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Abstract Rejection sampling is a well-known method to
generate random samples from arbitrary target probabil-
ity distributions. It demands the design of a suitable pro-
posal probability density function (pdf) from which candi-
date samples can be drawn. These samples are either ac-
cepted or rejected depending on a test involving the ratio
of the target and proposal densities. The adaptive rejection
sampling method is an efficient algorithm to sample from
a log-concave target density, that attains high acceptance
rates by improving the proposal density whenever a sample
is rejected. In this paper we introduce a generalized adap-
tive rejection sampling procedure that can be applied with a
broad class of target probability distributions, possibly non-
log-concave and exhibiting multiple modes. The proposed
technique yields a sequence of proposal densities that con-
verge toward the target pdf, thus achieving very high accep-
tance rates. We provide a simple numerical example to illus-
trate the basic use of the proposed technique, together with
a more elaborate positioning application using real data.
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1 Introduction

Rejection sampling (see, e.g., Robert and Casella 2004,
Chap. 2) is a standard Monte Carlo technique for univer-
sal sampling. It can be used to generate samples from a
target probability density function (pdf) by drawing from a
proposal density. The sample is either accepted or rejected
by an adequate test of the ratio of the two pdf’s and it
can be proved that accepted samples are actually distrib-
uted according to the target density (Robert and Casella
2004). Rejection sampling can be applied as a tool by it-
self, in problems where the goal is to approximate integrals
with respect to (w.r.t.) the pdf of interest, but more often
it is a useful building block for more sophisticated Monte
Carlo procedures (Gilks and Wild 1992; Gilks et al. 1994;
Künsch 2005). An important limitation of rejection sam-
pling methods, however, is the need to analytically establish
a bound for the ratio of the target and proposal densities.
There is a lack of general methods for the computation of
exact bounds and so they have to be found for each specific
problem at hand.

One exception to this rule is the so-called adaptive re-
jection sampling (ARS) method (Gilks and Wild 1992;
Gilks 1992; Robert and Casella 2004) which, given a tar-
get density, yields both a suitable proposal pdf (easy to draw
from) and an upper bound for the ratio of the target den-
sity over this proposal. The class of adaptive rejection sam-
pling methods is particularly interesting because they ensure
high acceptance rates. Indeed the standard ARS algorithm
of Gilks and Wild (1992) yields a sequence of proposal
functions that actually converge toward the target pdf when
the procedure is iterated. As the proposal density becomes
closer to the target pdf, the proportion of accepted samples
grows. Unfortunately, this algorithm can only be used with
log-concave target densities. An extension of the standard
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ARS has been proposed in Hörmann (1995), where the same
method of Gilks and Wild (1992) is applied to T -concave
densities, with T being a monotonically increasing transfor-
mation, not necessarily the logarithm. The technique cannot
be applied to multimodal densities either.

Indeed, when the target pdf presents several modes, an
elaborate extension of the original ARS method is needed.
The adaptive rejection Metropolis sampling (ARMS) proce-
dure of Gilks et al. (1995) uses a Metropolis-Hastings al-
gorithm to account for multiple modes. However, this ap-
proach is not fully satisfactory because the generated sam-
ples form a Markov chain. Hence, they are correlated and,
for certain distributions, the chain can be easily trapped in a
single mode.

The method in Evans and Swartz (1998) extends the tech-
nique of Hörmann (1995) to multimodal distributions. It in-
volves the decomposition of the T -transformed density into
pieces which are either convex and concave on disjoint in-
tervals and can be handled separately. Unfortunately, this
decomposition requires the ability to find all the inflection
points of the T -transformed density, which can be some-
thing hard to do for practical problems.

More recently, it has been proposed to handle multimodal
distributions by decomposing the log-density into a sum of
concave and convex functions (Görür and Teh 2009). Then,
every concave/convex element is handled using a method
similar to the ARS procedure. A limitation for the applica-
bility of this technique is the need to decompose the loga-
rithm of the target pdf into concave and convex components,
since no general procedure to carry out this decomposition
is available. Also, the application of this technique to distri-
butions with an infinite support requires that the tails of the
log-densities be strictly concave.

In this paper, we introduce a generalization of the ARS
method that can be applied to a large class of target pdf’s,
possibly not log-concave and possibly multimodal. We as-
sume that the log-density log[p(x)] can be expressed as
a sum of composed functions, log[p(x)] = −∑n

i (V̄i ◦
gi)(x) + cst , where the V̄i ’s are convex and the gi ’s are
either convex or concave.1 This is not a universal decom-
position that can be applied to every density of interest, but
the freedom in the choice of the V̄i ’s and the gi ’s enables
to describe a family of pdf’s that includes, e.g., a posteriori
distributions of random variables given a set of independent
observations. Further remarks on the applicability of this
approach are provided in Sect. 3.6.

The method is based on constructing piecewise-linear ap-
proximations of the nonlinearities gi underlying the target
density. The construction of these approximations requires a

1These initial assumptions on the convexity of the V̄i ’s and the gi ’s can
be relaxed, as shown in Sect. 4.

sequence of calculations that can be relatively long depend-
ing on the target pdf. They are very systematic though, and
the resulting piecewise-linear approximation yield an easy-
to-sample proposal pdf. In a way also similar to the original
ARS, the proposals are improved every time a candidate
sample is rejected.

A major difference between the proposed method and
the previous approaches, including both original methods by
Gilks et al. (Gilks and Wild 1992; Gilks 1992) and posterior
work on multimodal distributions (Evans and Swartz 1998;
Görür and Teh 2009), is that we do not attempt to construct
bounds for the log- or T -transformed density directly. In-
stead, we build approximations of the nonlinearities gi . In
the cases in which the latter functions can be identified, this
approach is systematic because every non-linearity is han-
dled using the same approximation procedure (as described
in Sect. 3.2 and Appendix). One advantage of the proposed
technique, when compared to the procedure of Görür and
Teh (2009), is that it can be extended to handle target densi-
ties with an infinite support and tails which are possibly not
log-concave, as shown in Sect. 4.3.

The new generalized ARS technique is conceived to be
used within more elaborate Monte Carlo methods. It en-
ables, for instance, a systematic implementation of the ac-
cept/reject particle filter of Künsch (2005). There is another
potential application in the implementation of the Gibbs
sampler for systems in which the conditional densities are
complicated, as illustrated in the example of Sect. 5.2. The
latter involves the Bayesian estimation of the position of
an object using real signal-strength data collected using a
network of wireless sensors. Besides the ARS-based imple-
mentation of the Gibbs sampler, this example is relevant be-
cause it shows how the proposed technique fits particularly
well with Bayesian inference problems.

The rest of the paper is organized as follows. Background
material is presented in Sect. 2. The basic form of the new
algorithm is introduced in Sect. 3, with further extensions in
Sect. 4. Section 5 is devoted to the examples. We conclude
with a brief summary and conclusions in Sect. 6.

2 Background

2.1 Rejection sampling

Rejection sampling is a universal method for drawing in-
dependent samples from a target density po(x) ≥ 0 known
up to a proportionality constant (hence, we can evaluate
p(x) ∝ po(x)). Let exp{−W(x)} be an overbounding func-
tion for p(x), i.e., exp{−W(x)} ≥ p(x). We can generate
N samples from po(x) according to the standard rejection
sampling algorithm:

1. Set i = 1.
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2. Draw samples x′ from π(x) ∝ exp{−W(x)} and u′ from
U (0,1), where U (0,1) is the uniform pdf in [0,1].

3. If p(x′)
exp{−W(x)} ≥ u′ then x(i) = x′ and set i = i + 1, else

discard x′ and go back to step 2.
4. If i > N then stop, else go back to step 2.

The fundamental figure of merit of a rejection sampler is the
mean acceptance rate, i.e., the expected number of accepted
samples over the total number of proposed candidates. In
practice, finding a tight overbounding function is crucial for
the performance of a rejection sampling algorithm.

2.2 Adaptive rejection sampling

The standard adaptive rejection sampling (ARS) (Gilks and
Wild 1992) algorithm enables the construction of a sequence
of proposal densities, {πt (x)}t∈N, tailored to the target den-
sity po(x) ∝ p(x). Its most appealing feature is that each
time we draw a sample from a proposal πt and it is rejected,
we can use this sample to build an improved proposal, πt+1,
with a higher mean acceptance rate.

Unfortunately, the ARS method can only be applied with
target pdf’s which are log-concave (hence, unimodal), which
is a very stringent constraint for many practical applications.
Next, we briefly review the ARS algorithm and, in subse-
quent sections, we proceed to introduce its extension for
non-log-concave and multimodal target densities.

Let us assume that we want to draw from the pdf po(x) ∝
p(x) ≥ 0 with support in D ⊆ R. The ARS procedure can be
applied when log[p(x)] is concave, i.e., when the potential
function

V (x) � − log[p(x)], x ∈ D ⊆ R, (1)

is strictly convex. The domain of V (x) (and p(x)) is denoted
as D all through the paper.

Let St � {s1, s2, . . . , smt } ⊂ D be a set of support points,
sorted in ascending order s1 < · · · < smt . The number of
points mt can grow with the iteration index t . From St we
build a piecewise-linear lower hull of V (x), denoted Wt(x),
formed from segments of linear functions tangent to V (x)

at the support points sk in St . If we denote as wk(x) the lin-
ear function tangent to V (x) at sk , then the piecewise linear

function Wt(x) can be defined as

Wt(x) � max{w1(x), . . . ,wmt (x)}. (2)

Figure 1 illustrates the construction of Wt(x) with three
support points for the convex potential function V (x) = x2.
It is apparent that Wt(x) ≤ V (x) by construction, therefore
exp{−Wt(x)} is an overbounding function for p(x), i.e.,

exp{−Wt(x)} ≥ p(x) = exp{−V (x)}. (3)

Once Wt(x) is built, we can use it to obtain an exponential-
type proposal density

πt (x) = ct exp[−Wt(x)], (4)

where ct is the proportionality constant. Therefore πt (x) is
piecewise-exponential and very easy to sample from. Equa-
tion (3) can be rewritten as 1

ct
πt (x) ≥ p(x), hence we can

apply the rejection sampling principle.
When a sample x′ from πt (x) is rejected we can in-

corporate it into the set of support points, i.e., St+1 =
St ∪ {x′} and mt+1 = mt + 1. Then, we compute a refined
lower hull, Wt+1(x), and a new proposal density πt+1(x) =
ct+1 exp{−Wt+1(x)}. Table 1 summarizes the ARS algo-
rithm.

Fig. 1 Example of construction of the piecewise linear function Wt(x)

with three support points St = {s1, s2, smt=3}, as carried out by the
original ARS technique. The potential is V (x) = x2 and the function
Wt(x) � max[w1(x),w2(x),w3(x)] is formed from segments of linear
functions tangent to the potential V (x) at the support points in St

Table 1 Adaptive rejection
sampling algorithm 1. Start with i = 1, t = 0, m0 = 2 S0 = {s1, s2} where s1 < s2, and the derivatives of V (x) in s1, s2 ∈ D

have different signs. Let N be the number of desired samples from po(x).

2. Build the piecewise-linear function Wt(x) as shown in Fig. 1, using the tangent lines to V (x) at the
support points in St .

3. Sample x′ from πt (x) ∝ exp{−Wt(x)}, and u′ from U ([0,1]).
4. If u′ ≤ p(x′)

exp{−Wt (x′)} then accept x(i) = x′ and set St+1 = St , mt+1 = mt , i = i + 1.

5. Otherwise, if u′ > p(x′)
exp{−Wt (x′)} , then reject x′, set St+1 = St ∪ {x′} and update mt+1 = mt + 1.

6. Sort St+1 in ascending order and increment t = t + 1. If i > N then stop, else go back to step 2.
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3 Generalized adaptive rejection sampling

3.1 Preliminary definitions and assumptions

Assume that the target pdf po(x) ∝ p(x), x ∈ D, can be ex-
pressed as

po(x) ∝ p(x) = exp

{

−cn −
n∑

i=1

V̄i (gi(x))

}

= exp

{

−cn −
n∑

i=1

(V̄i ◦ gi)(x)

}

, (5)

where cn is a constant value, ◦ denotes the composition of
functions and:

1. Functions V̄i (ϑ), for i = 1, . . . , n (hereafter called mar-
ginal potentials), are convex with their unique minimum
located at ϑ = μi (an example can be seen in Fig. 4(b)).

2. Functions gi(x), i = 1, . . . , n, are either convex or con-
cave (i.e., they have a second derivative with constant
sign) and possibly nonlinear.

Note that, in general, p(x) is non-log-concave, since each
term V̄i ◦ gi in the sum may have a second derivative with
non-constant sign. Therefore, the standard ARS technique
cannot be applied in this setup. The freedom in the choice
of the V̄i ’s and the gi ’s enables the representation of a broad
class of exponential-type densities in this way (see Sect. 3.6
for further details).

We also introduce the set of simple estimates correspond-
ing to the nonlinearity gi(x) as

Xi � {xi ∈ R : gi(xi) = μi}, (6)

where μi is the position of the minimum of the marginal
potential V̄i . Recall that each function gi(x) is assumed to
have a second derivative with constant sign, hence the equa-
tion μi = gi(xi) can yield zero, one or two simple estimates.

3.2 Basic strategy

In this section we describe the basic procedure to build a
proposal density π(x) in a given interval I ⊂ D of values
of x. Later on, we generalize this procedure to yield an adap-
tive method. Let g(x) � [g1(x), . . . , gn(x)] denote a vec-
tor of nonlinearities. We now write the potential function
− log[p(x)] as an explicit function of g, i.e.,

V (x;g) � − log[p(x)] = cn +
n∑

i=1

V̄i(gi(x)). (7)

Given an interval I ⊂ D, we proceed in two steps. First,
we replace every nonlinearity gi(x) with a suitable linear

function ri(x). In this way we generate a modified poten-
tial V (x, r), with r(x) = [r1(x), r2(x), . . . , rn(x)], that lies
below the original one, i.e., V (x, r) ≤ V (x,g). Second, we
construct a linear function W(x) that is tangent at an (arbi-
trary) point x∗ ∈ I to the modified potential V (x, r). The
two steps are described in detail below.

1. We build linear functions ri(x) such that

V̄i(ri(x)) ≤ V̄i(gi(x)), ∀x ∈ I, (8)

for every i = 1, . . . , n (see Appendix for details). As
a consequence, substituting g by r into the functional
V (x; ·), we obtain the inequality

V (x; r) � cn +
n∑

i=1

V̄i (ri(x))

≤ V (x;g) = cn +
n∑

i=1

V̄i(gi(x)), (9)

∀x ∈ I . Note that exp{−V (x; r)} is already an over-
bounding function for p(x), i.e.,

exp{−V (x; r)} ≥ exp{−V (x;g)} = p(x). (10)

However, it is not possible in general to draw from
π∗(x) ∝ exp{−V (x; r)} and we need to seek further sim-
plifications.

2. Note that the modified potential V (x; r) is convex in I .
Indeed,

d2V̄i (ri(x))

dx2
= dV̄i

dϑ

d2ri

dx2
+

(
dri

dx

)2
d2V̄i

dϑ2

= 0 +
(

dri

dx

)2
d2V̄i

dϑ2
≥ 0, (11)

where we have used that d2ri
dx2 = 0 (since ri is linear)

and the convexity of the marginal potentials V̄i(ϑ), i =
1, . . . , n. Therefore, we can use a line tangent to V (x; r)
at an arbitrary point x∗ ∈ I to build a linear function
W(x) such that W(x) ≤ V (x; r) for all x ∈ I .

Thus,

exp{−W(x)} ≥ exp{−V (x; r)}
≥ exp{−V (x;g)} = p(x) (12)

is an overbounding function of p(x). Since W(x) is lin-
ear, it is straightforward to compute the proportionality
constant

c−1 =
∫

x∈I
exp{−W(x)}dx (13)
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Fig. 2 (a) Example of construction of the linear function ri (x) in
order to replace the nonlinearity gi(x) = x2 in different intervals I .
The absolute difference between the linear function ri (x) and the
value μi , i.e., dr = |μi − ri,k(x)|, is always less than the distance
dg = |μi −gi(x)| in the interval I , i.e., dr ≤ dg for all x ∈ I . Hence, in
[−∞, s1] and [s3,+∞] we use tangent straight lines while in [s1, s2]
and [s2, s3] we use the linear functions passing through the two sup-
port points. (b) Example of construction of the linear function W(x)

inside a generic interval I = [s1, s2]. The picture shows a non-convex
potential V (x;g) in solid line while the modified potential V (x; r)
is depicted in dashed line for ∀x ∈ I . The linear function W(x) is

tangent to V (x; r) at a arbitrary point x∗ ∈ I . (c) Example of con-
struction of the piecewise linear function Wt(x) with three support
points St = {s1, s2, smt=3}, as carried out by the generalized ARS tech-
nique. The potential is V (x;g) = 16 − 8x2 + x4 = (4 − x2)2, therefore
we can express it as V (x;g) = (V̄1 ◦ g1)(x) where V̄1(ϑ) = ϑ2 and
g1(x) = 4 − x2 (i.e., n = 1 and the vector of nonlinearities g = g1
is scalar). The modified potential V (x; rk), for x ∈ Ik , is depicted
with a dashed line. The piecewise linear function Wt(x) consists of
segments of linear functions wk(x) tangent to the modified potential
V (x; rk) at arbitrary points x∗

k ∈ Ik , with k = 0, . . . ,mt = 3, where
I0 = [−∞, s1], I1 = [s1, s2], I2 = [s2, s3] and I3 = [s3,+∞]

and to use the density π(x) = c exp{−W(x)} as a pro-
posal function. Drawing from π(x) is easy because it is
a truncated exponential pdf, restricted to I .

The details on the computation of the appropriate func-
tions ri(x), with i = 1, . . . , n, are described in Appendix.
However, Fig. 2(a) provides the basic idea of how to con-
struct the linear function ri(x) that replaces the nonlinear-
ity gi(x) = x2 in an interval I . We seek a linear function
ri(x) such that the absolute difference dr = |μi − ri(x)| is
always less than the distance dg = |μi − gi(x)|, i.e., dr ≤ dg

in I . Therefore, in the intervals [−∞, s1] and [s3,+∞]
we use tangent straight lines while in [s1, s2] and [s2, s3]
we use the linear functions passing through the two sup-
port points. Figure 2(b) shows an example of construction
of the linear function W(x) in a generic interval I ⊂ D.
The picture represents a non-convex potential V (x;g) (solid
line) and the corresponding modified potential V (x; r) in I ,
depicted in dashed line. The linear function W(x) is tan-

gent to the modified potential V (x; r) in an arbitrary point
x∗ ∈ I .

3.3 Adaptive algorithm

The basic method described above can be iterated to yield a
sequence of proposal pdf’s

π1(x),π2(x), . . . , πt (x), . . . ,

that converges to the target pdf po(x). Let us consider the
set of support points after the t th iteration

St � {s1, s2, . . . , smt } ⊂ D (14)

sorted in ascending order, s1 < · · · < smt , where mt is the
number of elements. From the points in St we construct
the closed intervals Ik � [sk, sk+1] for k = 1, . . . ,mt − 1,
together with two semi-open intervals I0 � (−∞, s1] and
Imt � [smt ,+∞). For each interval Ik , k = 0, . . . ,mt , we
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Table 2 Generalized adaptive
rejection sampling algorithm 1. Start with q = 1, t = 0 and S0 � {sj }m0

j=1. Let N be the number of desired samples from po(x). At t th
iteration perform the following steps.

2. Build ri,k(x) for i = 1, . . . , n, k = 0, . . . ,mt .

3. Build Wt(x) � wk(x) ∀x ∈ Ik , for every k = 0, . . . ,mt , where wk(x) is a tangent line to V (x; rk) at an
arbitrary point x∗ ∈ Ik .

4. Draw a sample x′ from πt (x) ∝ exp[−Wt(x)].
5. Sample u′ from U ([0,1]).
6. If u′ ≤ p(x′)

exp[−Wt (x′)] accept x(q) = x′ and set St+1 = St , q = q + 1.

7. Otherwise, if u′ > p(x′)
exp[−Wt (x′)] reject x′ and update St+1 = St ∪ {x′}.

8. Sort St+1 in ascending order, increment t = t + 1 and if q > N then stop, else go back to step 2.

build suitable vectors of linear functions rk(x) � [r1,k(x),

. . . , rn,k(x)], using the technique in Appendix, to comply
with the inequality (8) for every x ∈ Ik .

Since the modified potential V (x; rk) is convex, we can
build a piecewise-linear lower hull Wt(x) such that Wt(x) ≤
V (x; rk) ≤ V (x;g) for ∀x ∈ Ik . Then, we build the tangent
lines to the modified potential V (x; rk) at arbitrary points
x∗
k ∈ Ik = [sk, sk+1], denoted as wk(x). As a result, the

piecewise linear function Wt(x) at the t -iteration is

Wt(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0(x), if x ∈ I0,

...

wmt (x), if x ∈ Imt ,

(15)

and the t th proposal density is

πt (x) ∝ exp{−Wt(x)}. (16)

When a sample x′ drawn from πt (x) is rejected, x′ is incor-
porated as a support point in the new set St+1 � St ∪ {x′}
and, as a consequence, a refined lower hull Wt+1(x) is con-
structed yielding a better approximation of the potential
function V (x;g). In this way, πt+1(x) ∝ exp{−Wt+1(x)}
becomes closer to the target pdf po(x) and it can be expected
that the mean acceptance rate be higher.

Figure 2(c) illustrates the construction of the piecewise
linear function Wt(x) using the proposed technique for the
non-convex potential V (x;g) = 16 − 8x2 + x4 with three
support points, St = {s1, s2, smt=3}. Indeed, this potential
can be rewritten as V (x;g) = (4 − x2)2, so that we can in-
terpret it as composition of functions (V̄1 ◦ g1)(x), where
V̄1(ϑ) = ϑ2 and g1(x) = 4 − x2 (n = 1). The dashed line
shows the modified potentials V (x; rk), k = 0, . . . ,mt = 3.
Function Wt(x) consists of segments of linear functions
wk(x) tangent to the modified potentials V (x; rk) at arbi-
trary points x∗

k ∈ Ik , with k = 0, . . . ,mt = 3.

3.4 Initialization and summary

Let us recall that the set of simple estimates correspond-
ing to the nonlinearities gi(x) is defined as Xi = {xi ∈ R :

gi(xi) = μi}, where μi is the position of the minimum of the
marginal potential V̄i . Since we have assumed nonlinearities
gi(x) with second derivative with constant sign, each equa-
tion μi = gi(xi) can yield zero, one or two different simple
estimates.

We initialize the algorithm with S0 � {sj }m0
j=1 such that:

(a) All simple estimates are contained in S0, i.e., Xi ⊂ S0,
i = 1, . . . , n.

(b) For each non-monotonic function gi(x) that generates
two simple estimates xi,1 < xi,2, we incorporate in S0

an arbitrary support point to sj ∈ [xi,1, xi,2].
(c) When the nonlinearity gi(x) is monotonic, we can

have at most a single simple estimate, xi . If dgi (x)
dx

×
d2gi (x)

dx2 ≥ 0, we add an arbitrary point sj ∈ (−∞, xi]
into S0. Otherwise if dgi (x)

dx
× d2gi(x)

dx2 ≤ 0, we choose a
support point in sj ∈ [xi,+∞).

The set S0 thus constructed enables us to build the linear
functions ri,k(x) in the way described in Appendix. If addi-
tional support points are included in S0, the resulting pro-
posal π0(x) becomes a tighter approximation of po(x).

The proposed generalized adaptive rejection sampling
(GARS) algorithm is summarized in Table 2. Figures 3 illus-
trates how the sequence of proposal pdf’s converges toward
the target density as the number of support points increases.

3.5 Improper proposals

The GARS algorithm summarized in Table 2 breaks down
when the potential function V (x;g) has both an infinite sup-
port (x ∈ D = R) and concave tails. In this case, the pro-
posed construction procedure yields a piecewise lower hull
Wt(x) which is positive and constant in an interval of infinite
length. Thus, the resulting proposal, πt (x) ∝ exp{−Wt(x)}
is improper (

∫ +∞
−∞ πt (x)dx → +∞) and cannot be used for

rejection sampling. We tackle this problem in Sect. 4.3 be-
low.
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Fig. 3 Convergence of the overbounding functions exp{−V (x; rk)}
(dashed line), and exp{−Wt(x)} (dotted line) toward the function
p(x) = exp{−(4 − x2)2} (solid line), with the GARS technique. The
points, corresponding to the support points {sj }mt

j , are depicted with

circles. (a) Construction of the overbounding functions with mt = 3
support points. (b) Construction with mt = 7. (c) Construction with
mt = 13

3.6 Applicability

In this subsection we briefly describe two general classes
of target densities that appear often in practice and can be
easily handled with the proposed method.2

Densities of the form of (5) appear naturally in Bayesian
inference problems where it is desired to draw from the pos-
terior pdf p(x|y) with y = [y1, y2, . . . , yn] ∈ R

n of a random
variable X given a collection of observations

Y1 = ḡ1(X) + Θ1, . . . , Yn = ḡn(X) + Θn, (17)

where Θ1, . . . ,Θn are independent “noise” variables. In
fact, writing the noise pdf’s as p(θi) ∝ exp{−V̄i(θ1)}, i =
1, . . . , n, the likelihood function can be expressed as

p(y|x) ∝ exp

{

−
n∑

i=1

V̄i (yi − ḡi (x))

}

. (18)

Therefore, denoting gi(x) = yi − ḡi (x) and writing the prior
pdf as p(x) ∝ exp{−V̄n+1(gn+1(x))}, the potential function
is

V (x;g) = − log[p(x|y)]

= − log[p(y|x)p(x)] =
n+1∑

i=1

V̄i(gi(x)). (19)

An example of this type is shown in Sect. 5.2.
Additionally, note that while the standard ARS can be ap-

plied for all pdfs po(x) ∝ exp{−h(x)} where h(x) is convex,
our technique can be used, e.g., for distributions of the type

2We do not imply that only these two types of pdf’s can be sampled
using our method. Other classes of densities can also fit the structure
of (5).

po(x) ∝ h(x) exp{−h(x)}
= exp{−h(x) + log[h(x)]}, (20)

where h(x) can be either convex or concave. In fact, in this
case we can interpret the − log[po(x)] as a combination of
two functions, V̄1 ◦ g1, where V̄1(θ) � θ − log[θ ] (which is
convex with a minimum at μ1 = 1) and g1(x) � h(x).

4 Extensions

Although the form allowed for the target pdf encompasses a
large class of probability distributions, the aim of this paper
is to provide a general adaptive rejection sampling scheme.
Hence, in this section we investigate how to relax some con-
straints in the definition of po(x), so that a broader class
of densities can be handled. In particular, we first study the
case in which the marginal potentials are non-convex func-
tions, in Sect. 4.1. Then we consider the problem of deal-
ing with arbitrary nonlinearities (possibly neither convex nor
concave) in Sect. 4.2. Finally, in Sect. 4.3, we propose a so-
lution to the problem of improper proposals pointed out in
Sect. 3.5.

4.1 Non-convex marginal potentials

Consider a target pdf po(x) ∝ exp{−V (x;g)} where the po-
tential function V (x;g) = cn + ∑n

i=1 V̄i(gi(x)) is built us-
ing non-convex marginal potentials. To be specific, we con-
sider the case where each V̄i (ϑ), i ∈ {1, . . . , n}, is

– strictly increasing and concave for ϑ > μi , and
– strictly decreasing and concave for ϑ < μi .

Obviously V̄i(ϑ) has a unique minimum at ϑ∗ = μi and we
also assume V̄i(μi) > −∞. Figure 4(a) shows an example
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Fig. 4 (a) Example of generic marginal potential function V̄i (ϑ)

strictly increasing and concave for ϑ > μi , strictly decreasing and
concave for ϑ < μi . (b) Example of generic marginal potential func-
tion V̄i (ϑ) convex and with a minimum at ϑ∗ = μi . (c) Example
of construction of the modified potentials V (x; rk) (dashed lines)
and the piecewise linear function Wt(x) (solid straight lines) when
the potential function is V (x;g) = √|x2 − 4| + √|1 − exp(x)| (solid

line). We can express it as V (x;g) = V̄1(x
2 − 4) + V̄2(1 − exp(x))

where V̄1(ϑ) = V̄2(ϑ) = √|ϑ |, i.e., the marginal potentials are con-

cave strictly decreasing for ϑ < 0 and strictly increasing for ϑ > 0.

The two nonlinearities g1(x) = x2 −4 and g2(x) = 1−exp(x) generate

the following sets of simple estimates X1 = {−2,2}, X2 = {0} that are

contained in the set of support points St = {s1 = −2, s2 = 0, s3 = 2}

of this class of functions. These potentials describe super-
Gaussian distributions, i.e., probability densities with posi-
tive kurtosis, which often appear in financial or biological
applications (Reiss and Thomas 2007; Mayo et al. 2004).

With the assumptions above, the system potential V (x;g)

is differentiable almost everywhere, except for the (null
measure) set of all simple estimates

⋃n
i=1 Xi (we recall that

x ∈ Xi if, and only if, gi(x) = μi ). Moreover, since the
set of support points St includes all the simple estimates
(see Sect. 3.4), i.e.,

⋃n
i=1 Xi ⊂ St = {sk}mt

k=1, the simple es-
timates xi can belong to the interval Ik = [sk, sk+1] only
as border points. Therefore, replacing gi(x) with the linear
function ri,k(x) in an interval Ik = [sk, sk+1] defined by two
support points, we can write

d2V̄i (ri,k(x))

dx2
= d2ri,k

dx2

dV̄i

dϑ
+

(
dri,k

dx

)2
d2V̄i

dϑ2

= 0 +
(

dri,k

dx

)2
d2V̄i

dϑ2
≤ 0 (21)

for all x ∈ Ik except possibly the border points sk or sk+1 if
they are simple estimates. Hence, substituting the vector of
nonlinearities g with the vector of linear functions rk in Ik ,
we obtain that the modified system potential V (x; rk) is con-
cave in Ik . Thus we can build Wt(x) for x in Ik = [sk, sk+1],
for k = 1, . . . ,mt − 1, as the linear function passing through
the points (sk,V (sk; rk)) and (sk+1,V (sk+1; rk+1)).

For k = 0 and k = mt we have, in general, semi-
open intervals I0 = [−∞, s1] and Imt = [smt ,+∞], hence
Wt(x) = V (s1; r1) for all x ∈ I0 and Wt(x) = V (smt ; rmt )

for all x ∈ Imt , respectively. However, a constant value of
Wt(x) in a infinite interval yields an improper proposal
πt (x) ∝ exp{−Wt(x)}. Therefore this procedure can only
be applied exactly either when the target pdf po(x) has a

finite domain or using the alternative procedure explained in
Sect. 4.3. See Fig. 4(c) for an example of this construction.

4.2 General nonlinearities

If some nonlinearity gi(x), defined in D, has second deriv-
ative with non-constant sign, then it is not possible to apply
directly the proposed GARS method.

However, this problem can be easily avoided in many
cases. Indeed, if we can find a partition D = ⋃qi

j=1[Bi,j ]
(where [·] denotes the closure of an interval) such that

Bi,j ∩ Bi,k = ∅, ∀j �= k, and such that d2gi

dx2 has a constant
sign in every Bi,j , j = 1, . . . , qi , then we can incorporate
this information into the initial set of support points S0 and
apply the GARS algorithm.

Specifically, let Bi,j = (b−
i,j , b

+
i,j ). If we let b−

i,j , b
+
i,j ∈

S0 = {s1, . . . , sm0} (in addition to the rest of points indicated
in Sect. 3.4), then gi(x) is either convex or concave in every
Ik = [sk, sk+1] and we can apply the GARS algorithm a de-
scribed in Sect. 3.

Note that the analytical study of the nonlinearities gi(x)

is, in general, easier than the study of the entire log-density,
as required, e.g., in Evans and Swartz (1998). For exam-
ple, in the positioning application of Sect. 5.2 we can easily
find the inflection points of each gi(x), i = 1, . . . , n, but the
analysis over the whole log-density function is intractable.

4.3 Fixing improper proposals

We have seen that the application of the proposed method
can yield improper proposal functions in some cases (see
Sects. 3.5 and 4.1). The problem appears as follows: let
D = R and let St = {s0, . . . , smt } be the set of support points
at the t th iteration and let I0 = (−∞, so], Ik = [sk, sk+1],

8



k = 1, . . . ,mt − 1, and Imt = [smt ,+∞) be the intervals in
which we split the domain of p(x). If V (x;g) is concave
for x ∈ I0, x ∈ Imt or both then w0(x), wmt (x), or both, are
constant and πt (x) becomes improper.

We can circumvent this difficulty if, for some j ∈
{1, . . . , n}, the pdf defined as

pj (x) ∝ exp{−V̄j (gj (x))} (22)

is such that: (a) we can integrate pj (x) over the intervals
I0, I1, . . . , Imt and (b) we can sample from the density
pj (x) restricted to every Ik . To be specific, let us introduce
the reduced potential

V−j (x;g) � cn +
n∑

i=1,i �=j

V̄i(gi(x)), (23)

attained by removing V̄j (gj (x)) from V (x;g).
It is straightforward to obtain lower bounds for V−j (x;g)

at every interval Ik . For instance, we can apply the stan-
dard technique of Sect. 3 to compute linear lower bound-
ing functions wk(x) ≤ V−j (x;g) ∀x ∈ Ik and then take
γk = min[wk(sk),wk(sk+1)] ≤ V−j (x;g) ∀x ∈ Ik . Once
these bound are available, we build the proposal function
by pieces as

πt (x) ∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp{−γ0 − V̄j (gj (x))}, ∀x ∈ I0,

...

exp{−γk − V̄j (gj (x))}, ∀x ∈ Ik,

...

exp{−γmt − V̄j (gj (x))}, ∀x ∈ Imt .

(24)

Notice that ∀x ∈ Ik , V (x;g) − γk − V̄j (gj (x)) = V−j (x;g)

− γk ≤ 0, hence πt (x) is suitable for rejection sampling.
Finally, note that πt (x) is a mixture of truncated densi-

ties with non-overlapping supports. Indeed, let us define the
mixture coefficients

ω̄k � exp{−γk}
∫

Ik

pj (x)dx (25)

and normalize them as ωk = ω̄k/
∑mt

k=0 ω̄k . Then,

πt (x) ∝
mt∑

k=1

ωkχk(x)pj (x) (26)

where χk(x) is an indicator function (χk(x) = 1 if x ∈ Ik

and χk(x) = 0 if x /∈ Ik). In order to draw from πt (x) we
only need to be able to draw from truncated pieces of pj (x).

Let us remark that this construction is most natural in a
Bayesian framework, when p0(x) is posterior density of the
r.v. X given some data and pj (x) is the associated prior.

5 Examples

5.1 Toy example

We begin with a toy example in order to illustrate how to
apply the GARS technique. Let us consider a target pdf
po(x) ∝ p(x) = exp{−∑4

i=0 aix
i} with a4 > 0. Then, the

potential function is a 4th order polynomial, V (x;g) =∑4
i=0 aix

i . Every 4th order polynomial can be easily ex-
pressed as

V (x;g) = κ + (α + βx + γ x2)2 + (δ + ηx)2, (27)

where κ , α, β , γ , η and δ are real constants and, as a conse-
quence, we can rewrite V (x;g) using our notation as

V (x;g) = κ + V̄1(g1(x)) + V̄2(g2(x))

= κ +
n=2∑

i=1

V̄i(gi(x)), (28)

where V̄1(ϑ) = V̄2(ϑ) = ϑ2, g1(x) � α + βx + γ x2 is a
2nd-order polynomial and g2(x) � δ + ηx is linear. Since

V̄1(ϑ) = V̄2(ϑ) are convex, d2g1
dx2 = γ is constant and g2(x)

is linear, it is straightforward to apply the basic GARS algo-
rithm of Sect. 3 to this problem.

In particular, let St = {s1, s2, . . . , smt } be the set of sup-
port points at the t th iteration of the algorithm. For each in-
terval Ik = [sk, sk+1] we can build a suitable linear function
ri,k(x) = ai,kx + bi,k (while ri,k(x) = g2(x) for all x) using
the method in Appendix in order to obtain a lower bound for
the potential,

V (x; rk) = κ + V (r1,k(x)) + V (r2,k(x))

≤ V (x;g) = κ + V (g1(x)) + V (g2(x)), (29)

for all x ∈ Ik . Note that, for this specific example, the pro-
posal density

π∗
t (x) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp{−V (x; r0)} if x ∈ I0,

...

exp{−V (x; rmt )} if x ∈ Imt

(30)

is a piecewise pdf and could be used directly to draw candi-
date samples if an efficient method to sample from truncated
Gaussian pdf’s is at hand (Kotecha and Djurić 1999).

Alternatively, we can apply the complete GARS scheme.
Specifically, since the modified potentials V (x; rk) are con-
vex in Ik for all k, we can build a piecewise linear func-
tion Wt(x) such that Wt(x) ≤ V (x; rk) ≤ V (x;g) ∀x ∈ Ik

and use the corresponding piecewise exponential density
πt (x) ∝ exp{−Wt(x)} to draw candidates using the inver-
sion method (Robert and Casella 2004, Chap. 2).
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Fig. 5 (a) The target density po(x) ∝ exp{−( 1
200 x4 + 1

750 x3 − 1
4 x2 +

1
10 x)} (dashed line) and the normalized histogram of N = 10,000 sam-
ples obtained using the GARS algorithm. (b) The curve of acceptance
rates (averaged over 10,000 simulations) as a function of the accepted

samples using the GARS algorithm with proposal function πt (x) (solid
line) and using the method by Evans and Swartz (1998) with a log-
transformation (dashed line)

Figure 5 illustrates the results obtained with this al-
gorithm. The specific target density po(x) results from
the choice of parameters γ = 0.0707, β = −0.0094, α =
−5.3033, η = 0.7071, δ = 0 and κ = −28.1250, and it is
depicted in Fig. 5(a) with a dashed line. In the same plot, we
observe the normalized histogram of 10,000 samples drawn
with the GARS algorithm.

Let us note that, in this simple example, it is possible to
analytically find the inflection points of the potential V (x;g)

and, as a consequence, we can apply the method in Evans
and Swartz (1998) and compare it with the GARS technique.

Figure 5 shows the acceptance rates (averaged over
10,000 independent simulation runs) versus the number of
accepted samples for the GARS algorithm using the pro-
posal functions πt (x) in (16) (solid line) and the method
by Evans and Swartz (1998) (dashed line), all of them with
the same number of supports points. When the information
about the inflection points of the potential V (x;g) is avail-
able, the method by Evans and Swartz (1998) provides a
tighter piecewise linear approximation of V (x;g) and, as
a result, attains a slightly higher acceptance rate. Unfortu-
nately, for more complicated distributions the calculation
of the inflection points of V (x;g) becomes analytically in-
tractable, as shown below in a experimental example.

5.2 Experimental example: target localization

In order to show how the proposed techniques can be used
to draw samples from a multivariate distribution, we con-
sider the problem of positioning a target in a 2-dimensional
space using range measurements. This is a problem that ap-
pears frequently in localization applications using sensor
networks (Ali et al. 2007; Patwari et al. 2003).

5.2.1 Experimental setup

We have carried out an experiment with a network consist-
ing of four nodes. Three of them are placed at fixed positions
and play the role of sensors that measure the strength of the
radio signals transmitted by the target. The other node plays
the role of the target to be localized. All nodes are bluetooth
devices (Conceptronic CBT200U2A) with a nominal maxi-
mum range of 200 m.

The deployment of the network is sketched in Fig. 6(a).
We consider a square monitored area of 4 × 4 m2 and place
the sensors at fixed positions h1 = [h1,1 = 0.5, h1,2 = 1],
h2 = [h2,1 = 3.5, h2,2 = 1] and h3 = [h3,1 = 2, h3,2 = 3],
with all coordinates in meters. The target is located at x =
[x1 = 2.5, x2 = 2].

The measurement provided by the ith sensor is denoted
as a random variable Yi . To describe the relationship be-
tween the observed radio signal strength, Yi = yi , and the
target position, denoted by the random vector X = [X1,X2],
we use the free space propagation model (Rappaport 2001)

Yi = l − 10γ log

[
Di

d0

]

+ Θi (dB), (31)

where the norm

Di = ‖X − hi‖ =
√

[(X1 − hi,1)2 + (X2 − hi,2)2]
is the distance between the ith sensor and the target, γ is
a parameter that depends on the physical environment (for
open space, γ ≈ 2) and the constant l is the mean power
received by each sensor when the target is located at a ref-
erence distance d0. The random variables Θi , i = 1,2,3,
are i.i.d. Gaussian variates with density N(ϑi;0, σ 2) ∝
exp{− ϑ2

i

2σ 2 } that model the measurement noise.
For the experiment, the reference distance has been set to

d0 = 0.3 m. The parameters γ , l, and the noise variance σ 2
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Fig. 6 (a) Deployment of the experimental sensor network over a
rectangular surveillance area of 4 × 4 m2. The sensors are depicted
with triangles while the target is depicted with a cross. (b) The least
squares regression to adjust the parameters l and γ . The points indi-

cate the measurements collected by the sensors at different distances,
and the solid curve denotes the function l̂ − 10γ̂ log[ d

d0
] with d0 = 0.3,

l̂ = −27.08 dB and γ̂ = 1.52

have been fitted by least squares regression using 200 mea-
surements with the target placed at known distances from
each sensor. As a result, we have obtained l̂ = −27.08, γ̂ =
1.53 and σ̂ = 4.41. Figure 6(b) depicts the measurements at
several distances and the fitted curve l̂ − 10γ̂ log[ d

d0
].

5.2.2 Algorithm

Assume we collect M independent measurements from each
sensor using the experimental setup just described. Let
Y = [Y1,1, . . . , Y1,M,Y2,1, . . . , Y2,M,Y3,1, . . . , Y3,M ] denote
the random observation vector. For some fixed Y = y the
likelihood of the target position X is Gaussian according to
the model in (31), i.e.,

p(y|x)

=
3∏

q=1

M∏

m=1

N(yq,m; l̂ − 10γ̂ log(‖X − hq‖/d0), σ̂
2). (32)

In order to perform inference on the position of the target,
we aim at drawing from the posterior pdf

p(x|y) ∝ p(y|x)p(x), (33)

where p(x) is the prior pdf of the target position X. We as-
sume p(x) = p(x1, x2) = p(x1)p(x2) where

p(xk) = N(xk;1.5,1/2), k = 1,2. (34)

We apply the Gibbs sampler to draw N particles, denoted
x(j) = [x(j)

1 , x
(j)

2 ], from the posterior pdf p(x1, x2|y) ∝
p(y|x1, x2)p(x1)p(x2). The algorithm can be summarized
as follows:

1. Set j = 1, and draw x
(1)
2 from the prior pdf p(x2).

2. Draw a sample x
(j)

1 from the conditional pdf p(x1|y,

x
(j)

2 ), and set x(j) = [x(j)

1 , x
(j)

2 ].

3. Draw a sample x
(j+1)

2 from the conditional pdf p(x2|y,

x
(j)

1 ).
4. Increment j = j + 1. If j > N stop, else go back to

step 2.

The Markov chain generated by the Gibbs sampler con-
verges to a stationary distribution with pdf p(x1, x2|y). In
order to use Gibbs sampling however, we have to be able
to draw from the conditional densities p(x1|y, x

(j)

2 ) and

p(x2|y, x
(j)

1 ). In general, these two conditional pdf’s can be
non-log-concave and can have several modes.

Next, we show how both p(x1|y, x
(j)

2 ) and p(x2|y, x
(j)

1 )

can be written using the potential-function notation in this
paper, in order to sample from them using the proposed
GARS method. Specifically, if we let x(j)

1 � [x1, x
(j)

2 ]
and x(j)

2 � [x(j)

1 , x2], then we obtain that p(x1|y, x
(j)

2 ) ∝
exp{−V (x1;g)} and p(x2|y, x

(j)

1 ) ∝ exp{−V (x2;g)} where

V (xk;g) =
3M∑

i=1

V̄i(gi(xk)) + V̄3M+1(g3M+1(xk)), (35)

and the functions V̄i (gi(xk)) have the form

V̄i(gi(xk))

= [yq,m − l̂ + 10γ̂ log(‖x(j)
k − hq‖/d0)]2, (36)

with k = 1,2, and the integers q ∈ {1,2,3} and m ∈
{1, . . . ,M} are such that i = (q − 1)M + m (in order to
enumerate the elements in vector Y). Finally

V̄3M+1(g3M+1(xk)) = [x(j)
k − 1.5]2. (37)

Therefore, the vector gi consists of 3M nonlinearities
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g(q−1)M+m(xk)

= yq,m − l̂ + 10γ̂ log(‖x(j)
k − hq‖/d0), (38)

for q = 1,2,3 (sensors), m = 1, . . . ,M (measurements),
k = 1,2 and j = 1, . . . ,N , plus one extra linear function
g3M+1(xk) = xk − 1.5.

Note that all the marginal potentials are purely quadratic
functions, i.e., V̄i(ϑ) = 1

σ̂ 2 ϑ2 for i = 1, . . . ,3M , and

V̄3M+1(ϑ) = ϑ2.
The potential functions V (xk;g), k = 1,2, are not con-

vex in general. Their shape depends on the data set Y = y
and the fixed coordinates x

(j)

1 or x
(j)

2 . Therefore, the ARS
method cannot be applied to implement steps (2) and (3)
of the Gibbs sampler. However, all the marginal potentials
are convex and the support of the nonlinearities gi(xk), i =
1, . . . ,3M + 1, can be partitioned as described in Sect. 4.2.
As a consequence, we can use the proposed GARS tech-
nique to implement the Gibbs sampler. On the contrary, the
form of (35), (36) and (37) makes the calculation of the in-
flection points (with respect xk) intractable and, therefore,
the methods of Evans and Swartz (1998) and Görür and Teh
(2009) are not applicable in this example.

5.2.3 Results

We have run the Gibbs sampler (using the GARS algorithm
to sample from the conditional pdf’s) with three different
data sets y. In the first one we collected M = 1 observa-
tion per sensor, in the second one we recorded M = 3 obser-
vations per sensor and, finally, we obtained a data set with
M = 10 measurements per sensors. The target was placed at
x = [2.5,2].

The average acceptance rate of the GARS algorithm was
≈ 30% with M = 1, ≈ 37% with M = 3 and ≈ 26% with
M = 10. Note that these rates are, indeed, averages, because
the target pdf’s are different at each step of the Markov chain
(e.g., if x

(i)
1 �= x

(i−1)
1 then p(x2|y, x

(i)
1 ) �= p(x2|y, x

(i−1)
1 )).

The acceptance rates can be further improved by including
additional support points in the initial set S0.

Figures 7(a) and (d) show the shape of the true target den-
sity p(x1, x2|y) with M = 1 and M = 3, respectively. Fig-
ures 7(b) and (e) depict the corresponding histograms us-
ing N = 30,000 samples. We observe that they approximate
closely the shape of target pdf’s. Finally, Figures 7(c) and
(f) illustrate the normalized histograms corresponding to the
number of proposed candidates which are needed to accept
one sample.

Fig. 7 (a) The shape of the true target density p(x1, x2|y) with M = 1.
(b) The normalized histogram, using N = 20,000 samples, corre-
sponding to p(x1, x2|y) with M = 1. (c) The normalized histogram
corresponding to the number of proposed candidates which are needed
to accept one sample, with M = 1. (d) The shape of the true target

density p(x1, x2|y) with M = 3. (e) The normalized histogram, us-
ing N = 20,000 samples, corresponding to p(x1, x2|y) with M = 3.
(f) The normalized histogram corresponding to the number of pro-
posed candidates which are needed to accept one sample, with M = 3
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Note that we obtain an empirical approximation of the
posterior distribution that is very accurate although in terms
of the localization accuracy the performance is relatively
poor, as there is a bias between the mode of p(x|y) and the
actual target position.

6 Conclusions and outlook

We have proposed a novel adaptive rejection sampling
scheme that can be used to draw exactly from a cartain
family of pdf’s, not necessarily log-concave and possibly
multimodal. The new method is a generalization of the clas-
sical adaptive rejection sampling scheme of Gilks and Wild
(1992), and includes it as a particular case. The proposed
algorithm constructs a sequence of proposal pdf’s that con-
verge towards the target density and, therefore, can attain
very high acceptance rates. We have provided some sim-
ple numerical examples to illustrate the use of the proposed
techniques, including sampling from multimodal distribu-
tions and an example of target localization using experi-
mental range measurements.

The latter problem is often encountered in positioning
applications of sensor networks. We have seen that, due to
the complicated nonlinear dependence of the position and
the sensor measurements, the target pdf’s from which we
need to draw samples become too complicated to apply
other methods in the literature, such as in Evans and Swartz
(1998), Görür and Teh (2009). On the contrary, the structure
of the posterior pdf of the position given the observations
fits naturally with the proposed GARS scheme.

The proposed technique can also be extended, in a
straightforward way, building both upper-bounding and
lower-bounding approximations of the target pdf, in order
to apply the squeeze principle (Devroye 1986) and sim-
plify the test for acceptance of candidate samples. Moreover,
in this work we have only tackled the log-transformation
to introduce the potential function V (x;g) = − log[p(x)]
but, in general, we can also apply the same approach with
monotonic T -transformations as described in Hörmann
(1995) and Evans and Swartz (1998).
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Appendix

The algorithms described in this paper rely on the ability
to obtain linear functions ri,k(x), for i = 1, . . . , n and k =
0, . . . ,mt , such that

V̄i(ri,k(x)) ≤ V̄i (gi(x)) ∀x ∈ Ik (39)

where Ik = [sk, sk+1]. If (39) holds then it is straightforward
to check that V (x; rk) ≤ V (x;g) ∀x ∈ Ik , where rk(x) =
[r1,k(x), . . . , rn,k(x)] and g(x) = [g1(x), . . . , gn(x)]. On the
other hand, it is easy to see that the inequality (39) holds for
the class of marginal potential functions V̄i if

|μi − ri,k(x)| ≤ |μi − gi(x)| and (40)

(μi − ri,k(x))(μi − gi(x)) ≥ 0 (41)

jointly, ∀x ∈ Ik , where μi = arg minϑ V̄i(ϑ). Indeed, if
μi ≤ a ≤ b then V̄i (a) ≤ V̄i (b) because V̄i is increasing in
(μi,+∞) whereas for b ≤ a ≤ μi we have also V̄i (a) ≤
V̄i(b) because V̄i is decreasing in (−∞,μi). We introduce
a computational procedure that enables the computation of
ri,k(x) for all cases of interest in this paper. For the adequate
enumeration of the possible scenarios, we introduce first
some auxiliary notation. Specifically, let Ji = [xi,1, xi,2] be
the interval limited by the simple estimates associated to the
function gi(x). Recall that xi,j is a simple estimate of gi(x)

if, and only if, gi(xi,j ) = μi . Since d2gi

dx2 is assumed to have
constant sign in Ik , there are three possibilities for the con-
struction of Ji :

– If gi(x) is non-monotonic then there may exist two, one or
zero solutions to the equation gi(x) = μi . If there are two
solutions, denoted xi,1 < xi,2, we define Ji = [xi,1, xi,2].
Otherwise, we define Ji = ∅.

– If gi(x) is monotonic and dgi (x)
dx

× d2gi(x)

dx2 ≥ 0 then
there may exist one or zero solutions to the equation

Fig. 8 Example of construction of the appropriate linear functions
ri,k(x), with k = 0, . . . ,mt = 3 for a non-monotonic convex nonlinear-
ity gi(x) when |Ji | > 0. The interval defined by the simple estimates
Ji = [xi,1, xi,2] is indicated by solid double arrows. The set of support
points St = {s1 = xi,1, s2, s3 = xi,2} includes always the simple esti-
mates (indicated by squares). The intervals Ik = [sk, sk+1] are denoted
by dashed double arrows. Since I0, I3 are not contained in Ji we use
tangent lines for ri,0(x) and ri,3(x). Since I1, I2 ⊆ Ji , we use secant
lines for ri,1(x) and ri,2(x)
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Fig. 9 Example of construction of the linear functions ri,k(x) when
|Ji | = 0 and gi(x) is non-monotonic and convex. We use two sup-
port points St = {s1, s2}. Since |Ji ∩ I0| = |Ji ∩ I2| = 0, we con-
struct ri,0(x) and ri,2(x) as tanget lines. In I1 = [s1, s2], the nonlinear-

ity gi(x) is non-monotonic, since this interval contains the minimum
value, and we set ri,1(x) = Bi . (a) The value μi is greater than εi . So
we choose Bi = μi . (b) The value εi is greater than μi . Therefore, we
set Bi = εi

gi(x) = μi . If there is one solution, denoted xi , then
Ji = (−∞, xi] otherwise Ji = ∅.

– If gi(x) is monotonic and dgi (x)
dx

× d2gi (x)

dx2 ≤ 0 then there
may also exist at most one solution xi . If xi exists, then
Ji = [xi,+∞), otherwise Ji = ∅.

Take some Ik , k = 0, . . . ,mt . With the above definition, Ji

is either disjoint of Ik (except, maybe, for a single point,
and |Ji ∩ Ik| = 0 anyway) or a superset of the interval Ik ,
i.e., Ik ∩ Ji = Ik . Any other possibility is excluded because
the sets of support points S0 ⊆ · · · ⊆ St contain all simple
estimates.

Now we provide a procedure for the construction of
ri,k(x), i ∈ {1, . . . , n}, k ∈ {0, . . . ,mt } with x ∈ I0 =
(−∞, s1] for k = 0, x ∈ Ik = [sk, sk+1] for k = 1, . . . ,

mt − 1 and x ∈ Imt = [smt ,+∞) for k = mt .

1. If Ik ∩ Ji = Ik then we choose the secant line ri,k(x) that
connects the points (sk, gi(sk)) and (sk+1, gi(sk+1)).

2. If |Ik ∩ Ji | = 0 and gi(x) is monotonic in Ik (this is
always true if |Ji | > 0), then we set ri,k(x) as the tangent
line to gi(x)

(a) at sk , if dgi (x)
dx

× d2gi(x)

dx2 ≥ 0 in Ik , or

(b) at sk+1, if dgi (x)
dx

× d2gi (x)

dx2 ≤ 0 in Ik .
3. If |Ji | = 0 and gi(x) is non-monotonic in Ik then

ri,k(x) = Bi , where Bi is a bound of gi(x). Specially,
we set

Bi �

⎧
⎨

⎩

max[μi, εi], if d2gi (x)

dx2 > 0,

min[μi, εi], if d2gi (x)

dx2 < 0,
(42)

where εi is the intersection point such that ri,k−1(x) =
ri,k+1(x) = εi for x ∈ Ik .

Figure 8 illustrates the construction of the linear func-
tions ri,k(x) when gi(x) is non-monotonic and convex, and

|Ji | > 0 (indeed, there are two simple estimates xi,1, xi,2).
This depiction corresponds to the steps 1 and 2 of the pro-
posed procedure.

Figure 9 depicts the construction of ri,k(x) when |Ji | = 0
and corresponds to step 3 of the procedure. There are two
support points and three intervals I0, I1 and I2. The func-
tion gi(x) has a minimum in I1 = [s1, s2]. The linear func-
tions ri,0(x) and ri,2(x) are tangent to gi(x) and they have
an intersection at some ri,0(x

′) = ri,2(x
′) = εi , x′ ∈ I1.

Finally, note that, if gi(x) is monotonic, then either
Ji = (−∞, xi] or Ji = [xi,+∞) and it occurs that I0 =
(−∞, s1] ⊆ Ji or Imt = [smt ,+∞) ⊆ Ji , respectively. In
the first case, the construction algorithm yields ri,0(x) =
gi(s1) while, in the second case, ri,mt (x) = gi(smt ).
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