky

pk

k

)

,

where p =
∑n−1

k=3 pk . Note that each element of supp(h′
u) is written as the left hand side of

(2.14) for some s3, . . . , sn−1 ∈ [0, 1]. So, supp(h′
u) is contained in (l − d)PD . In particular,
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e − p ≥ 0. We set

hu = (y1 − y2)
e−p

n−1
∏

k=3

(

(y2 − yk)
uk (y1 − yk)

pk
)

for each u, and define

G =
(

∑

u

λuhu

)

(yn − y1)
d .

Put g = G − fye
1y

d
n . Then, the first and n-th components e′ and d ′, respectively, of each

b ∈ supp(g) satisfy (d ′, e′) ≺ (d, e). So, we verify that li(b) ≥ 0 for i = 2, . . . , n − 1 for

each b ∈ supp(g). Each element of supp(hu) is contained in c+
∑n−1

j=2 Z≥0(e1 −ej ) for some

c ∈ (l −d)PD . Indeed, hu is equal to the polynomial obtained from h′
u by substituting y1 −yk

for yk for each k, and supp(h′
u) ⊂ (l − d)PD . Therefore, we may write each b ∈ supp(g) as

b = d1e1 + d2en + c +
n−1
∑

j=2

vj (e1 − ej ) ,

where d1, d2, v2, . . . , vn−1 ∈ Z≥0 and c ∈ (l −d)PD . Note that li(en) = 0 and li(e1), li(c) ≥
0 for i = 2, . . . , n − 1. Moreover,

li





n−1
∑

j=2

vj (e1 − ej )



 = −
n−1
∑

j=2

min{εi
n,1, ε

i
n,j }vj + min{εi

n,1, ε
i
n,1}

n−1
∑

j=2

vj

=
n−1
∑

j=2

(εi
n,1 − min{εi

n,1, ε
i
n,j })vj ≥ 0 .

Thus, we get li(b) ≥ 0 for i = 2, . . . , n − 1. ✷

We set H = F − G. Then, H is in F . Moreover, O(H) ≺ O(F) by the definition of

H . This contradicts the choice of F . Hence, there exists F0 ∈ F such that l1(b) + α ≥ 0 for

each b ∈ supp(F0). We have thus proved Lemma 2.3. Therefore, the proof of Theorem 1.3 is

completed.

Now, assume that m ≥ 3 and n = 4. Then, we set

ξi = ξi(D) =
εi
i,4

min{εi
i,j , ε

i
i,k}

(2.15)

for distinct integers 1 ≤ i, j, k ≤ 3, and put ξ(D) = ξ1(D) + ξ2(D) + ξ3(D).

We show Theorem 1.4 as a consequence of Theorem 1.3. We verify that (1 − ξ2, ξ2)

is a solution of L3,2. Note that ξi > 0 for i = 1, 2, 3, η = ξ1, η3,2 = 0 and η3,3 =
−ξ1 min{ε3

3,1, ε
3
3,2}. So, ξ2 > 0. By (1.6), we have 1 − ξ2 ≥ ξ1 + ξ3 > ξ1 = η. Moreover, it
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follows that

min{ε2
4,1, ε

2
4,2}(1 − ξ2) + min{ε2

4,1, ε
2
4,3}ξ2 + η3,2

= min{ε2
4,1, ε

2
4,2} + (min{ε2

4,1, ε
2
4,3} − min{ε2

4,1, ε
2
4,2})ξ2 + η3,2

= ε2
4,2 + min{ε2

2,1, ε
2
2,3}ξ2 = 0 ,

and

min{ε3
4,1, ε

3
4,2}(1 − ξ2) + min{ε3

4,1, ε
3
4,3}ξ2 + η3,3

= min{ε3
4,1, ε

3
4,2} + (min{ε3

4,1, ε
3
4,3} − min{ε3

4,1, ε
3
4,2})ξ2 + η3,3

= (ε3
4,3 + min{ε3

3,1, ε
3
3,2}) − min{ε3

3,1, ε
3
3,2}ξ2 + η3,3

= min{ε3
3,1, ε

3
3,2} (−ξ3 + 1 − ξ2 − ξ1) ≥ 0 .

Therefore, (1 − ξ2, ξ2) is a solution of L3,2. Hence, K[x][y]D is not finitely generated by

Theorem 1.3.

Finally, we show Corollary 1.5. As mentioned in Section 1, εi
i,j > 0 for any i �= j , since

εi
i,j = t + 1 if j �= m + 1, and εi

i,j = 1 otherwise. Assume that m = 3 and t ≥ 2. Then,

ξ(Dt,m) = 3/(t + 1) ≤ 1. Hence, K[x][y]Dt,3 is not finitely generated by Theorem 1.4.

Assume that m ≥ 4 and t ≥ 1. For k = 3, . . . ,m − 1, we define uk = (u1
k, . . . , u

m−1
k ) ∈

(R≥0)
m−1 as follows. Set u3

3, u
j
k = 1/2 for j, k with j = 1 or k = j + 2, and set u

j
k =

0 otherwise. We show that uk is a solution of Lk,m−1 for each k. Since m ≥ 4, we have
∑m−1

j=1 u
j

k = 1. Since t ≥ 1, we get u1
k = 1/2 ≥ 1/(t + 1) = η. Clearly, u

j

k ≥ 0 for

j = 2, . . . ,m − 1. For i = 2, . . . ,m − 1, it follows that

m−1
∑

j=1

min{εi
m+1,1, ε

i
m+1,j+1}u

j
k + ηk,i = t − (t + 1)ui−1

k + ηk,i .(2.16)

Note that ηk,i = −1 if i = k, and ηk,i = 0 otherwise. If i = k, then the right hand side of

(2.16) is equal to t − 1, since uk−1
k = 0. If i �= k, then it is not less than (t − 1)/2, since

ui−1
k ≤ 1/2 for any i, k. So, it is nonnegative for every i, k. Therefore, uk is a solution of

Lk,m−1 for k = 3, . . . ,m − 2. By Theorem 1.3, K[x]Dt,m is not finitely generated. Thus, we

complete the proof of Corollary 1.5.

3. A SAGBI basis for the counterexample of Roberts. In this section, we consider

the counterexample of Roberts. Recall that it is obtained as the kernel of the derivation Dt,m

on K[x][y] for (m, n) = (3, 4) and t ≥ 2 by the result of Deveney and Finston [2]. We

determine its initial algebra for some monomial order on K[x][y]. Consequently, it will turn

out that the infinite system of invariants appearing in Roberts’ proof of [14, Lemma 3] is a

generating set of K[x][y]Dt,3 .

First, we review the notion of an initial algebra and a SAGBI (Subalgebra Analogue to

Gröbner Bases for Ideals) basis. Let  be a monomial order on K[x][y], i.e., a total order on

Zm × Zn such that a  b implies a + c  b + c for any a, b, c ∈ Zm × Zn and the zero
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vector is the minimum among (Z≥0)
m × (Z≥0)

n for . We denote a ≺ b if a �= b and a  b.

We sometimes denote xayb  xa′
yb′

instead of (a, b)  (a′, b′). For f ∈ K[x][y] \ {0}, we

define the initial term in(f ) of f by αxayb. Here, (a, b) is the maximal element of supp(f )

for , and α is the coefficient of xayb in f . Note that the maximum of supp(f ) always exists,

since it is a nonempty finite set. If f = 0, then we define in(f ) = 0. Then, it follows that

in(f g) = in(f ) in(g)(3.1)

for any f, g ∈ K[x][y]. Assume that A is a K-subalgebra of K[x][y]. We define the initial

algebra in(A) of A as the K-vector space generated by {in(f ) | f ∈ A}. Then, in(A) is a

K-algebra by (3.1). We say that a generating set S of A is a SAGBI basis if the initial algebra

in(A) is generated by {in(f ) | f ∈ S} over K .

The following is a basic property of a SAGBI basis.

LEMMA 3.1 (Robbiano-Sweedler [13, Proposition 1.16]). Let  be a monomial order

on K[x][y]. Assume that A is a K-subalgebra of K[x][y], and S is a subset of A. If {in(f ) |
f ∈ S} generates the initial algebra in(A) over K , then S is a SAGBI basis for A. In

particular, S generates A over K .

For any elementary monomial K[x]-derivation D on K[x][y], we set ε+
i,j to be the vector

we obtain from εi,j by replacing the negative components by zero, and define Li,j = x
ε+
j,i yi −

x
ε+
i,j yj for each i, j . Then, Li,j is in K[x][y]D for i, j .

Now, let us consider the kernel K[x][y]Dt,m of Dt,m on K[x][y] for (m, n) = (3, 4).

Note that the three elements

x t+1
1 y2 − x t+1

2 y1 , x t+1
1 y3 − x t+1

3 y1 , x t+1
2 y3 − x t+1

3 y2(3.2)

are contained in K[x][y]Dt,3 . Indeed, they are equal to L2,1, L3,1 and L3,2. Moreover, we

know the following (see also [6, Lemma 2.1]).

THEOREM 3.2 (Roberts [14, Lemma 3]). For each d ∈ Z≥0 and i = 1, 2, 3, there

exists an element of the form xiy
d
4 + (terms of lower degree in y4) in K[x][y]Dt,3 .

We take an arbitrary Id,i ∈ K[x][y]Dt,3 of the form in Theorem 3.2 for each (d, i). Note

that I0,i = xi for each i. Let lex be the monomial order on K[x][y] for (m, n) = (3, 4)

which is the lexicographic order with

x1 ≺lex x2 ≺lex x3 ≺lex y1 ≺lex y2 ≺lex y3 ≺lex y4 .(3.3)

Namely, we define a lex b if the last nonzero component of b − a is positive for a, b ∈
Z3 × Z4, where we regard a, b as elements of Z7.

The following is the main result of this section.

THEOREM 3.3. Assume that t ≥ 2. Then, the initial algebra of K[x][y]Dt,3 for lex is

generated by

{x t+1
1 y2, x t+1

1 y3, x t+1
2 y3} ∪ {xiy

d
4 | d ∈ Z≥0, i = 1, 2, 3}(3.4)

over K . The set
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{x t+1
1 y2 − x t+1

2 y1 , x t+1
1 y3 − x t+1

3 y1 , x t+1
2 y3 − x t+1

3 y2} ∪ {Id,i | d ∈ Z≥0, i = 1, 2, 3}
(3.5)

is a SAGBI basis for K[x][y]Dt,3 for lex. In particular, it generates K[x][y]Dt,3 over K .

To analyze K[x][y]D in greater detail, we define a grading structure on it. Let D be any

elementary monomial K[x]-derivation on K[x][y]. We set

Γ = (Zm × Zn)
/

n
∑

i=2

Z(εi,1, e1 − ei) ,

and K[x, x−1][y]γ the K-vector space generated by monomials xayb for (a, b) ∈
Zm × (Z≥0)

n with the image of (a, b) in Γ equal to γ for each γ ∈ Γ . Then, it

defines a Γ -grading on K[x, x−1][y], i.e., K[x, x−1][y] =
⊕

γ∈Γ K[x, x−1][y]γ and

K[x, x−1][y]γ K[x, x−1][y]µ ⊂ K[x, x−1][y]γ+µ for any γ,µ ∈ Γ . Moreover, it follows

that

K[x, x−1][y]D =
⊕

γ∈Γ

K[x, x−1][y]Dγ .

Here, for a K-subalgebra A of K[x, x−1][y], we set Aγ = A∩K[x, x−1][y]γ for each γ . We

say that f ∈ K[x, x−1][y] is Γ -homogeneous if f is in K[x, x−1][y]γ for some γ ∈ Γ . This

γ is denoted by degΓ (f ). Note that each γ ∈ Γ is expressed as the image of (a, len) for some

a ∈ Zm and l ∈ Z≥0. Then, we have τxa (K[y]l) = K[x, x−1][y]γ . Actually, τxa (φ(f )) = f

for f ∈ K[x, x−1][y]γ , where φ : K[x, x−1][y] → K[y] is the homomorphism which

substitutes one for each xi . Since E ◦ φ = φ ◦ D, we have φ(f ) ∈ K[y]El = Bl for

f ∈ K[x, x−1][y]Dγ . Hence, τxa (Bl) = K[x, x−1][y]Dγ .

We remark that, for f ∈ K[y], r ∈ Z≥0 and a ∈ Zm, the condition that (yi − yj )
r

divides f implies that Lr
i,j is a factor of τxa (f ) in K[x, x−1][y]. This is proved as follows.

Note that τxa (f ) = xaτ1(f ) for any f ∈ K[y], and τ1(yi − yj ) = x
εn,i−ε+

j,i Li,j for i, j .

Assume that f = (yi − yj )
rf ′ for some f ′ ∈ K[y]. Then,

τxa (f ) = xaτ1((yi − yj )
rf ′) = xaτ1(yi − yj )

rτ1(f
′) = x

a+r(εn,i−ε+
j,i )Lr

i,j τ1(f
′) ,

since τ1 preserves multiplication. Thus, Lr
i,j is a factor of τxa (f ) in K[x, x−1][y].

Assume that n = 3. Then, each f ∈ Bl is written as

f = (y2 − y1)
s(y3 − y1)

t

u
∑

i=0

αi(y2 − y1)
i(y3 − y1)

u−i .

Here, s, t, u ∈ Z≥0 with s + t + u = l and αi ∈ K with α0, αu �= 0. If β1, . . . , βu ∈ K̄ are

the solutions of the equation
∑u

i=0 αiX
i = 0, then we get

f = α0(y2 − y1)
s(y3 − y1)

t

u
∏

i=1

(y2 − βiy3 + (βi − 1)y1) ,(3.6)

where K̄ is the algebraic closure of K .
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PROPOSITION 3.4. Assume that n = 3, and D is any elementary monomial K[x]-
derivation on K[x][y]. Then,

{x1, . . . , xm, L2,1, L3,1, L3,2}(3.7)

is a SAGBI basis for K[x][y]D with respect to any monomial order on K[x][y].

PROOF. Let  be any monomial order on K[x][y]. By Proposition 3.1, it suffices to

show that in(K[x][y]D) is equal to

R = K[x][in(L2,1), in(L3,1), in(L3,2)] .

First, we note that, since xaτ1(yi − yj ) ∈ K[x][y], its initial term is in R for a ∈ Zm

and i, j . Indeed, xaτ1(yi − yj ) = x
a+ε3,i−ε+

j,i Li,j , which is in K[x][y] if and only if a +
ε3,i − ε+

j,i ∈ (Z≥0)
m. We show that xaτ1(g) ∈ K[x][y] implies that in(xaτ1(g)) ∈ R ⊗K K̄

for a ∈ Zm, where g = y2 − y1 − β(y3 − y1) with β ∈ K̄ . If β is zero or one, then we are

done. Assume that β �= 0, 1. Then, there appears in xaτ1(g) each monomial which appears

in xa(τ1(yi − y1)) for i = 2, 3. Hence, if xaτ1(g) is in K[x][y], then xaτ1(yi − y1) is also in

K[x][y] for i = 2, 3. Since in(xaτ1(g)) is equal to in(xaτ1(yi − y1)) for some i ∈ {2, 3}
up to scalar multiplication, it is in R ⊗K K̄ .

To show in(K[x][y]D) = R, it suffices to verify that the initial term in(F ) of every

Γ -homogeneous element F ∈ K[x][y]D \ {0} is in R. Put f = φ(F). Then, it is in Bl for

some l ∈ Z≥0. So, f is expressed as in (3.6). Since τxa (f ) = F for some a ∈ Zm, we get

F = τxa (f ) = α0x
aτ1(y2 − y1)

sτ1(y3 − y1)
t

u
∏

i=1

τ1(y2 − βiy3 + (βi − 1)y1) .(3.8)

Since F is in K[x][y], there exist a′, a′′, ai ∈ Zm with sa′ + ta′′ +
∑u

i=1 ai = a such that

xa′
τ1(y2 − y1), x

a′′
τ1(y3 − y1) and xaiτ1(y2 − βiy3 + (βi − 1)y1) are in K[x][y]. Hence,

their initial terms are in R ⊗K K̄ , as noted in the preceding paragraph. This implies that

in(F ) ∈ R by (3.8) and (3.1). ✷

In particular, we have the following.

COROLLARY 3.5 (Khoury [5, Corollary 2.2]). Assume that n = 3, and D is any ele-

mentary monomial K[x]-derivation on K[x][y]. Then,

K[x][y]D = K[x][L2,1, L3,1, L3,2] .(3.9)

As we mentioned before Proposition 3.4, each element f ∈ Bl is factored into the prod-

uct of l elements in K̄ ⊗K B1. We note that, if r is the maximal integer such that (y3 − y2)
r

divides f , then the expansion of f involves the monomials y l−r
1 yr

2, y
l−r
1 yr

3 and does not in-

volve y l−r ′
1 yr ′

2 , y l−r ′
1 yr ′

3 for 0 ≤ r ′ ≤ r .

LEMMA 3.6. Assume that (m, n) = (3, 3) and εi
i,j > 0 for any 1 ≤ i, j ≤ 3 with

i �= j . If γ = degΓ (L
p
2,1L

q
3,1L

r
3,2) for p, q, r ∈ Z≥0, then K[x][y]Dγ is equal to the one-

dimensional K-vector space generated by L
p

2,1L
q

3,1L
r
3,2.
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PROOF. Take any 0 �= F ∈ K[x][y]Dγ , and put f = φ(F). Then, f is in Bl and

τxa (f ) = F , where l = p+q+r and a = p(ε2,3+ε+
1,2)+qε+

1,3+rε+
2,3. If (y2−y1)

p, (y3−y1)
q

and (y3 −y2)
r divide f , then F is in K(L

p
2,1L

q
3,1L

r
3,2). Actually, it implies that L

p
2,1, L

q
3,1 and

Lr
3,2 are factors of F . Suppose, say, that the maximal integer r ′ such that (y3 −y2)

r ′
divides f

is less than r . Then, y l−r ′
1 yr ′

2 and y l−r ′
1 yr ′

3 appear in f with nonzero coefficient, as mentioned

above. Hence, so do τxa (y l−r ′
1 yr ′

2 ) and τxa (y l−r ′
1 yr ′

3 ) in F . By definition, the first component

of ε+
2,3 or ε+

3,2 is zero. If that of ε+
2,3 is zero, then the power of x1 in τxa (y l−r ′

1 yr ′
3 ) is negative.

In fact, τxa (y l−r ′
1 yr ′

3 ) = xa′
y l−r ′

1 yr ′
3 , where

a′ = a + (l − r ′)ε3,1 = pε+
2,1 + qε+

3,1 + rε+
2,3 − (r − r ′)ε1,3 .

Since the first components of ε+
2,1, ε

+
3,1, ε

+
2,3 are zero, that of a′ is equal to −(r − r ′)ε1

1,3 < 0.

Similarly, the power of x1 in τxa (y l−r ′
1 yr ′

2 ) is negative if the first component of ε+
3,2 is zero.

This is a contradiction. Therefore, F is in K(L
p

2,1L
q

3,1L
r
3,2). ✷

Assume that n = 4. We define a homomorphism l̃ : Z4 → Z of additive groups by

l̃((b1, b2, b3, b4)) = b2ε
1
1,2 + b3ε

1
1,3 .(3.10)

LEMMA 3.7. Assume that n = 4, ε1
1,2 ≥ ε1

1,3 > 0 and F is an element of Bl for some

l ∈ Z≥0. If every b ∈ supp(F ) satisfies l̃(b) ≥ p for some p ∈ Z≥0, then (y3 − y2)
q divides

F for the minimal q ∈ Z≥0 with p ≤ qε1
1,3.

PROOF. Write

F = f0(y4 − y1)
l + f1(y4 − y1)

l−1 + · · · + fl ,

where fi ∈ K[y2 − y1, y3 − y1]i for each i. Suppose that (y3 − y2)
q did not divide F . Then,

there exists i such that (y3 − y2)
q does not divide fi . Let i be the minimum among such

indices i, and q ′ the maximal integer such that (y3 − y2)
q ′

divides fi . Then, fi involves the

monomial y
i−q ′

1 y
q ′

3 , as we noted before Lemma 3.6. We set b = (i − q ′, 0, q ′, l − i). Then,

l̃(b) = q ′ε1
1,3 < qε1

1,3. It implies that l̃(b) < p by the minimality of q . Hence, b �∈ supp(F ).

On the other hand, fi(y4 − y1)
l−i involves yb. If j > i, then fj (y4 − y1)

l−j does

not involve yb, since the exponent of y4 in each monomial of it is less than l − i. Suppose

that fj (y4 − y1)
l−j involved yb for j < i. Then, fj contains y

j−q ′

1 y
q ′

3 . Since q ′ < q ,

this contradicts the assumption that (y3 − y2)
q divides fj by the note above. Therefore,

fj (y4 − y1)
l−j does not involve yb if j �= i. Hence, b ∈ supp(F ). This is a contradiction.

Therefore, (y3 − y2)
q divides F . ✷

We remark that, if F ∈ K[x][y]D is expressed as

F = f0y
l
n + f1y

l−1
n + · · · + fl

for fi ∈ K[x][y1, . . . , yn−1], then D(f0) = 0. Actually, we get

0 = D(F) = D(f0)y
l
n + (terms of lower degree in yn) .
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The following is the key proposition.

PROPOSITION 3.8. Assume that (m, n) = (3, 4) and εi
i,j > 0 for any 1 ≤ i, j ≤ 4

with i �= j . Then, the monomial xay
p

2 y
q+r

3 y l
4 is not contained in inlex

(K[x][y]D) for any

p, q, r, l ∈ Z≥0, where we set a = pε+
1,2 + qε+

1,3 + rε+
2,3.

PROOF. Suppose that there existed F ∈ K[x][y]D such that inlex
(F ) = xay

p

2 y
q+r

3 y l
4.

Then, without loss of generality, we may assume that F is Γ -homogeneous. Write

F = f0y
l
4 + f1y

l−1
4 + · · · + fl ,

where fi ∈ K[x][y1, y2, y3] for i = 0, . . . , l. Then, f0 is in K[x][y1, y2, y3]D , as we

remarked above. Moreover, f0 is Γ -homogeneous and degΓ (f0) = degΓ (L
p

1,2L
q

1,3L
r
2,3).

Hence, f0 is equal to L
p

1,2L
q

1,3L
r
2,3 up to scalar multiplication by Lemma 3.6.

It suffices to show that each of L
p

2,1, L
q

3,1 and Lr
3,2 must be a factor of F in K[x, x−1][y].

Indeed, it will imply that F = L
p

1,2L
q

1,3L
r
2,3F

′ for some F ′ ∈ K[x, x−1][y], since L2,1, L3,1

and L3,2 are pairwise prime. Then, F ′ is an element in K[x][y]D . However, F ′ involves the

monomial y l
4. This contradicts Lemma 2.1.

Since the arguments are similar, we only show that Lr
3,2 is a factor of F . We assume

that ε1
1,2 ≥ ε1

1,3. The proof is similar for the other case. We set f = φ(F), and claim that

every b = (b1, b2, b3, b4) ∈ supp(f ) satisfies l̃(b) ≥ rε1
1,3. This implies that (y3 − y2)

r

divides f by Lemma 3.7. Hence, Lr
3,2 is a factor of F in K[x, x−1][y], and the proof is

completed. By straightforward computation, we may verify that degΓ (F ) is equal to the image

of (c, (d + l)e4), where d = p + q + r and

c = pε+
2,1 + qε+

3,1 + rε+
2,3 + dε1,4 + rε3,1 .

Thus, it follows that F = τxc(f ), as mentioned above. Hence, F involves τxc(yb) for b ∈
supp(f ). By simple computation, we get τxc(yb) = xdyb, where

d = pε+
2,1 + qε+

3,1 + rε+
2,3 + (l − b4)ε4,1 + rε3,1 + b2ε1,2 + b3ε1,3 .

Note that the first components of pε+
2,1, qε+

3,1, rε
+
2,3 are zero and b4 ≤ l. Since xdyb is in

K[x][y], the first component of d is nonnegative. Thus, we have

0 ≤ (l − b4)ε
1
4,1 + rε1

3,1 + b2ε
1
1,2 + b3ε

1
1,3 = (l − b4)ε

1
4,1 − rε1

1,3 + l̃(b) ≤ −rε1
1,3 + l̃(b) .

Therefore, l̃(b) ≥ rε1
1,3. ✷

Now, let us prove Theorem 3.3. By Lemma 3.1, the last statement is a consequence of

the first part. So, we will prove the first part.

We set R to be the K-algebra generated by (3.4). Clearly, inlex
(K[x][y]Dt,3) contains

R. For the converse, it suffices to show that inlex
(F ) is in R for any Γ -homogeneous element

F ∈ K[x][y]Dt,3 . The remark before Proposition 3.8 implies that inlex
(F ) = inlex

(F ′)y l
4 for

some F ′ ∈K[x][y1, y2, y3]Dt,3 and l∈Z≥0. By Proposition 3.4, the set {x1, x2, x3, L2,1, L3,1,
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L3,2} is a SAGBI basis for K[x][y1, y2, y3]Dt,3 with respect to any monomial order. In par-

ticular,

inlex
(K[x][y1, y2, y3]Dt,3) = K[x][x t+1

1 y2, x
t+1
1 y3, x

t+1
2 y3] .

Hence, there exist a1, a2, a3, p, q, r ∈ Z≥0 such that

inlex
(F ) = (x t+1

1 y2)
p(x t+1

1 y3)
q(x t+1

2 y3)
rx

a1

1 x
a2

2 x
a3

3 y l
4 .

Obviously, inlex
(F ) is in R if l = 0. Assume that l > 0. Then, a1 + a2 + a3 > 0 by

Proposition 3.8. Hence, it is also in R. Therefore, inlex
(K[x][y]Dt,3) is contained in R. This

completes the proof of Theorem 3.3.

4. A condition for finite generation. In this section, we investigate a condition for

the finite generation of K[x][y]D , where D is an elementary monomial K[x]-derivation. The

main result of this section is the following.

THEOREM 4.1. Assume that (m, n) = (3, 4), and there exist i �= j and k such that

ε
σ(k)
τ (i),τ (j) ≤ 0 and σ(k) = τ (i) for every pair of permutations σ and τ on {1, 2, 3} and

{1, 2, 3, 4}, respectively. Then, K[x][y]D is generated by Lki ,li for i = 1, 2, 3, 4 over K[x]
for some integers 1 ≤ ki, li ≤ 4.

First, we look at general properties on the kernel of an elementary monomial K[x]-
derivation. For each i, j , we set L̃i,j = yi − xεi,j yj . It is contained in K[x, x−1][y]D . To

avoid confusion, we sometimes denote it by L̃D
i,j to emphasize D.

LEMMA 4.2. The kernel K[x][y]D is contained in K[x][L̃1,j , . . . , L̃n,j ] for each j .

PROOF. Take any F ∈ K[x][y]D , and let f be the polynomial obtained from F by

replacing yj by zero. Then, define an element F ′ of K[x][L̃1,j , . . . , L̃n,j ] as the polynomial

which we obtain from f by replacing yk by L̃k,j for each k. We show that F = F ′. Suppose

that F �= F ′. Write

F − F ′ = (terms of higher degree in yj ) + gye
j ,

where g is an element of K[x, x−1][y] \ {0} not involving yj . Since F − f and F ′ − f are in

K[x, x−1][y]yj , we have e > 0. However,

0 = D(F − F ′) = (terms of higher degree in yj ) + egxδj ye−1
j ,

a contradiction, since egxδj �= 0. Therefore, F = F ′. ✷

Assume that δj = 0 for some j . Then, L̃k,j is in K[x][y]D for each k. By Lemma 4.2,

it implies that K[x][y]D = K[x][L̃1,j , . . . , L̃n,j ]. If this is the case, then K[x][y]D is iso-

morphic to K[x][y1, . . . , yj−1, yj+1, . . . , yn] via the homomorphism which substitutes zero

for yj . In particular, the kernel K[x][y]Dt,m of the derivation Dt,m for t = 0 is generated

by L̃1,m+1, . . . , L̃m,m+1 over K[x], and is isomorphic to the polynomial ring in 2m variables

over K .
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Now, we fix 1 ≤ i ≤ m and 1 ≤ j ≤ n. Assume that εi
k,j ≥ 0 for every k = 1, . . . , n.

Then, put µ = min {εi
k,j | k �= j }, and set x

ε′
k,j = x

−µ
i xεk,j for each k. Let D′ be an

elementary monomial K[x]-derivation on K[x][y] such that D′(yk)/D
′(yj ) = x

ε′
k,j for each

k. For f ∈ K[x][y]D , we define Tj,i(f ) to be the polynomial obtained from f by replacing

yj by x
−µ
i yj . Then, it follows that

Tj,i(L̃
D
k,j ) = yk − xεk,j (x

−µ
i yj ) = yk − x

ε′
k,j yj = L̃D′

k,j

for each k.

LEMMA 4.3. Let i, j be integers with 1 ≤ i ≤ m and 1 ≤ j ≤ n. If εi
k,j ≥ 0 for every

k = 1, . . . , n, then Tj,i is an injective homomorphism with the image K[x][y]D′
.

PROOF. Suppose that Tj,i(f ) were not in K[x][y]D′
for some f ∈ K[x][y]D . By

Lemma 4.2, f is in K[x][{L̃D
k,j | k}]. Since Tj,i sends L̃D

k,j to L̃D′
k,j , we have Tj,i(f ) ∈

K[x][{L̃D′
k,j | k}]. In particular, D′(Tj,i(f )) = 0. Hence, there appears in Tj,i(f ) a monomial

with negative power in some variable. By the definition of Tj,i(f ), the variable must be xi .

However, L̃D′
k,j does not have negative power in xi for each k. Hence, such a monomial cannot

appear in Tj,i(f ). This is a contradiction. Thus, Tj,i(f ) is in K[x][y]D′
.

Conversely, a homomorphism K[x][y]D′ → K[x][y]D is defined by the substitution

yj �→ x
µ
i yj . Indeed, it sends each L̃D′

k,j to L̃D
k,j . It is the inverse of Tj,i : K[x][y]D →

K[x][y]D′
. ✷

We use the following proposition to reduce problems on the kernel of D to a lower

dimensional case.

PROPOSITION 4.4. Let D be any elementary monomial K[x]-derivation on K[x][y],
and 1 ≤ j, k ≤ m distinct integers. For each 1 ≤ i ≤ m, we assume that either εi

j,k ≥ 0 or

εi
l,k ≥ 0 for all l �= j . Then,

K[x][y]D = K[x][y1, . . . , yj−1, yj+1, . . . , yn]D[Lj,k] .(4.1)

PROOF. Clearly, the right hand side of (4.1) is contained in the left hand side. We show

the converse. Let S be the set of elements of K[x][y]D not contained in the right hand side of

(4.1). Suppose that S were not empty. Take f ∈ S with the minimal degree in yj , and write

f = gd (x
ε+
k,j yj )

d + gd−1(x
ε+
k,j yj )

d−1 + · · · + g 0 ,(4.2)

where gi ∈ K[x, x−1][y1, . . . , yj−1, yj+1, . . . , yn] with gd �= 0. To complete the proof, it

suffices to show that gd is in K[x][y]D . Indeed, it implies that f − gd (Lj,k)
d is in S, but the

degree of f − gd(Lj,k)
d in yj is less than d . This is a contradiction, and we get S = ∅.

Similarly to the remark before Proposition 3.8, we have D(gd ) = 0. We show that every

monomial appearing in gd does not have negative power in xi for each i. First, assume that the

i-th component of ε+
k,j is not zero. Then, it is equal to εi

k,j > 0, and so εi
j,k is negative. Hence,

εi
l,k ≥ 0 for any l �= j by assumption. Since εi

l,j = εi
l,k + εi

k,j , we have 0 < εi
k,j ≤ εi

l,j
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for l �= j . Thus, the substitution yj �→ xi
−εi

k,j yj sends f to Tj,i(f ). If there appeared

in gd a monomial xayb with negative power in xi , then Tj,i(f ) would have the monomial

xaybyd
j . It also has negative power in xi . This is a contradiction, since Tj,i(f ) is in K[x][y]

by Lemma 4.3. If the i-th component of ε+
k,j is zero, then the expression (4.2) also implies

that no monomial appearing in gd has negative power in xi . Therefore, gd is in K[x][y]. ✷

As a corollary to Proposition 4.4, we have the following.

COROLLARY 4.5 (Khoury [5, Theorem 3.1]). If m = 2, then there exist 1 ≤ l ≤ n and

1 ≤ kj ≤ n with kj �= j for each j �= l such that

K[x][y]D = K[x][L1,k1
, . . . , Ll−1,kl−1

, Ll+1,kl+1
, . . . , Ln,kn ] .(4.3)

PROOF. We prove this by induction on n. If n = 1, then K[x][y]D = K[x] by

Lemma 4.2. Hence, the assertion is true. Assume that n > 1. Then, by change of indices

if necessary, we may assume that δ1
1 ≤ · · · ≤ δ1

n. If there exist 1 ≤ k < j ≤ n such that

δ2
k ≤ δ2

j , then εi
j,k ≥ 0 for i = 1, 2. Hence,

K[x][y]D = K[x][y1, . . . , yj−1, yj+1, . . . , yn]D[Lj,k]
by Proposition 4.4. Thus, the assertion follows from the induction assumption. Assume that

such k, j do not exist, i.e., δ2
n < · · · < δ2

1 . Then, ε2
l,n−1 > 0 for any l �= n. Since ε1

n,n−1 ≥ 0,

we have K[x][y]D = K[x][y1, . . . , yn−1]D[Ln,n−1] by Proposition 4.4. Hence, the assertion

follows similarly. ✷

Let φ1 : K[x][y] → K[x2, . . . , xm][y] be the homomorphism which substitutes one

for x1, and D1 the elementary K[x2, . . . , xm]-derivation on K[x2, . . . , xm][y] defined by

D1(f ) = φ1(D(f )) for each f . Then, D1 is a monomial derivation. By definition, it follows

that φ1 ◦D = D1 ◦φ1 on K[x][y]. Recall the Γ -grading structure on K[x][y] defined in Sec-

tion 3. Let Γ1 be the set of the images of (a, len) in Γ for l ∈ Z and a = (a1, . . . , am) ∈ Zm

with a1 = 0. Then, Γ1 is a subgroup of Γ , and
⊕

γ∈Γ1
K[x][y]γ is a K[x2, . . . , xn]-

subalgebra of K[x][y].

LEMMA 4.6. Assume that ε1
n,j ≥ 0 for j = 1, . . . , n. Then, φ1 induces an isomor-

phism
⊕

γ∈Γ1

K[x][y]Dγ → K[x2, . . . , xm][y]D1 .(4.4)

PROOF. Set R =
⊕

γ∈Γ1
K[x][y]γ and R′ = K[x2, . . . , xm][y]. It suffices to show

that φ1 induces an isomorphism R → R′. Indeed, it implies that φ1(R
D) = (R′)D1 , since

φ1 ◦ D = D1 ◦ φ1.

First, we show the injectivity. Suppose that there existed f ∈ R\{0} such that φ1(f ) = 0.

Then, f = (x1 − 1)f ′ for some f ′ ∈ K[x][y] \ {0}. Let p and q be the maximal and the

minimal integers l with degΓ (x l
1f

′′) ∈ Γ1 for some nonzero Γ -homogeneous component f ′′

of f ′, respectively. Clearly, we have p ≥ 1 or q ≤ 0. If p ≥ 1, then degΓ (f ′′) �∈ Γ1

for a Γ -homogeneous component f ′′ of f ′ with degΓ (x
p

1 f ′′) ∈ Γ1. However, −f ′′ is a
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Γ -homogeneous component of f by the maximality of p. Hence, −f ′′ is in R. This is a

contradiction. Similarly, we get a contradiction if q ≤ 0. Therefore, φ1(f ) �= 0 for any

f ∈ R \ {0}.
For the surjectivity, it suffices to show that φ1(R) contains every monomial in R′. Take

any monomial xayb ∈ R′, and put l =
∑n

j=1 bjε
1
n,j , where b = (b1, . . . , bn). Then, l is

nonnegative, since ε1
n,j ≥ 0 for all j by assumption. Hence, x l

1x
ayb is in K[x][y]. Note that

degΓ (x l
1x

ayb) = degΓ

(

x l
1x

ayb
n

∏

j=1

(xεj,ny−1
j yn)

bj

)

= degΓ

(

xcy

∑n
j=1 bj

n

)

,

where c = (l, 0, . . . , 0) + a +
∑n

j=1 bjεj,n. Since the first component of a is zero, that of

c is equal to l +
∑n

j=1 bjε
1
j,n = 0. Thus, x l

1x
ayb is in R. Since xayb = φ1(x

l
1x

ayb), the

surjectivity is proved. ✷

LEMMA 4.7. Assume that n = 4 and ε1
1,3, ε

1
1,2 > 0, ε1

1,4 = 0. Then, K[x][y]D is

generated by x1 and L3,2 over
⊕

γ∈Γ1
K[x][y]Dγ .

PROOF. Without loss of generality, we may assume that ε1
1,3 ≥ ε1

1,2. It suffices to

show that each Γ -homogeneous element F ∈ K[x][y]D is written as F = x
p

1 L
q

3,2F
′, where

p, q ∈ Z≥0 and F ′ ∈ K[x][y]γ ′ for some γ ′ ∈ Γ1. Indeed, it also implies that D(F ′) = 0,

since 0 = D(F) = x
p

1 L
q

3,2D(F ′).
Assume that degΓ (F ) is equal to the image of (a, le4), where a = (a1, . . . , am) ∈ Zm

and l ∈ Z≥0. We set f = φ(F). Then, F = τxa (f ), as we noted before Proposition 3.4.

Take any b = (b1, b2, b3, b4) ∈ supp(f ). Then, by straightforward computation, we get

τxa (yb) = xcyb, where

c = a + (l − b4)ε4,1 + b2ε1,2 + b3ε1,3 .(4.5)

Since ε1
4,1 = 0, the first component of c is equal to a1 + l̃(b). On the other hand, we have

l̃(b) ≥ 0, since ε1
1,2, ε

1
1,3 > 0. Hence, x

−a1

1 xcyb does not have negative power. Thus, x
−a1

1 F

is in K[x][y]. Clearly, degΓ (x
−a1

1 F) is in Γ1. Therefore, if a1 ≥ 0, then we are led to the

desired expression F = x
a1

1 (x
−a1

1 F).

Assume that a1 < 0. Let q be the minimal integer such that qε1
1,3 ≥ −a1. Since the

first component of (4.5) is nonnegative, we have l̃(b) ≥ −a1 for every b ∈ supp(f ). Hence,

(y3 − y2)
q divides f by Lemma 3.7. It implies that F = F ′Lq

3,2 for some F ′ ∈ K[x][y]D .

Note that degΓ (L
q
3,2) is equal to the image of q(ε+

2,3 + ε3,4, e4) in Γ . Hence, degΓ (F ′) is

equal to that of (a′, (l − q)e4), where

a′ = a − q(ε+
2,3 + ε3,4) = a + qε1,3 − q(ε+

2,3 + ε1,4) .

Since the first components of ε+
2,3 and ε1,4 are zero, that of a′ is equal to a1 + qε1

1,3. By

the choice of q , this is nonnegative. Hence, we have F ′ = x
p

1 F ′′ for some p ∈ Z≥0 and

F ′′ ∈ K[x][y]γ ′ with γ ′ ∈ Γ1, as we showed in the preceding paragraph. Therefore, we get a

desired expression. ✷
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Now, let us prove Theorem 4.1. Note that the assumption fails if and only if we can

exchange the rows and columns of the matrix (δ
j
i )i,j so that δi

i is the maximum among the

components of the i-th column for each i. Under the assumption, we are reduced to one of

the following two cases by such operations:

(i) δ1
i ≤ δ1

1 and δ2
i ≤ δ2

1 for i = 1, 2, 3, 4.

(ii) δ1
i < δ1

1 = δ1
4 for i = 2, 3.

In fact, if we are not reduced to (ii), then there exists 1 ≤ kj ≤ 4 for each j = 1, 2, 3 such

that δ
j
i < δ

j
kj

for any i �= kj . If further we were not reduced to (i), then kj �= kl for any j �= l.

In this case, we can exchange the rows of (δ
j

i )i,j so that kj = j for j = 1, 2, 3. This implies

that δ
j

i < δi
i for any i �= j .

First, consider the case (i). By exchanging the row vectors δ2, δ3 and δ4 of (δ
j
i )i,j if

necessary, we may assume that δ3
4 ≤ δ3

j , that is, ε3
j,4 ≥ 0 for j = 2, 3, 4. Since δ1

4 ≤ δ1
1 and

δ2
4 ≤ δ2

1 by assumption, we have ε1
1,4, ε

2
1,4 ≥ 0. Hence, K[x][y]D = K[x][y1, y2, y3]D[L4,1]

by Proposition 4.4. Therefore, K[x][y]D is generated by L2,1, L3,1, L3,2 and L4,1 over K[x]
by Corollary 3.5.

Now, consider the case (ii). Since ε1
2,1, ε

1
3,1 < 0 and ε1

4,1 = 0 follow from the condition,

K[x][y]D is generated by x1, L
D
3,2 over

⊕

γ∈Γ1
K[x][y]Dγ by Lemma 4.7. By Lemma 4.6,

⊕

γ∈Γ1
K[x][y]Dγ is isomorphic to K[x2, x3][y]D′

via φ1, since ε1
4,j ≥ 0 for any j . Then, by

Corollary 4.5, there exist 1 ≤ l ≤ 4, and 1 ≤ ki ≤ 4 with ki �= i for i ∈ {1, 2, 3, 4} \ {l}
such that K[x2, x3][y]D′

is generated by LD′
ki ,i

for i ∈ {1, 2, 3, 4} \ {l} over K[x2, x3]. Since

φ1(L
D
i,j ) = LD′

i,j for i, j , the K[x2, x3]-algebra
⊕

γ∈Γ1
K[x][y]Dγ is generated by LD

ki ,i
for

i ∈ {1, 2, 3, 4}\{l}. Therefore, K[x][y]D is generated by LD
3,2 and LD

ki ,i
for i ∈ {1, 2, 3, 4}\{l}

over K[x]. This completes the proof of Theorem 4.1.

Let D be any elementary monomial K[x]-derivation on K[x][y] for (m, n) = (3, 4). By

Theorems 1.4 and 4.1, we settled the problem of finite generation of K[x][y]D except in the

case εi
i,j > 0 for any i �= j and ξ(D) > 1.

CONJECTURE 4.8. Assume that (m, n) = (3, 4), and εi
i,j > 0 for any i �= j . If

ξ(D) > 1, then K[x][y]D is finitely generated.

Note that the conjecture is true if there exist distinct r, s ∈ {1, 2, 3} such that ξr (D) ≥ 1

and ξs(D) ≥ 1. We show this for (r, s) = (2, 3). The conditions ξ2(D) ≥ 1 and ξ3(D) ≥ 1

imply, respectively, that ε2
3,4 ≥ 0 or ε2

1,4 ≥ 0, and ε3
1,4 ≥ 0 or ε3

2,4 ≥ 0. Furthermore, we have

ε1
1,4 > 0, ε2

2,4 > 0 and ε3
3,4 > 0 by assumption. Hence, for each i = 1, 2, 3, we have εi

1,4 ≥ 0

or εi
l,4 ≥ 0 for l = 2, 3, 4. Thus, K[x][y]D = K[x][y2, y3, y4]D[L4,1] by Proposition 4.4.

Therefore, K[x][y]D is generated by L3,2, L4,1, L4,2 and L4,3 over K[x] by Corollary 3.5.

There exists an example of an elementary monomial K[x]-derivation on K[x][y] for

(m, n) = (3, 4) whose kernel is finitely generated, and ξi(D) < 1 for i = 1, 2, 3. Kurano [7]

showed that the kernel of D1,3 is finitely generated. In fact, he showed that it is generated by
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x1, x2, x3, Li,j for (i, j) ∈ Z × Z with 1 ≤ j < i ≤ 4 and

xiy
2
4 − 2xjxkyiy4 + xix

2
kyiyj + xix

2
j yiyk − x3

i yjyk(4.6)

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) over K . Moreover, [7, Lemma 3.2] implies that the

set of these polynomials is a SAGBI basis for the lexicographic order lex with (3.3). For this

derivation, we have ξi(D1,3) = 1/2 for i = 1, 2, 3.
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