A generalization of the Bollobás set pairs inequality

Jason O'Neill*
Department of Mathematics
University of California San Diego
California, U.S.A.
jmoneill@ucsd.edu

Jacques Verstraete*
Department of Mathematics
University of California San Diego California, U.S.A.
jverstra@math.ucsd.edu

Submitted: June 7, 2020; Accepted: June 7, 2021; Published: Jul 2, 2021
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The Bollobás set pairs inequality is a fundamental result in extremal set theory with many applications. In this paper, for $n \geqslant k \geqslant t \geqslant 2$, we consider a collection of k families $\mathcal{A}_{i}: 1 \leqslant i \leqslant k$ where $\mathcal{A}_{i}=\left\{A_{i, j} \subset[n]: j \in[n]\right\}$ so that $A_{1, i_{1}} \cap \cdots \cap A_{k, i_{k}} \neq$ \varnothing if and only if there are at least t distinct indices $i_{1}, i_{2}, \ldots, i_{k}$. Via a natural connection to a hypergraph covering problem, we give bounds on the maximum size $\beta_{k, t}(n)$ of the families with ground set $[n]$.

Mathematics Subject Classifications: 05D05, 05D40, 05C65

1 Introduction

A central topic of study in extremal set theory is the maximum size of a family of subsets of an n-element set subject to restrictions on their intersections. Classical theorems in the area are discussed in Bollobás [2]. In this paper, we generalize one such theorem, known as the Bollobás set pairs inequality or two families theorem [3]:

Theorem 1. (Bollobás) Let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ be families of finite sets, such that $A_{i} \cap B_{j} \neq \varnothing$ if and only if $i, j \in[m]$ are distinct. Then

$$
\begin{equation*}
\sum_{i=1}^{m}\binom{\left|A_{i} \cup B_{i}\right|}{\left|A_{i}\right|}^{-1} \leqslant 1 \tag{1}
\end{equation*}
$$

For convenience, we refer to a pair of families \mathcal{A} and \mathcal{B} satisfying the conditions of Theorem 1 as a Bollobás set pair. The inequality above is tight, as we may take the pairs $\left(A_{i}, B_{i}\right)$ to be distinct partitions of a set of size $a+b$ with $\left|A_{i}\right|=a$ and $\left|B_{i}\right|=b$ for $1 \leqslant i \leqslant\binom{ a+b}{a}$.

[^0]The latter inequality was proved for $a=2$ by Erdős, Hajnal and Moon [5], and in general has a number of different proofs [11, 12, 14, 17, 18]. A geometric version was proved by Lovász [17, 18], who showed that if $A_{1}, A_{2}, \ldots, A_{m}$ and $B_{1}, B_{2}, \ldots, B_{m}$ are respectively a-dimensional and b-dimensional subspaces of a linear space and $\operatorname{dim}\left(A_{i} \cap B_{j}\right)=0$ if and only if $i, j \in[m]$ are distinct, then $m \leqslant\binom{ a+b}{a}$.

1.1 Main Theorem

Theorem 1 has been generalized in a number of different directions in the literature [6, $9,13,16,21,24]$. In this paper, we give a generalization of Theorem 1 from the case of two families to $k \geqslant 3$ families of sets with conditions on the k-wise intersections. For $2 \leqslant t \leqslant k$, a Bollobás (k, t)-tuple is a sequence $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right)$ of set families $\mathcal{A}_{j}=\left\{A_{j, i}: 1 \leqslant i \leqslant m\right\}$ where $\bigcap_{j=1}^{k} A_{j, i_{j}} \neq \varnothing$ if and only if at least t of the indices $i_{1}, i_{2}, \ldots, i_{k}$ are distinct. We refer to m as the size of the Bollobás (k, t)-tuple. Let $[m]_{(t)}$ denote the set of sequences of t distinct elements of $[m]$ and fix a surjection $\phi:[k] \rightarrow[t]$. For $\sigma \in[m]_{(t-1)}$, set $\sigma(t)=\sigma(1)$ and define $A_{1, \sigma}(\phi)=\bigcap_{j: \phi(j)=1} A_{j, \sigma(1)}$ and, for $2 \leqslant j \leqslant t$, we define

$$
A_{j, \sigma}(\phi)=\bigcap_{h: \phi(h)=j} A_{h, \sigma(j)} \backslash \bigcup_{h=1}^{j-1} A_{h, \sigma}(\phi) .
$$

Using this notation, we generalize (1) as follows:
Theorem 2. Let $k \geqslant t \geqslant 2$ and $m \geqslant t$, let $\phi:[k] \rightarrow[t]$ be a surjection, and let $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right)$ be a Bollobás (k, t)-tuple of size m. Then

$$
\begin{equation*}
\sum_{\sigma \in[m]_{(t-1)}}\binom{\left|A_{1, \sigma}(\phi) \cup A_{2, \sigma}(\phi) \cup \cdots \cup A_{t, \sigma}(\phi)\right|}{\left|A_{1, \sigma}(\phi)\right|\left|A_{2, \sigma}(\phi)\right| \cdots}^{-1} \leqslant 1 . \tag{2}
\end{equation*}
$$

We show in Section 2.1 that this inequality is tight for all $k \geqslant t=2$, but do not have an example to show that this inequality is tight for any $t>2$.
For $n \geqslant k \geqslant t \geqslant 2$, let $\beta_{k, t}(n)$ denote the maximum m such that there exists a Bollobás (k, t)-tuple of size m consisting of subsets of $[n]$. Then (1) gives $\beta_{2,2}(n) \leqslant\binom{ n}{\lfloor n / 2\rfloor}$ which is tight for all $n \geqslant 2$. Letting $H(q)=-q \log _{2} q-(1-q) \log _{2}(1-q)$ denote the standard binary entropy function, we prove the following theorem:

Theorem 3. For $k \geqslant 3$ and large enough n,

$$
\begin{equation*}
\frac{1}{k} \leqslant \frac{\log _{2} \beta_{k, 2}(n)}{n} \leqslant H\left(\frac{1}{k}\right) \leqslant \frac{\log _{2}(k e)}{k} \tag{3}
\end{equation*}
$$

For $k \geqslant t \geqslant 3$ and large enough n,

$$
\begin{equation*}
\frac{\log _{2} e}{\binom{k}{t-1}(t+1) t^{t-1}} \leqslant \frac{\log _{2} \beta_{k, t}(n)}{n} \leqslant \frac{2}{\binom{k}{t-1}(t-1)^{t-3}} . \tag{4}
\end{equation*}
$$

This determines $\log _{2} \beta_{k, 2}(n)$ up to a factor of order $\log _{2} k$ and $\log _{2} \beta_{k, t}(n)$ up to a factor of order t^{3}. We leave it as an open problem to determine the asymptotic value of $\left(\log _{2} \beta_{k, t}(n)\right) / n$ as $n \rightarrow \infty$ for any $k \geqslant 3$ and $t \geqslant 2$. A natural source for lower bounds on $\beta_{k, t}(n)$ comes from the probabilistic method - see the random constructions in Section 3.1 which establish the lower bounds in Theorem 3. To prove Theorem 3, we use a natural connection to hypergraph covering problems.

1.2 Covering hypergraphs

Theorem 1 has a wide variety of applications, from saturation problems [3, 19] to covering problems for graphs [11, 20], complexity of $0-1$ matrices [23], geometric problems [1], counting cross-intersecting families [7], crosscuts and transversals of hypergraphs [24, 25, $26]$, hypergraph entropy [15, 22], and perfect hashing [8, 10]. In this section, we give an application of our main results to hypergraph covering problems. For a k-uniform hypergraph H, let $f(H)$ denote the minimum number of complete k-partite k-uniform hypergraphs whose union is H. In the case of graph covering, a simple connection to the Bollobás set pairs inequality (1) may be described as follows. Let $K_{n, n} \backslash M$ denote the complement of a perfect matching $M=\left\{x_{i} y_{i}: 1 \leqslant i \leqslant n\right\}$ in the complete bipartite graph $K_{n, n}$ with parts $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. If $H_{1}, H_{2}, \ldots, H_{m}$ are complete bipartite graphs in a minimum covering of $K_{n, n} \backslash M$, then let $A_{i}=\{j$: $\left.x_{i} \in V\left(H_{j}\right)\right\}$ and $B_{i}=\left\{j: y_{i} \in V\left(H_{j}\right)\right\}$. Setting $\mathcal{A}=\left\{A_{i}\right\}_{i \in[m]}$ and $\mathcal{B}=\left\{B_{i}\right\}_{i \in[m]}$, it is straightforward to check that $(\mathcal{A}, \mathcal{B})$ is a Bollobás set pair, and Theorem 1 applies to give

$$
\begin{equation*}
f\left(K_{n, n} \backslash M\right)=\min \left\{m:\binom{m}{\lceil m / 2\rceil} \geqslant n\right\} . \tag{5}
\end{equation*}
$$

In a similar way, Theorem 2 applies to covering complete k-partite k-uniform hypergraphs. Let $K_{n, n, \ldots, n}$ denote the complete k-partite k-uniform hypergraph with parts $X_{i}=\left\{x_{i j}\right.$: $j \in[n]\}$ for $i \in[k]$. Let $H_{k, t}(n)$ denote the subhypergraph consisting of hyperedges $\left\{x_{1, i_{1}}, x_{2, i_{2}}, \ldots, x_{k, i_{k}}\right\}$ such that at least t of the indices $i_{1}, i_{2}, \ldots, i_{k}$ are distinct, and set $f_{k, t}(n)=f\left(H_{k, t}(n)\right)$. Then there is a one-to-one correspondence between Bollobás (k, t) tuples of subsets of $\left[m\right.$] and coverings of $H_{k, t}(n)$ with m complete k-partite k-graphs. We let $\beta_{k, t}(m)$ be the maximum size of a Bollobás ($\left.k, t\right)$-tuple of subsets of $[m$], so that

$$
\begin{equation*}
f_{k, t}(n)=\min \left\{m: \beta_{k, t}(m) \geqslant n\right\} . \tag{6}
\end{equation*}
$$

This correspondence together with Theorem 2 will be exploited to prove

$$
\begin{equation*}
f_{k, 2}(n) \geqslant \min \left\{m:\binom{m}{\lceil m / k\rceil} \geqslant n\right\} \tag{7}
\end{equation*}
$$

which is partly an analog of (5). More generally, we prove the following theorem:
Theorem 4. For $k \geqslant 3$ and large enough n,

$$
\begin{equation*}
\frac{k}{\log _{2}(k e)} \leqslant \frac{1}{H\left(\frac{1}{k}\right)} \leqslant \frac{f_{k, 2}(n)}{\log _{2} n} \leqslant k . \tag{8}
\end{equation*}
$$

For $k \geqslant t \geqslant 3$ and large enough n,

$$
\begin{equation*}
\binom{k}{t-1} \frac{(t-1)^{t-3}}{2} \leqslant \frac{f_{k, t}(n)}{\log _{2} n} \leqslant \frac{(t+1) t^{t-1}}{\log _{2} e}\binom{k}{t-1} . \tag{9}
\end{equation*}
$$

The bounds on $\beta_{k, t}(n)$ in Theorem (3) follow immediately from this theorem and (6). Equation (9) gives the order of magnitude for each $t \geqslant 3$ as $k \rightarrow \infty$, but for $t=2$, Equation (8) has a gap of order $\log _{2} k$. From (7), we obtain $\beta_{k, 2}(n) \leqslant\binom{ n}{\lfloor n / k\rfloor}$. It is perhaps unsurprising that the asymptotic value of $f_{k, t}(n) / \log _{2} n$ as $n \rightarrow \infty$ is not known for any $k>2$, since a limiting value of $f\left(K_{n}^{k}\right) / \log _{2} n$ is not known for any $k>2$ - see Körner and Marston [15] and Guruswami and Riazanov [10].

1.3 Organization and notation

Given a subset $A \subset[n]$, let $A^{c}:=[n] \backslash A$ be the complement of A in $[n]$. For positive integers $k \leqslant n$, let $(n)_{(k)}=(n)(n-1) \cdots(n-k+1)$ denote the falling factorial. This paper is organized as follows. In Section 2, we prove Theorem 2. In Section 2.1, we construct a Bollobás ($k, 2$)-tuple which achieves equality in Theorem 2 and in Section 2.2, we construct a Bollobás ($k, 2$)-tuple which gives the lower bound in Equation (3). The upper bound on $f_{k, t}(n)$ in Theorem 4 comes from a probabilistic construction in Section 3.1, and the proof of the lower bound on $f_{k, t}(n)$ is given in Section 3.3; we prove (7) in Section 3.2.

2 Proof of Theorem 2

Given a Bollobás set (k, t)-tuple $\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ with $\mathcal{A}_{j}=\left\{A_{j, i}: 1 \leqslant i \leqslant m\right\}$ and a surjection $\phi:[k] \rightarrow[t]$, consider $\mathcal{A}_{\ell}(\phi): 1 \leqslant \ell \leqslant t$ where $\mathcal{A}_{\ell}(\phi)=\left\{A_{\ell, i}(\phi): 1 \leqslant i \leqslant m\right\}$ and

$$
A_{\ell, i}(\phi)=\bigcap_{h: \phi(h)=\ell} A_{h, i} .
$$

It follows that $\left(\mathcal{A}_{1}(\phi), \ldots, \mathcal{A}_{t}(\phi)\right)$ is a Bollobás set (t, t)-tuple and hence it suffices to prove Theorem 2 in the case where $t=k$. In this setting, surjections $\phi:[k] \rightarrow[k]$ simply permute the k families and as such we suppress the notation of ϕ for the remainder of this section. One of the proofs of Theorem 1, given a Bollobás set pair, defines a collection of chains \mathcal{C}_{i} for $i \in[m]$ and shows that these chains are necessarily disjoint. Similarly, given a Bollobás set (k, k)-tuple, we will define a collection of chains \mathcal{C}_{σ} for every ordered collection σ of $(k-1)$ distinct indices of $[m]$ and show these chains are pairwise disjoint.

Let $\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ with $\mathcal{A}_{j}=\left\{A_{j, i}: 1 \leqslant i \leqslant m\right\}$ be a Bollobás set (k, k)-tuple, and set

$$
X=\bigcup_{i=1}^{m}\left(A_{1, i} \cup A_{2, i} \cup \cdots \cup A_{k, i}\right)
$$

with $|X|=n$. For $\sigma \in[m]_{(k-1)}$, define a subset \mathscr{C}_{σ} of permutations $\pi: X \rightarrow[n]$ by

$$
\mathscr{C}_{\sigma}:=\left\{\pi: X \rightarrow[n]: \max _{x \in A_{1, \sigma}} \pi(x)<\min _{y \in A_{2, \sigma}} \pi(y) \leqslant \max _{y \in A_{2, \sigma}} \pi(y)<\cdots<\min _{z \in A_{k, \sigma}} \pi(z)\right\} .
$$

Letting $U_{\sigma}:=A_{1, \sigma} \cup \cdots \cup A_{k, \sigma}$, elementary counting methods give

$$
\begin{equation*}
\left|\mathscr{C}_{\sigma}\right|=\binom{n}{\left|U_{\sigma}\right|}\left|A_{1, \sigma}\right|!\cdots\left|A_{k, \sigma}\right|!\left(n-\left|U_{\sigma}\right|\right)!=n!\cdot\binom{\left|U_{\sigma}\right|}{\left|A_{1, \sigma}\right| \cdots\left|A_{k, \sigma}\right|}^{-1} \tag{10}
\end{equation*}
$$

We will now prove a lemma which states that $\left\{\mathscr{C}_{\sigma}\right\}_{\sigma \in[m]_{(k-1)}}$ forms a disjoint collection of a permutations. The general proof only works for $k \geqslant 4$, so we first consider $k=3$.
Lemma 5. If $\sigma_{1}, \sigma_{2} \in[m]_{(2)}$ are distinct, then $\mathscr{C}_{\sigma_{1}} \cap \mathscr{C}_{\sigma_{2}}=\varnothing$.
Proof. Seeking a contradiction, suppose there exists $\pi \in \mathscr{C}_{\sigma_{1}} \cap \mathscr{C}_{\sigma_{2}}$. After relabeling, it suffices to consider the following five cases.

$$
\begin{array}{ll}
\text { (1) } \sigma_{1}=\{1,3\} \text { and } \sigma_{2}=\{2,4\} & \text { (2) } \sigma_{1}=\{1,3\} \text { and } \sigma_{2}=\{2,3\} \\
\text { (3) } \sigma_{1}=\{1,2\} \text { and } \sigma_{2}=\{1,3\} & \text { (4) } \sigma_{1}=\{1,2\} \text { and } \sigma_{2}=\{2,3\} \\
\text { (5) } \sigma_{1}=\{1,2\} \text { and } \sigma_{2}=\{3,1\} . &
\end{array}
$$

In case (1), without loss of generality, $\max \left\{\pi(x): x \in A_{1,1}\right\} \leqslant \max \left\{\pi(x): x \in A_{1,2}\right\}$ and thus $\pi \in \mathscr{C}_{\sigma_{2}}$ yields

$$
\max _{x \in A_{1,1}} \pi(x) \leqslant \max _{x \in A_{1,2}} \pi(x)<\min _{y \in A_{2,4} \backslash A_{1,2}} \pi(y)
$$

Then as $A_{1,1} \cap A_{2,4} \cap A_{3,2} \neq \varnothing$, there exists $w \in A_{1,1} \cap A_{2,4} \cap A_{3,2}$. It follows that $w \notin A_{1,2}$ since if $w \in A_{1,2}$, then $w \in A_{1,2} \cap A_{2,4} \cap A_{3,2} \neq \varnothing$; a contradiction. But this yields a contradiction as

$$
\pi(w) \leqslant \max _{x \in A_{1,1}} \pi(x) \leqslant \max _{x \in A_{1,2}} \pi(x)<\min _{y \in A_{2,4} \backslash A_{1,2}} \pi(y) \leqslant \pi(w)
$$

In case (2), without loss of generality, $\max \left\{\pi(x): x \in A_{1,1}\right\} \leqslant \max \left\{\pi(x): x \in A_{1,2}\right\}$ and we recover a similar contradiction as case (1) by noting that there exists $w \in A_{1,1} \cap A_{2,3} \cap$ $A_{3,2}$ with $w \notin A_{1,2}$.
In case (3) we may assume $\max \left\{\pi(x): x \in A_{2,2} \backslash A_{1,1}\right\} \leqslant \max \left\{\pi(x): x \in A_{2,3} \backslash A_{1,1}\right\}$ and $\pi \in \mathscr{C}_{1,3}$ yields $\max \left\{\pi(x): x \in A_{2,3} \backslash A_{1,1}\right\}<\min \left\{\pi(x): x \in A_{3,1} \backslash\left(A_{1,1} \cup A_{2,3}\right)\right\}$. Thus

$$
\max \left\{\pi(x): x \in A_{2,2} \backslash A_{1,1}\right\}<\min \left\{\pi(x): x \in A_{3,1} \backslash\left(A_{1,1} \cup A_{2,3}\right)\right\}
$$

and there exists $w \in A_{1,3} \cap A_{2,2} \cap A_{3,1}$ with $w \notin A_{1,1}$ and $w \notin A_{2,3}$. It follows that $\pi(w)<\pi(w)$, a contradiction.
In case (4), if $\max \left\{\pi(x): x \in A_{1,1}\right\} \leqslant \max \left\{\pi(x): x \in A_{1,2}\right\}$, then using $w \in A_{1,1} \cap A_{2,3} \cap$ $A_{3,2}$ and noting $w \notin A_{1,2}$, we get a contradiction. Thus, we may assume otherwise and $\pi \in \mathcal{C}_{1,2}$ gives

$$
\max _{x \in A_{1,2}} \pi(x)<\max _{x \in A_{1,1}} \pi(x)<\min _{z \in A_{3,1} \backslash\left(A_{1,1} \cup A_{2,2}\right)} \pi(z) .
$$

This is a contradiction as there exists $w \in A_{1,2} \cap A_{2,3} \cap A_{3,1}$ with $w \notin A_{1,1}$ and $w \notin A_{2,2}$. In case (5), if $\max \left\{\pi(x): x \in A_{1,1}\right\} \leqslant \max \left\{\pi(x): x \in A_{1,3}\right\}$, then we may proceed as in the latter part of case (4) using $w \in A_{1,1} \cap A_{2,2} \cap A_{3,3}$ and $w \notin A_{2,1}$ and $w \notin A_{1,3}$ to get a contradiction. Otherwise, proceeding as in case (1) and noting there exists $w \in A_{1,3} \cap A_{2,2} \cap A_{3,1}$, but $w \notin A_{1,1}$ yields a contradiction.
A similar argument yields the analog of Lemma 5 to the case where $k \geqslant 4$.
Lemma 6. Let $k \geqslant 4$. If $\sigma_{1}, \sigma_{2} \in[m]_{(k-1)}$ are distinct, then $\mathscr{C}_{\sigma_{1}} \cap \mathscr{C}_{\sigma_{2}}=\varnothing$.
Proof. Since $\sigma_{1}, \sigma_{2} \in[m]_{(k-1)}$ are distinct, there exists minimal $h \in[k-1]$ so that $\sigma_{1}(h) \neq \sigma_{2}(h)$. Seeking a contradiction, suppose there exists a $\pi \in \mathscr{C}_{\sigma_{1}} \cap \mathscr{C}_{\sigma_{2}}$. Without loss of generality,

$$
\max \left\{\pi(x): x \in A_{h, \sigma_{1}}\right\} \leqslant \max \left\{\pi(x): x \in A_{h, \sigma_{2}}\right\}<\min \left\{\pi(z): z \in A_{k, \sigma_{2}}\right\}
$$

Now, consider a bijection $\tau:[k-1] \backslash\{h\} \rightarrow[k-1] \backslash\{1\}$ which has no fixed points. As in Lemma 5, we want to show that there exists a $w \in A_{h, \sigma_{1}} \cap A_{k, \sigma_{2}}$ and consider two separate cases.
First, suppose that $\sigma_{1}(h) \notin \sigma_{2}([k-1])$. As $\left|\left\{\sigma_{1}(h), \sigma_{2}(1), \ldots, \sigma_{2}(k-1)\right\}\right|=k$, there exists

$$
\begin{equation*}
w \in A_{h, \sigma_{1}(h)} \cap A_{k, \sigma_{2}(1)} \cap \bigcap_{l \in[k-1] \backslash\{h\}} A_{l, \sigma_{2}(\tau(l))} . \tag{11}
\end{equation*}
$$

Next, suppose that $\sigma_{1}(h)=\sigma_{2}(x)$ for some x. We now claim that $x \neq 1$. If $h=1$, then this is trivial. If $h>1$, then $\sigma_{1}(1)=\sigma_{2}(1)$, so $\sigma_{1}(h) \neq \sigma_{2}(1)$ since $\sigma_{1}(h) \neq \sigma_{1}(1)$. For τ as above, there exists $y \in[k-1] \backslash\{h\}$ so that $\tau(y)=x$. Taking γ distinct from $\left\{\sigma_{2}(1), \ldots, \sigma_{2}(k-1)\right\} \backslash\left\{\sigma_{2}(x)\right\},\left|\left\{\sigma_{1}(h), \gamma, \sigma_{2}(1), \ldots, \sigma_{2}(k-1)\right\} \backslash\left\{\sigma_{2}(x)\right\}\right|=k$ and hence there exists

$$
\begin{equation*}
w \in A_{h, \sigma_{1}(h)} \cap A_{k, \sigma_{2}(1)} \cap A_{y, \gamma} \cap \bigcap_{l \in[k-1] \backslash\{y, h\}} A_{l, \sigma_{2}(\tau(l))} . \tag{12}
\end{equation*}
$$

By construction, $w \in A_{h, \sigma_{1}(h)} \cap A_{k, \sigma_{2}(1)}$. Suppose there exists a $t \in[k-1] \backslash\{h\}$ so that $w \in A_{t, \sigma_{2}(t)}$. As τ has no fixed points, replacing the set in the k-wise intersection corresponding to \mathcal{A}_{t} with $A_{t, \sigma_{2}(t)}$ in either (11) or (12), w is an element of this new k-wise intersection with $(k-1)$ distinct indices; a contradiction. If $w \in A_{h, \sigma_{2}(h)}$, then we may similarly replace $A_{h, \sigma_{1}(h)}$ with $A_{h, \sigma_{2}(h)}$ in the k-wise intersection in either (11) or (12) to get a contradiction. Thus, $w \notin A_{1, \sigma_{2}(1)} \cup \cdots \cup A_{k-1, \sigma_{2}(k-1)}$ and hence $w \in A_{h, \sigma_{1}} \cap A_{k, \sigma_{2}}$ so that $\pi(w)<\pi(w)$; a contradiction.
Using Equation (10), Lemma 5, and Lemma 6, we are now able to prove Theorem 2 in the case where $t=k$. There are $n!$ total permutations, and Lemma 5 and Lemma 6 yield that each of which appears in at most one of the sets \mathscr{C}_{σ} for $\sigma \in[m]_{(k-1)}$. Hence, using $\left|\mathscr{C}_{\sigma}\right|$ in Equation (10),

$$
\sum_{\sigma \in[m]_{(k-1)}}\left|\mathscr{C}_{\sigma}\right|=\sum_{\sigma \in[m]_{(k-1)}} n!\cdot\binom{\left|A_{1, \sigma} \cup \cdots \cup A_{k, \sigma}\right|}{\left|A_{1, \sigma}\right| \cdots\left|A_{k, \sigma}\right|}^{-1} \leqslant n!
$$

and thus the result follows by dividing through by $n!$.

2.1 Sharpness of Theorem 2

We give a simple construction establishing the sharpness of Theorem 2 for $k \geqslant t=2$. Let $n \geqslant 4 k$ and using addition modulo n, define $A_{1, i}=\{i\}^{c}, A_{j, i}=\{i-(j-1), i+(j-1)\}^{c}$ for $j \in[2, k-1]$, and $A_{k, i}=\{i-k+2, i-k+3, \ldots, i+k-2\}$. Letting $\mathcal{A}_{j}=\left\{A_{j, i}\right\}_{i \in[n]}$ for all $j \in[k]$, we will show $\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ is a Bollobás $(k, 2)$-tuple. Since $\left|A_{1, i}\right|=n-1$ and $\left|A_{2, i} \cap \cdots \cap A_{k, i}\right|=1$, Theorem 2 with $t=2$ and surjection $\phi:[k] \rightarrow[2]$ with $\phi(1)=1$ and $\phi(i)=2$ for $i \neq 1$ gives

$$
1 \geqslant \sum_{i=1}^{n}\binom{\left|A_{1, i}\right|+\left|A_{2, i} \cap \cdots \cap A_{k, i}\right|}{\left|A_{1, i}\right|}^{-1}=\sum_{i=1}^{n} \frac{1}{n}=1
$$

By construction, for all $i \in[n], A_{1, i} \cap A_{2, i} \cap \cdots \cap A_{k, i}=\varnothing$. It thus suffices to show these are the only empty k-wise intersections. To this end, for $\boldsymbol{i}=\left(i_{1}, \ldots, i_{k-1}\right)$, define

$$
A(\boldsymbol{i}):=A_{1, i_{1}} \cap \cdots \cap A_{k-1, i_{k-1}} .
$$

Lemma 7. Let $\boldsymbol{i}=\left(i_{1}, \ldots, i_{k-1}\right)$. If $A(\boldsymbol{i})^{c}=A_{k, i_{k}}$, then $i_{1}=\cdots=i_{k}$.
Proof. We proceed by induction on k where the result is trivial when $k=2$. In the case where $k>2, i_{k-1}-k+2=i_{k}+x$ for some x such that $-(k-2) \leqslant x \leqslant(k-2)$ and thus $i_{k-1}+(k-2)=i_{k-1}-(k-2)+(2 k-4)=i_{k}+x+(2 k-4)$.
Next, there is a y such that $-(k-2) \leqslant y \leqslant(k-2)$ with $i_{k-1}+(k-2)=i_{k}+y$, and since $n \geqslant 4 k, x+2 k-4=y$ with equality over \mathbb{Z} and moreover $i_{k-1}+(k-2)=i_{k}+(k-2)$ over \mathbb{Z} and hence $i_{k}=i_{k-1}$. Removing these elements from each set, the result then follows by induction.

If $A_{1, i_{1}} \cap \cdots \cap A_{k, i_{k}}=\varnothing$, then as $A(\boldsymbol{i})=A_{1, i_{1}} \cap A_{2, i_{2}} \cap \cdots A_{k-1, i_{k-1}}$,

$$
\varnothing=A_{1, i_{1}} \cap A_{2, i_{2}} \cap \cdots \cap A_{k-1, i_{k-1}} \cap A_{k, i_{k}}=A(\boldsymbol{i}) \cap A_{k, i_{k}} .
$$

The result follows by noting $|A(\boldsymbol{i})| \geqslant n-(2 k-3),\left|A_{k, i_{k}}\right|=2 k-3$, and using Lemma 7 .

2.2 An Explicit Construction

Let $k \geqslant 3$. An explicit construction of a Bollobás $(k, 2)$-tuple $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right)$ where $\left|\mathcal{A}_{i}\right|=2^{n}$ and each \mathcal{A}_{i} consists of subsets of X for $|X|=k n$ may be described as follows. Let $I_{j}:=\left\{x_{j, 1}, x_{j, 2}, \ldots, x_{j, k}\right\}$ and consider $X=I_{1} \sqcup \cdots \sqcup I_{n}$. Now, for each $f:[n] \rightarrow[2]$ and $j \in[k]$, define

$$
A_{j, f}:=\left\{x_{1, f(1)+j-1}, \ldots, x_{n, f(n)+j-1}\right\}^{c}
$$

where we work modulo k within the subscripts of I_{j}. It is straightforward to check that $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right)$ is a Bollobás $(k, 2)$-tuple. This establishes the lower bound on $\beta_{k, 2}(n)$ in Equation (3) and hence the upper bound on $f_{k, 2}(n)$ in Equation (8).

3 Proof of Theorem 4

3.1 Upper bound on $f_{k, t}(n)$

We wish to find a covering of $H_{k, t}(n)$ with complete k-partite k-graphs and assume the parts of $H_{k, t}(n)$ are $X_{1}, X_{2}, \ldots, X_{k}$. For each subset T of $[k]$ of size t, consider the uniformly random coloring $\chi_{T}:[n] \rightarrow T$. Given such a χ_{T}, let $Y_{i} \subset X_{i}$ be the vertices of color i for $i \in T$; that is $Y_{i}:=\left\{x_{i j}: \chi(j)=i\right\}$ and $Y_{i}=X_{i}$ for $i \notin T$. Denote by $H(T, \chi)$ the (random) complete k-partite hypergraph with parts $Y_{1}, Y_{2}, \ldots, Y_{k}$, and note that $H(T, \chi) \subset H_{k, t}(n)$. We place each $H(T, \chi)$ a total of N times independently and randomly where

$$
N=\left\lfloor\frac{(t+1) t^{t} \log _{2} n}{(k-t+1) \log _{2} e}\right\rfloor
$$

and produce $\binom{k}{t} N$ random subgraphs $H(T, \chi)$. For a set partition π of $[k]$, let $|\pi|$ denote the number of parts in the partition and index the parts by $[|\pi|]$. Given a set partition $\pi=\left(P_{1}, P_{2}, \ldots, P_{s}\right)$, let

$$
f(\pi, t)=\sum_{T \in[s]^{(t)}} \prod_{i \in T}\left|P_{i}\right| .
$$

If U is the number of edges of $H_{k, t}(n)$ not in any of these subgraphs, then

$$
\begin{equation*}
\mathbb{E}(U) \leqslant \sum_{|\pi| \geqslant t} n^{|\pi|}\left(1-t^{-t}\right)^{N f(\pi, t)}=\sum_{t \leqslant s \leqslant k} n^{s} \sum_{|\pi|=s}\left(1-t^{-t}\right)^{N f(\pi, t)} . \tag{13}
\end{equation*}
$$

For sufficiently large n, we claim that $\mathbb{E}(U)<1$, which implies there exists a covering of $H_{k, t}(n)$ with at most $\binom{k}{t} N$ complete k-partite k-graphs, as required. The following technical lemma states that f is a decreasing function in the set partition lattice, and that $f(\pi, t)$ increases when we merge all but one element of a smaller part of π with a larger part of π :

Lemma 8. Let $k \geqslant s \geqslant t \geqslant 2$, and let $\pi=\left(P_{1}, P_{2}, \ldots, P_{s}\right)$ be a partition of $[k]$.
(i) If π^{\prime} is a refinement of π with $\left|\pi^{\prime}\right|=s+1$, then $f(\pi, t) \leqslant f\left(\pi^{\prime}, t\right)$.
(ii) If $\left|P_{1}\right| \geqslant\left|P_{2}\right| \geqslant 2$ and $a \in P_{2}$, and π^{\prime} is the partition $\left(P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{s}^{\prime}\right)$ of $[k]$ with $P_{1}^{\prime}=P_{1} \cup P_{2} \backslash\{a\}$ and $P_{2}^{\prime}=\{a\}$ and with $P_{i}^{\prime}=P_{i}$ for $3 \leqslant i \leqslant s$, then $f\left(\pi^{\prime}, t\right) \leqslant f(\pi, t)$.

The proof of Lemma 8 part (i) is in Appendix A and the proof of (ii) is similar to the proof of (i). By Lemma 8, a set partition of $[k]$ into s parts which minimizes $f(\pi, t)$ consists of one part of size $k-s+1$ and $s-1$ singleton parts and hence

$$
\begin{equation*}
\min \{f(\pi, t):|\pi|=s\}=(k-s+1)\binom{s-1}{t-1}+\binom{s-1}{t} . \tag{14}
\end{equation*}
$$

In what follows, we denote a set partition of $[k]$ into s parts which minimizes $f(\pi, t)$ by π_{s}.

For n large enough, and all s where $t \leqslant s \leqslant k$, we will show

$$
\frac{\sum_{|\pi|=t}\left(1-t^{-t}\right)^{N f(\pi, t)}}{\sum_{|\pi|=s}\left(1-t^{-t}\right)^{N f(\pi, t)}} \geqslant n^{s-t} .
$$

Replacing the numerator with its largest term and each term in denominator with its largest term,

$$
\frac{\sum_{|\pi|=t}\left(1-t^{-t}\right)^{N f(\pi, t)}}{\sum_{|\pi|=s}\left(1-t^{-t}\right)^{N f(\pi, t)}} \geqslant \frac{\left(1-t^{-t}\right)^{N f\left(\pi_{t}, t\right)}}{S(k, s)\left(1-t^{-t}\right)^{N f\left(\pi_{s}, t\right)}}=\frac{1}{S(k, s)}\left(1-t^{-t}\right)^{N\left(f\left(\pi_{t}, t\right)-f\left(\pi_{s}, t\right)\right)}
$$

where $S(k, s)$ is the Stirling number of the second kind. Taking $n \geqslant S(k, s)$, we will show in Appendix B that

$$
\begin{equation*}
\frac{1}{S(k, s)}\left(1-t^{-t}\right)^{N\left(f\left(\pi_{t}, t\right)-f\left(\pi_{s}, t\right)\right)} \geqslant n^{s-t} . \tag{15}
\end{equation*}
$$

Therefore, the index $s=t$ maximizes the right hand side of Equation (13), and hence

$$
\mathbb{E}[U] \leqslant(k-t+1)\left(n^{t}\right) \sum_{|\pi|=t}\left(1-t^{-t}\right)^{N f(\pi, t)}<(k-t+1) n^{t} S(k, t)\left(1-t^{-t}\right)^{N(k-t+1)}<1
$$

for our choice of N provided $n \geqslant k S(k, t)$. Thus,

$$
f_{k, t}(n) \leqslant\binom{ k}{t} \frac{(t+1) t^{t} \log _{2} n}{(k-t+1) \log _{2} e}=\frac{(t+1) t^{t-1}}{\log _{2} e}\binom{k}{t-1} \log _{2} n .
$$

3.2 Lower bound on $f_{k, 2}(n)$

In this section, we show

$$
\begin{equation*}
f_{k, 2}(n) \geqslant \min \left\{m:\binom{m}{\lceil m / k\rceil} \geqslant n\right\} . \tag{16}
\end{equation*}
$$

Let $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ be a covering of $H_{k, 2}(n)$ with $m=f_{k, 2}(n)$ complete k-partite k graphs. We recall $H_{k, 2}(n)=K_{n, n, \ldots, n} \backslash M$, where M is a perfect matching of $K_{n, n, \ldots, n}$. For $i \in[k]$ and $j \in[n]$, define $A_{i, j}=\left\{H_{r}: x_{i j} \in V\left(H_{r}\right)\right\}$ and $\mathcal{A}_{i}=\left\{A_{i, j}: 1 \leqslant j \leqslant n\right\}$. As in (6), $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right)$ is a Bollobás ($k, 2$)-tuple of size n. For convenience, for each $i \in[k]$, let $\phi_{i}:[k] \rightarrow[2]$ be so that $\phi_{i}^{-1}(1)=\{i\}$. Taking the sum of inequality from Theorem 2 with $t=2$ over all $i \in[k]$,

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j=1}^{n}\binom{\left|A_{1, j}\left(\phi_{i}\right) \cup A_{2, j}\left(\phi_{i}\right)\right|}{\left|A_{1, j}\left(\phi_{i}\right)\right|}^{-1} \leqslant k . \tag{17}
\end{equation*}
$$

We use this inequality to give a lower bound on $f_{k, 2}(n)=m$. First we observe

$$
\begin{equation*}
\sum_{r=1}^{m}\left|V\left(H_{r}\right)\right|=\sum_{j=1}^{n} \sum_{i=1}^{k}\left|A_{i, j}\right|=\sum_{j=1}^{n} \sum_{i=1}^{k}\left|A_{1, j}\left(\phi_{i}\right)\right| . \tag{18}
\end{equation*}
$$

Let ∂H denote the set of $(k-1)$-tuples of vertices contained in some edge of a hypergraph H. Then

$$
\begin{equation*}
\sum_{r=1}^{m}\left|\partial H_{r} \cap \partial M\right|=\sum_{j=1}^{n} \sum_{i=1}^{k}\left|A_{2, j}\left(\phi_{i}\right)\right| . \tag{19}
\end{equation*}
$$

Putting the above identities together,

$$
\begin{equation*}
\sum_{r=1}^{m}\left|V\left(H_{r}\right)\right|+\sum_{r=1}^{m}\left|\partial H_{r} \cap \partial M\right|=\sum_{j=1}^{n} \sum_{i=1}^{k}\left(\left|A_{1, j}\left(\phi_{i}\right)\right|+\left|A_{2, j}\left(\phi_{i}\right)\right|\right) . \tag{20}
\end{equation*}
$$

We note $\left|\partial H_{r} \cap \partial M\right| \leqslant\left|V\left(H_{r}\right)\right| /(k-1)$, and therefore

$$
\begin{equation*}
\sum_{r=1}^{m}\left|\partial H_{r} \cap \partial M\right| \leqslant \frac{1}{k-1} \sum_{r=1}^{m}\left|V\left(H_{r}\right)\right| . \tag{21}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{i=1}^{k}\left(\left|A_{1, j}\left(\phi_{i}\right)\right|+\left|A_{2, j}\left(\phi_{i}\right)\right|\right) \leqslant \frac{k}{k-1} \sum_{r=1}^{m}\left|V\left(H_{r}\right)\right| . \tag{22}
\end{equation*}
$$

Subject to the linear inequalities (18) and (22), the left side of (17) is minimized when $k n\left|A_{1, j}\left(\phi_{i}\right)\right|=\sum_{r=1}^{m}\left|V\left(H_{r}\right)\right|$ and $k n\left(\left|A_{1, j}\left(\phi_{i}\right)\right|+\left|A_{2, j}\left(\phi_{i}\right)\right|\right)=(k-1)\left|A_{1, j}\left(\phi_{i}\right)\right|$. Since $\left|V\left(H_{r}\right)\right| \leqslant(k-1) n$ for all $r \in[m]$, (17) implies $\binom{m}{[m / k]} \geqslant n$, which gives (16).

3.3 Lower bound on $f_{k, k}(n)$

Let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ be a minimal covering of $H_{k, k}(n)$ with complete k-partite k graphs, so $m=f\left(H_{k, k}(n)\right)$. Given a k-partite k-graph H, consider its 2-shadow $\partial_{2}(H)=$ $\{R \subset V(H):|R|=k-2, R \subset e$ for some $e \in H\}$. Let $\partial_{2}(\mathcal{H})=\bigcup_{i=1}^{m} \partial_{2}\left(H_{i}\right)$.
Given $R \in \partial_{2}(\mathcal{H})$ and $H_{i} \in \mathcal{H}$, let $H_{i}(R):=\left\{e \in\binom{V\left(H_{i}\right)}{2}: e \cup R \in H_{i}\right\}$ be the possibly empty link graph of the edge R in the hypergraph H_{i} and let $V\left(H_{i}(R)\right)$ be the set of vertices in the link graph. Observe that double counting yields

$$
\begin{equation*}
\sum_{R \in \partial_{2}(\mathcal{H})}\left(\sum_{i=1}^{m}\left|V\left(H_{i}(R)\right)\right|\right)=\sum_{i=1}^{m}\left(\sum_{R \in \partial_{2}\left(H_{i}\right)}\left|V\left(H_{i}(R)\right)\right|\right) . \tag{23}
\end{equation*}
$$

An optimization argument yields $\left|\partial_{2}\left(H_{i}\right)\right|$ is maximized when the parts of H_{i} are of equal or nearly equal maximal size. Since $\left|V\left(H_{i}(R)\right)\right| \leqslant 2(n-k+2)$, the right hand side of Equation (23) is bounded above by

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\sum_{R \in \partial_{2}\left(H_{i}\right)}\left|V\left(H_{i}(R)\right)\right|\right) \leqslant m \cdot\binom{k}{2} \cdot\left(\frac{n}{k}\right)^{k-2} \cdot 2(n-k+2) \tag{24}
\end{equation*}
$$

For a lower bound on the left hand side of Equation (23), fix $R \in \partial_{2}(\mathcal{H})$ and without loss of generality suppose that $R=\left\{x_{1,1}, \ldots, x_{k-2, k-2}\right\}$. Let $Y=[k-1, n]$. Let $K_{Y, Y}$ be the complete bipartite graph with two distinct copies of Y and $\mathcal{M}=\left\{\left(x_{k-1, i}, x_{k, i}: i \in Y\right\}\right.$ be a perfect matching in $K_{Y, Y}$. Then, $\left\{H_{1}(R), \ldots, H_{m}(R)\right\}$ forms a biclique cover of $K_{Y, Y} \backslash \mathcal{M}$. Applying the convexity result of Tarjan [23, Lemma 5],

$$
\sum_{i=1}^{m}\left|V\left(H_{i}(R)\right)\right| \geqslant(n-k+2) \log _{2}(n-k+2)
$$

Noting that $\left|\partial_{2}(\mathcal{H})\right|=\binom{k}{2}(n)_{(k-2)}$, the left hand side of Equation (23) is bounded below by

$$
\begin{equation*}
\sum_{R \in \partial_{2}(\mathcal{H})}\left(\sum_{i=1}^{m}\left|V\left(H_{i}(R)\right)\right|\right) \geqslant\binom{ k}{2}(n)_{(k-2)}(n-k+2) \log _{2}(n-k+2) . \tag{25}
\end{equation*}
$$

Comparing the bounds from Equation (24) and Equation (25),

$$
m \geqslant \frac{(n)_{(k-2)} \log _{2}(n-k+2)}{2\left(\frac{n}{k}\right)^{k-2}} \geqslant \frac{k^{k-2}}{2} \log _{2} n
$$

provided that n is large enough.
For $t \geqslant 3$ and $t<k$, the lower bound on $f_{k, t}(n)$ in Theorem 4 is obtained from the lower bounds on $f_{t-1, t-1}(n-1)$ as follows: Let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ be a minimal covering of $H_{k, t}(n)$ with complete k-partite k-graphs, so $m=f\left(H_{k, t}(n)\right)$. Given $T \in\binom{[k]}{k-t+1}$, define $H_{T} \subset H_{k, t}(n)$ by

$$
H_{T}:=\left\{\left\{x_{1, i_{1}}, \ldots, x_{k, i_{k}}\right\} \in H_{k, t}(n): i_{j}=1 \forall j \in T\right\} .
$$

It follows that at least $f_{t-1, t-1}(n-1)$ of the complete k-partite k-graphs in \mathcal{H} are needed to cover H_{T}. Moreover, for distinct $T, T^{\prime} \in\binom{[k]}{k-t+1}$, the corresponding complete k-partite k-graphs from \mathcal{H} are necessarily pairwise disjoint and hence

$$
f_{k, t}(n) \geqslant\binom{ k}{k-t+1} f_{t-1, t-1}(n-1) \geqslant\binom{ k}{t-1} \frac{(t-1)^{t-3}}{2} \log _{2} n
$$

provided that n is large enough.

4 Concluding remarks

- Our main theorem, Theorem 2 is tight for $t=2$ and $k \geqslant 2$, as shown in Section 2.1. It would be interesting to generalize this example to $2<t \leqslant k$ to determine whether Theorem 2 is tight in general. The first open case is $t=k=3$.
- A particular case of the Bollobás set pairs inequality occurs when every set in \mathcal{A} has size a and every set in \mathcal{B} has size b, and one obtains the tight bound $|\mathcal{A}| \leqslant\binom{ a+b}{b}$. The
generalization to Bollobás (k, t)-tuples for $k \geqslant 3$ is equally interesting but wide open, as are potential generalizations to vector spaces - see Lovász [17, 18].
- Orlin [20] proved that the clique cover number $c c\left(K_{n} \backslash M\right)$ of a complete graph K_{n} minus a perfect matching M is precisely $\min \left\{m: 2\binom{m-1}{|m / 2|} \geqslant n\right\}$. Theorem 4 yields lower bounds on the clique cover number of the complement of a perfect matching M in the complete k-uniform hypergraph K_{n}^{k} :

Corollary 9. Let $K_{n}^{k} \backslash M$ be the complement of a perfect matching in K_{n}^{k}. Then

$$
c c\left(K_{n}^{k} \backslash M\right) \geqslant \frac{\log _{2} \frac{n}{k}}{H\left(\frac{1}{k}\right)} \geqslant \frac{k \log _{2} \frac{n}{k}}{\log _{2}(k e)} .
$$

- It would be interesting to prove an analog of Equation (16) for $t \geqslant 3$. That is,

$$
f_{k, t}(n) \geqslant \min \left\{m:\binom{m}{\alpha_{1}, \ldots, \alpha_{t}} \geqslant n_{(t-1)}\right\}
$$

for some optimal $\alpha_{1}, \ldots, \alpha_{t}$. The difficulty here lies in determining effective bounds on $\left|A_{i, \sigma}(\phi)\right|$.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments.

References

[1] N. Alon, G. Kalai, A simple proof of the upper bound theorem. European J. Combin. 6, no. 3, 211-214, 1985.
[2] B. Bollobás, Combinatorics. Set systems, hypergraphs, families of vectors and combinatorial probability. Cambridge University Press, Cambridge, 1986.
[3] B. Bollobás, On generalized graph, Acta Math. Acad. Sci. Hungar. 16, 447-452, 1965.
[4] P. Erdős, A. W. Goodman, L. Pósa, The representation of a graph by set intersections. Canad. J. Math. 18, 106-112, 1966.
[5] P. Erdős, A. Hajnal, W. Moon, A problem in graph theory, Amer. Math. Monthly 71, 1107-1110, 1964.
[6] P. Frankl, An extremal problem for two families of sets, European J. Combin. 3, 125-127, 1982.
[7] P. Frankl, A. Kupavskii, Counting intersecting and pairs of cross-intersecting families, Combin. Probab. Comput. 27, no. 1, 60-68, 2018.
[8] M. L. Fredman, J. Komlós, On the size of separating systems and families of perfect hash functions, SIAM Journal on Algebraic Discrete Methods, 5(1), 61-68, 1984.
[9] Z. Füredi, Geometrical solution of a problem for two hypergraphs, European J. Combin. 5, 133-136, 1984.
[10] V. Guruswami, A. Riazanov, Beating Fredman-Komlós for perfect k-hashing, ICALP, 2019.
[11] G. Hansel, Nombre minimal de contacts de fermature nécessaires pour réaliser une fonction booléenne symétrique de n variables, C. R. Acad. Sci. Paris, pp. 6037-6040, 1964.
[12] F. Jaeger, C. Payan, Nombre maximal d'arêtes d'un hypergraphe critique de rang h, C. R. Acad. Sci. Paris 273, 221-223, 1971.
[13] D. Kang, J. Kim, Y. Kim, On the Erdős-Ko-Rado theorem and the Bollobás theorem for t-intersecting families. European J. Combin. 47, 68-74, 2015.
[14] G. O. H. Katona, Solution of a problem of Ehrenfeucht and Mycielski, J. Combin. Theory, Ser. A 17, 265-266, 1974.
[15] J. Körner, K. Marton, New bounds for perfect hashing via information theory, European J. Combin. 9, 523-530, 1988.
[16] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, New York, Oxford, 1979.
[17] L. Lovász, Flats in matroids and geometric graphs, in Combinatorial Surveys (P. J. Cameron, ed.), Academic Press, New York, pp. 45-86, 1977.
[18] L. Lovász, Topological and algebraic methods in graph theory, in Graph Theory and Related Topics (J. A. Bondy and U. S. R. Murty, eds.) Academic Press, New York, 1979, pp. 1-15. (Proc. of Tutte Conference, Waterloo, 1977).
[19] G. Moshkovitz, A. Shapira, Exact bounds for some hypergraph saturation problems. J. Combin. Theory Ser. B 111, 242-248, 2015.
[20] J. Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes Mathematicae (Proceedings), 80 (5) 406-424, 1977.
[21] J. Talbot. A new Bollobás-type inequality and applications to t-intersecting families of sets, Discrete Mathematics 285, 349-353, 2004.
[22] G. Simonyi, Graph entropy: A survey. In Combinatorial Optimization, W. Cook, L. Lovász, P. Seymour, Eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science; American Mathematical Society: Providence, RI, USA; Volume 20, pp. 399-441, 1995.
[23] T.G Tarjan, Complexity of lattice-configurations. Studia Sci. Math. Hungar. 10, no. 1-2, 203-211, 1975.
[24] Zs. Tuza, Critical hypergraphs and intersecting set-pair systems, J. Combin. Theory Ser. B 39, 134-145, 1985.
[25] Zs. Tuza, Applications of the set-pair method in extremal hypergraph theory, in: P. Frankl, et al. (Eds.), Extremal Problems for Finite Sets, Bolyai Society Mathematical Studies, Vol. 3, János Bolyai Mathematical Society, Budapest, pp. 479-514, 1994.
[26] Zs. Tuza, Applications of the set-pair method in extremal problems, II, in: D. Miklos, et al. (Eds.), Combinatorics, Paul Erdős is Eighty, Bolyai Society Mathematical Studies, Vol. 2, János Bolyai Mathematical Society, Budapest, pp. 459-490, 1996.

A Proof of Lemma 8(i)

Let $k \geqslant s \geqslant t \geqslant 2$, and let $\pi=\left(P_{1}, P_{2}, \ldots, P_{s}\right)$ be a partition of $[k]$. In this section, we will show that if π^{\prime} is a refinement of π with $\left|\pi^{\prime}\right|=s+1$, then $f(\pi, t) \leqslant f\left(\pi^{\prime}, t\right)$.
Proof. Let $\pi=P_{1}\left|P_{2}\right| \cdots \mid P_{s}$ and without loss of generality, $\pi^{\prime}=P_{x}\left|P_{y}\right| P_{2}|\cdots| P_{s}$. Setting $\mathcal{T}(\overline{1})=\left\{T \in[s]^{(t)}: 1 \notin T\right\}$ and $\mathcal{T}^{\prime}(\bar{x}, \bar{y})=\left\{T \in\{x, y, 2, \ldots, s\}^{(t)}: x, y \notin T\right\}$, it follows that

$$
\sum_{T \in \mathcal{T}(\overline{1})} \prod_{i \in T}\left|P_{i}\right|=\sum_{T \in \mathcal{T}^{\prime}(\bar{x}, \bar{y})} \prod_{i \in T}\left|P_{i}\right| .
$$

Now, letting $\mathcal{T}(1)=\left\{T \in[s]^{(t)}: 1 \in T\right\}$ and $\mathcal{T}^{\prime}(x, \bar{y})=\left\{T \in\{x, y, 2, \ldots, s\}^{(t)}: x \in\right.$ $T, y \notin T\}$ and $\mathcal{T}^{\prime}(\bar{x}, y)=\left\{T \in\{x, y, 2, \ldots, s\}^{(t)}: x \notin T, y \in T\right\}$, we see that

$$
\sum_{T \in \mathcal{T}(1)} \prod_{i \in T}\left|P_{i}\right|=\sum_{T \in \mathcal{T}^{\prime}(\bar{x}, y)} \prod_{i \in T}\left|P_{i}\right|+\sum_{T \in \mathcal{T}^{\prime}(x, \bar{y})} \prod_{i \in T}\left|P_{i}\right|
$$

since $\left|P_{1}\right|=\left|P_{x}\right|+\left|P_{y}\right|$. Thus letting $\mathcal{T}^{\prime}(x, y)=\left\{T \in\{x, y, 2, \ldots, s\}^{(t)}: x \in T, y \in T\right\}$,

$$
f\left(\pi^{\prime}, t\right)-f(\pi, t)=\sum_{T \in \mathcal{T}^{\prime}(x, y)} \prod_{i \in T}\left|P_{i}^{\prime}\right|
$$

and in particular $f(\pi, t) \leqslant f\left(\pi^{\prime}, t\right)$.

B Proof of Equation (15)

Let $S(k, s)$ be the Stirling number of the second kind and $f(\pi)$ be as in Section 3. In this section we will show

$$
\frac{1}{S(k, s)}\left(1-t^{-t}\right)^{N\left(f\left(\pi_{t}, t\right)-f\left(\pi_{s}, t\right)\right)} \geqslant n^{s-t} .
$$

Proof. First, we recall that

$$
N=\left\lfloor\frac{(t+1) t^{t} \log _{2} n}{(k-t+1) \log _{2} e}\right\rfloor \text { and } f\left(\pi_{s}, t\right)=(k-s+1)\binom{s-1}{t-1}+\binom{s-1}{t}
$$

As a result, when $t \leqslant s<k$, a calculation yields that

$$
\begin{equation*}
f\left(\pi_{s+1}, t\right)-f\left(\pi_{s}, t\right)=(k-s)\binom{s-1}{t-2} \tag{26}
\end{equation*}
$$

Letting $n \geqslant S(k, t)$, after taking $\log _{2}(\cdot)$ on both sides of (15), it suffices to prove that

$$
\begin{equation*}
N \cdot \frac{f\left(\pi_{s}, t\right)-f\left(\pi_{t}, t\right)}{t^{t}}\left(-t^{t} \log _{2}\left(1-t^{-t}\right)\right) \geqslant(s-t+1) \log _{2}(n) \tag{27}
\end{equation*}
$$

Using the fact that $\left(1-t^{-t}\right)^{t^{t}} \leqslant e^{-1}$ and our choice of N, it suffices to show that

$$
\begin{equation*}
f\left(\pi_{s}, t\right)-f\left(\pi_{t}, t\right) \geqslant \frac{(s-t+1)(k-t+1)}{t+1} \tag{28}
\end{equation*}
$$

The inequality in (28) holds for all $k \geqslant s>t \geqslant 3$ by using (26).

[^0]: *Supported by NSF award DMS-1800332.

