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Abstract. Let F denote a family of pairwise disjoint convex sets in the plafés said

to be inconvex positiorif none of its members is contained in the convex hull of the union
of the others. For any fixekd > 3, we estimaté (n), the maximum size of a famil§ with

the property that ank members ofF are in convex position, but noare. In particular, for

k = 3, we improve the triply exponential upper bound of T. Bisztriczky and G. Fejés T~
by showing thatP;(n) < 16".

1. Introduction

In their classical paper [ES1], Ewd and Szekeres proved that any set of more ([ﬁ‘gfi)
points in general position in the plane contampoints which are in convex position,
i.e., they form the vertex set of a convesgon. Bisztriczky and Fejesoth [BF1], [F]
extended this result to families of convex sets.

Throughout this paper, byfamily 7 = {Ay, ..., A} we always mean a family of
pairwise disjoint compact convex sets in the plangéneral positioni.e., no three of
them have a common supporting ling.is said to be irconvex positiorif none of its
members is contained in the convex hull of the union of the others, i.e., if bd|chAy,
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the boundary of the convex hull of the union of all membersrotontains a piece of

the boundary of each. Evidently, any two members of are in convex position.
Bisztriczky and Fejes dth proved that there exists a functidh(n) such that if

|F| > P(n) and anythreemembers ofF are in convex position, thefi hasn members

in convex position. Improving their initial result, in [BF2], they showed that this statement

is true with a functionP (n), triply exponential im. They also remarked that “it seems

that none of the” previous proofs of the Bs¥Szekeres theorem “can be modified so

as to obtain a proof of our theorem.” One of the aims of the present paper is to show

that the idea of the original proof of Ewd ‘and Szekeres can be applied to deduce the

Bisztriczky—Fejes ©th theorem with a much better functiét(n) < 16".

Theorem 1. LetF be a family of n pairwise disjoint compact convex sets in the plane
any three of which are in convex positidh

F 2n — 4\?
> 9
n—2

thenF has n members in convex position

If any k members ofF are in convex position, then we say ttfatsatisfiegroperty
P«. If no n members ofF are in convex position, then we say tlfatsatisfiesproperty
P". Property F' means that botR, andP" are satisfied. Using these notions, Theorem

1 states that if a familyF satisfies propertyy, then|F| < (znnjz“)z.

Bisztriczky and Fejesdth [BF2] raised the following more general question. What is
the maximum sizé&(n) of a family F satisfying property?,'? They gave an exponential
upper bound orP4(n), and quadratic upper bounds &(n) for any fixedk > 5, asn

tends to infinity. Some of these estimates can be improved as follows:
Theorem 2. 2|™2]2 < Py(n) < n®.
Theorem 3. Pj1(n) < cnlogn.

Obviously, R (n) < Px(n) holds for every > k.

2. Proof of Theorem 1

The combinatorial seed of the original proof of the &sdSzekeres theorem was isolated
and generalized by Claval and Kombs. A complete graph, whose edges are arbitrarily
oriented, is called sournamentAn acyclic tournament is said to bensitive

Lemma 2.1[CK]. Let T be a transitive tournament with more th(sﬁﬂ:z“) vertices
and let f be any real-valued function defined on its edge set

Then there is an oriented patihyv; - - - v, with n vertices such that the sequence
f(v11%), f(v2v3), ..., f (vn_1vp) is either monotone increasing or strictly decreasing
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We use this statement to establish the following result, whose part (ii) was proved in
[BF2].

Lemma 2.2. LetF be afamily of compact convex sets in the p|aadisfying property
P4, and at least one of the two following conditions

(i) any two members of can be separated by a vertical linend
(i) thereis aline intersecting all memberssf

ThenF has at most t= (%) members

Proof. Incase (ii), we can assume withoutloss of generality thatthe common transversal
of the elements of is horizontal.

Let Ay, Ay, ..., A; be the members af listed from left to right (with respect to
their projections onto thg-axis in case (i), and with respect to their intersections with
the common transversal in case (ii)). For angl < j < t, there are four uniquely
determined point., g1 € bdAi; po, 02 € bdA; such that the segmenfs p,, 0102
belong to the boundary of co( U A;), and along this boundary the counterclockwise
order of these points ipy, p1, 01, 02. Let f (i, j) andg(i, j) denote the counterclock-
wise angles from the direction of the positiveaxis top, p1 anddzoh, respectively (see
Fig. 1).

Since F satisfies propertys, for anyi < j < kwith f(i, j) < f(j, k), we have

9, ) <9(.k).
Define a transitive tournament with vertices v, ..., v;, such that every edge is
oriented toward its endpoint of larger index. For any j, assign to the edgﬁj the

valuef (i, j). By Lemma 2.1, it > (i“_*z“), then there is a directed path, vi,, .. . , vj

such that either

n

f(i1,i2) < f(izig) =+ = f(in-1,in)

Fig. 1



440 J. Pach and G.dth
fi45)

SOk

Fig.2. (1,2 > f(2,3) > (3,4 > f(4,5).

f12)

or

f(ig,iz) > f(iz,iz) > --- > f(in_1,in).
In both cases, it is easy to verify the&; , A, ..., Aj,) are in convex position (see
Fig. 2). O

Now we are ready to prove Theorem 1. [ébe a family of more tha(ﬁ?jﬁ)z convex
sets in the plane satisfying propeRy. Projecting these sets onto tkexis, we obtain a
system of intervalg. A well-known result by Gallai (see [B, p. 373]) implies tliahas
more than("~}) elements that are either pairwise disjoint or all of them have a point in
common. In the first case, the corresponding elemenfsa@dn be separated by vertical
lines, in the second case all of them can be intersected by one line. In either case, we can
apply Lemma 2.1 to finish the proof. O

3. Proof of Theorem 2

LetF = {A1, Ao, ..., A} beafamily of pairwise disjoint convex sets in general position
in the plane. Denote the convex hulllof F = U}Zl A by convF. The boundary of
convF, bd convF, consists of finitely many boundary pieces of #hés, calledvertex-
arcs, connected by straight-line segments, cabede-arcs(This terminology reflects
the picture in the special case when every/Aes a single point.)

The element®\; € F contributing at least one vertex-arc to the boundary of ¢cBnv
will be calledvertices ofconv.F or, simply,vertices of F. If Ais not a vertex, then itis
said to be arnternal member ofF.

Lemma 3.1[BF2]. Letk> 4and letF be a family of pairwise disjoint convex sets in

the plane satisfying propertyxPif 7 has m verticeghen there ard (m — 3)/(k — 3)]
lines such that any internal member&fis intersected by at least one of them

Lemma3.2. Let F be a family of disjoint convex sets satisfying properg; &nd
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assume thatthere is a liféntersecting all members @f. ThenF has at mostn—2)%+1
members

Proof. LetAp, Ao, ..., A bethe members of listed in the order of their intersections
with €. ForanyA;, Aj, 1 <i < j <t, definef(i, j) andg(, j) exactly as in the proof
of Lemma 2.2.

If f(iy,ip) > f(ipiz) > --- > f(ix_1,ix) for somei; < i, < --- < iy, then
A, A, ..., A,, are said to form anpper chainof lengthk. They form alower chain
of lengthkiif g(i1,i2) < g(iz, i3) < -+ < g(ik_1, ix). Itis easy to see that, in both cases
A, A, ..., A, arein convex position.

Forany 2<i < j < t, letuy; (resp.,l;) be the length of théongestupper (resp.,
lower) chain that ends witl; . Clearly,u;, l; > 2.

Claim. Ifi #k,then(u;, ;) # (uk, ly).

Indeed, ifu; = ux = u, Il = Iy = | for somei < k, then neither the longest
upper chainA, ..., A, = A nor the longest lower chaify,, ..., A; = A ending
with A; could be extended by to a longer (upper, resp., lower) chain. Therefore,
fiu—1, i) < T(,k) andg(ji—1,i) > g(, k), which would imply convyA;, , U A;_,

U Ax) D A, contradicting property,. (See Fig. 3.)

It follows from the claim and from the fact that, |; > 2 for every 2< i <t that,
if t > (n — 2)2 + 1, then there is ansuch that eitheu; > norl; > n. So, there is an
upper (resp., lower) chain of length and its elements are in convex position. O

Proof of Theoren2. First we prove the upper bound. L&t be a family satisfying
propertyP;! and suppose for contradiction tHa| > (n — 4)((n — 2)2 + 1) +n.

By Lemma 3.1, we can select at maost 4 lines such that every internal member of
F intersects at least one of them. SirfEdas at leasth — 4)((n — 2)? + 1) + 1 internal

Fig. 3. f(iu-1,1) < £, k), g(ji-2,1) > 9@, k).
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Fig. 4

members, one of the lines intersects at l¢ast 2)? + 2 members ofF. By Lemma 3.2,
F hasn members in convex position, contradicting propepty

The lower bound is shown by the following construction. Suppose for simplicity that
n = 4k + 3 for somek, and letF denote the family of vertical segments

Sj ={X Y Ix=Xj, ¥ij <Y<V}
1<i<2k+2 1<j=<2min(i,2k—i+3)—1, where
Xjp=i+eil, W =@k=i+22+ DA Y = @k+3?—i%—(ek—))>

ande is an extremely small positive number (see Fig. 4). Cleffly= 2(k+1)? > n?/8.

ForanyS=§; € F,leti(§ =1, j(S = j.

Let 7’ be a subfamily ofF, §; € F'. Observe that iix;;, yi’j) is not a vertex of
convF’, then there ar&,, S € F such thati (§) > i,i(S) =i, and () < j.
Similarly, if (x;j, yij) is not a vertex of cony¥’, then there arés, & € F' such that
(&) <i,i(S) =i, andj (&) > j. Therefore, ifS; is not a vertex ofF’, thenF’ has
at least four other members. This shows thasatisfies property,.

It remains to show thaf satisfies property°”. To see this, consider a subfamily
F' € Fwith|F| >n> 4k + 2. Itis easy to see thatthere 88 $, %, S, S € F
suchthat(S) < i1(S) =1(S) =i(S) <i(S) and () < j(S) < j(S). Then, by
the above observatioi; is not a vertex ofF’, so the members of” are not in convex
position. This completes the proof of Theorem 2. |
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4. Proof of Theorem 3

Lemma4.1. LetF be afamily of disjoint convex sets in the plasatisfying property
Ps and at least one of the two following conditions

(i) any two members of can be separated by a vertical linend
(i) thereis aline intersecting all members6f

ThenF is in convex position

Proof. Case (ii) was settled by Bisztriczky and FejefT[BF2]. So we have to prove
the assertion only in case (i).

Let Aq, Ay, ..., A; denote the members & listed from left to the right. Clearly®;
and A; are vertices ofF, so we can choose two pointse A;, y € A, that belong to
the boundary of con#. Leta(xy) (anda(yx)) denote the counterclockwise oriented
arcs fromx to y (fromy to x, respectively).

Suppose thad; is not a vertex of cony¥ for some 1< j < t. Let

a=maxi |i < j, A meetsa(xy)},
B=min{i |i > j, A meetsa(xy)},
y =maxi |i < j, A meetsa(yx)},
§=minfi |i > j, A meetsa(yx)}.

(Since A; and A; meet botha(xy) anda(yx), these numbers are well defined.) Notice
that confA, U Ag U A, U A;) D A;, contradicting propertys. O

Lemma 4.2. LetF be afamily of disjoint convex sets in the plasatisfying property
P{}. Suppose that there are m vertical lines such that every membgiimtersects at
least one of them

Then we can choose at mgst/2] vertical lines so that every internal member/of
intersects at least one of them

Proof. Suppose that every member &f intersects at least one of the vertical lines
l1, €2, .., Lm, ordered from left to right. For any, let 7, F.;, and F.; denote the
families of all members of* intersecting¢;, lying in the open half-plane to theft of
¢i, and in the open half-plane to thight of ¢;, respectively.
Itis sufficient to show that every internal membetffntersects at least two distinct
lines¢;, and then it follows thaty, £, . . ., £2;m/2) Meet the requirements of the lemma.
Suppose, for contradiction, that there is an internal memberF which intersects
only one line¢;, and assume that4 i < m. (The cases whein= 1 orm are similar,
but somewhat simpler.)

Let X andY be two vertex-arcs on the boundary of cofsuch that there is a point
x € X in the closed half-plane to the left éf, and there is a poing € Y in the closed
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half-plane to the right of,. Leta(xy) anda(yx) denote the counterclockwise oriented
arcs of the boundary of cor#% from x to y, and fromy to x, respectively.

Let V1 (andV,) denote the last (resp., first) vertex-arc al@igy), which belongs
to a member ofF_; (of F.;, respectively). If there is no such vertex-arc, Vgt= X
(resp.V4 = Y). Clearly, if there is any vertex-arc @ix, y) betweernV; andV,, it must
belong to an element ¢ff; . Let V;, (resp.,Vs3) denote the vertex-arc succeedwig(resp.,
precedingV,) alonga(x, y). Similarly, define the vertex-ards;, U, Uz, U4 along the
oriented ar@a(yx).

Let As, Ay, ..., As denote the members @ listed from top to bottom, in order of
their intersections witli;. (A appears in this list, i.e A = A, for some 1<r < s.) By
Lemma 5.1(ii),7; is in convex positionLetx’ € bd A; andy’ € bd Ag be two boundary
points of convF. Leta(x'y’) (anda(y’'x’)) denote the oriented arcs connectixigo
y' (resp.,y’ to x’) along bd convF. Assume without loss of generality that has a
boundary point om(y’'x"). We distinguish two cases.

If A hasa boundary point oa(x'y’), then let us defing as the collection of those
members (vertices) of which correspond to the vertex-ares, ..., Vi, U, ..., Us.

If A does not hava boundary point oa(x'y’), then let

a = max{i |i <r, A has a point orm(x'y")},
B = min{i |i >r, A has a point om(x'y’)}. O

Since bothx’ € A; andy’ € As belong toa(x'y’), « andg are well defined. Now let
G consist ofA,, Ag, and the members of, corresponding t&4, ..., Va4, Uq, ..., Ua.

In both caseg; has at most 10 members. It is easy to check that none of the edge-arcs
of convG can be met byA. SinceAN ¢; C convgG, we obtain thatA must be contained
in the convex hull of7, contradicting property:; (see Fig. 5).

v,

"\

<




A Generalization of the ExaE~Szekeres Theorem to Disjoint Convex Sets 445

Now we can prove Theorem 3. L&t be a family of disjoint convex sets in the plane
satisfying propertyP;}. In view of Lemma 4.1(i), na members ofF can be separated
from each other by vertical lines. Thus, according to a well-known result of T. Gallai
(cited before), we can find — 1 vertical lines such that every member®Bfintersects
at least one of them.

Let 7, denote the family of all internal members 6t Clearly,| 71| > |F| — n. By
Lemma 4.2, all members of; can be pierced by(n — 1)/2] < n/2 vertical lines.
Similarly, the familyF, of all internal members af; has more thapF| — 2n members,
and all of them can be intersected by fewer timgd vertical lines. Applying Lemma
4.2 repeatedly, after at mogibg, n] steps, we end up with a subfamily &%, which
has more thafF| — nlog, n members, and they all intersect the same line. By Lemma
4.1(ii), this implies that

|F| —nlog,n < n,

concluding the proof of Theorem 3. O
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