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Abstract. LetF denote a family of pairwise disjoint convex sets in the plane.F is said
to be inconvex positionif none of its members is contained in the convex hull of the union
of the others. For any fixedk ≥ 3, we estimatePk(n), the maximum size of a familyF with
the property that anyk members ofF are in convex position, but non are. In particular, for
k = 3, we improve the triply exponential upper bound of T. Bisztriczky and G. Fejes T´oth
by showing thatP3(n) < 16n.

1. Introduction

In their classical paper [ES1], Erd˝os and Szekeres proved that any set of more than
(2n−4

n−2

)
points in general position in the plane containsn points which are in convex position,
i.e., they form the vertex set of a convexn-gon. Bisztriczky and Fejes T´oth [BF1], [F]
extended this result to families of convex sets.

Throughout this paper, by afamilyF = {A1, . . . , At } we always mean a family of
pairwise disjoint compact convex sets in the plane ingeneral position, i.e., no three of
them have a common supporting line.F is said to be inconvex positionif none of its
members is contained in the convex hull of the union of the others, i.e., if bd conv(

⋃
F),
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the boundary of the convex hull of the union of all members ofF , contains a piece of
the boundary of eachAi . Evidently, any two members ofF are in convex position.

Bisztriczky and Fejes T´oth proved that there exists a functionP(n) such that if
|F | > P(n) and anythreemembers ofF are in convex position, thenF hasn members
in convex position. Improving their initial result, in [BF2], they showed that this statement
is true with a functionP(n), triply exponential inn. They also remarked that “it seems
that none of the” previous proofs of the Erd˝os–Szekeres theorem “can be modified so
as to obtain a proof of our theorem.” One of the aims of the present paper is to show
that the idea of the original proof of Erd˝os and Szekeres can be applied to deduce the
Bisztriczky–Fejes T´oth theorem with a much better functionP(n) < 16n.

Theorem 1. LetF be a family of n pairwise disjoint compact convex sets in the plane,
any three of which are in convex position. If

|F | >
(

2n− 4

n− 2

)2

,

thenF has n members in convex position.

If any k members ofF are in convex position, then we say thatF satisfiesproperty
Pk. If no n members ofF are in convex position, then we say thatF satisfiesproperty
Pn. Property Pn

k means that bothPk andPn are satisfied. Using these notions, Theorem

1 states that if a familyF satisfies propertyPn
3 , then|F | ≤ (2n−4

n−2

)2
.

Bisztriczky and Fejes T´oth [BF2] raised the following more general question. What is
the maximum sizePk(n) of a familyF satisfying propertyPn

k ? They gave an exponential
upper bound onP4(n), and quadratic upper bounds onPk(n) for any fixedk ≥ 5, asn
tends to infinity. Some of these estimates can be improved as follows:

Theorem 2. 2b n+1
4 c2 ≤ P4(n) < n3.

Theorem 3. P11(n) ≤ cn logn.

Obviously,Pl (n) ≤ Pk(n) holds for everyl ≥ k.

2. Proof of Theorem 1

The combinatorial seed of the original proof of the Erd˝os–Szekeres theorem was isolated
and generalized by Chv´atal and Koml´os. A complete graph, whose edges are arbitrarily
oriented, is called atournament. An acyclic tournament is said to betransitive.

Lemma 2.1[CK]. Let T be a transitive tournament with more than
(2n−4

n−2

)
vertices,

and let f be any real-valued function defined on its edge set.
Then there is an oriented pathv1v2 · · · vn with n vertices such that the sequence

f (−−→v1v2), f (−−→v2v3), . . . , f (−−−→vn−1vn) is either monotone increasing or strictly decreasing.
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We use this statement to establish the following result, whose part (ii) was proved in
[BF2].

Lemma 2.2. LetF be a family of compact convex sets in the plane, satisfying property
Pn

3 , and at least one of the two following conditions:

(i) any two members ofF can be separated by a vertical line; and
(ii) there is a line intersecting all members ofF .

ThenF has at most t= (2n−4
n−2

)
members.

Proof. In case (ii), we can assume without loss of generality that the common transversal
of the elements ofF is horizontal.

Let A1, A2, . . . , At be the members ofF listed from left to right (with respect to
their projections onto thex-axis in case (i), and with respect to their intersections with
the common transversal in case (ii)). For any 1≤ i < j ≤ t , there are four uniquely
determined pointsp1,q1 ∈ bd Ai ; p2,q2 ∈ bd Aj such that the segmentsp1 p2,q1q2

belong to the boundary of conv(Ai ∪ Aj ), and along this boundary the counterclockwise
order of these points isp2, p1,q1,q2. Let f (i, j ) andg(i, j ) denote the counterclock-
wise angles from the direction of the positivex-axis to−−→p2 p1 and−−→q2q1, respectively (see
Fig. 1).

SinceF satisfies propertyP3, for any i < j < k with f (i, j ) ≤ f ( j, k), we have
g(i, j ) < g( j, k).

Define a transitive tournament with verticesv1, v2, . . . , vt , such that every edge is
oriented toward its endpoint of larger index. For anyi < j , assign to the edge−→vi vj the
value f (i, j ). By Lemma 2.1, ift >

(2n−4
n−2

)
, then there is a directed pathvi1, vi2, . . . , vin

such that either

f (i1, i2) ≤ f (i2, i3) ≤ · · · ≤ f (i n−1, i n)

Fig. 1
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Fig. 2. f (1, 2) > f (2, 3) > f (3, 4) > f (4, 5).

or

f (i1, i2) > f (i2, i3) > · · · > f (i n−1, i n).

In both cases, it is easy to verify that(Ai1, Ai2, . . . , Ain) are in convex position (see
Fig. 2).

Now we are ready to prove Theorem 1. LetF be a family of more than
(2n−4

n−2

)2
convex

sets in the plane satisfying propertyP3. Projecting these sets onto thex-axis, we obtain a
system of intervalsI. A well-known result by Gallai (see [B, p. 373]) implies thatI has
more than

(2n−4
n−2

)
elements that are either pairwise disjoint or all of them have a point in

common. In the first case, the corresponding elements ofF can be separated by vertical
lines, in the second case all of them can be intersected by one line. In either case, we can
apply Lemma 2.1 to finish the proof.

3. Proof of Theorem 2

LetF = {A1, A2, . . . , At }be a family of pairwise disjoint convex sets in general position
in the plane. Denote the convex hull of

⋃
F = ⋃t

i=1 Ai by convF . The boundary of
convF , bd convF , consists of finitely many boundary pieces of theAi ’s, calledvertex-
arcs, connected by straight-line segments, callededge-arcs. (This terminology reflects
the picture in the special case when every setAi is a single point.)

The elementsAi ∈ F contributing at least one vertex-arc to the boundary of convF
will be calledvertices ofconvF or, simply,vertices ofF . If A is not a vertex, then it is
said to be aninternal member ofF .

Lemma 3.1[BF2]. Let k≥ 4 and letF be a family of pairwise disjoint convex sets in
the plane satisfying property Pk. If F has m vertices, then there areb(m− 3)/(k− 3)c
lines such that any internal member ofF is intersected by at least one of them.

Lemma 3.2. Let F be a family of disjoint convex sets satisfying property Pn
4 , and
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assume that there is a linèintersecting all members ofF .ThenF has at most(n−2)2+1
members.

Proof. Let A1, A2, . . . , At be the members ofF listed in the order of their intersections
with `. For anyAi , Aj , 1≤ i < j ≤ t , define f (i, j ) andg(i, j ) exactly as in the proof
of Lemma 2.2.

If f (i1, i2) > f (i2, i3) > · · · > f (i k−1, i k) for somei1 < i2 < · · · < i k , then
Ai1, Ai2, . . . , Aik , are said to form anupper chainof lengthk. They form alower chain
of lengthk if g(i1, i2) < g(i2, i3) < · · · < g(i k−1, i k). It is easy to see that, in both cases
Ai1, Ai2, . . . , Aik are in convex position.

For any 2≤ i < j ≤ t , let ui (resp.,l i ) be the length of thelongestupper (resp.,
lower) chain that ends withAi . Clearly,ui , l i ≥ 2.

Claim. If i 6= k, then(ui , l i ) 6= (uk, lk).

Indeed, ifui = uk = u, l i = lk = l for somei < k, then neither the longest
upper chainAi1, . . . , Aiu = Ai nor the longest lower chainAj1, . . . , Ajl = Ai ending
with Ai could be extended byAk to a longer (upper, resp., lower) chain. Therefore,
f (i u−1, i ) < f (i, k) and g( jl−1, i ) > g(i, k), which would imply conv(Aiu−1 ∪ Ajl−1

∪ Ak) ⊃ Ai , contradicting propertyP4. (See Fig. 3.)
It follows from the claim and from the fact thatui , l i ≥ 2 for every 2≤ i ≤ t that,

if t > (n− 2)2 + 1, then there is ani such that eitherui ≥ n or l i ≥ n. So, there is an
upper (resp., lower) chain of lengthn, and its elements are in convex position.

Proof of Theorem2. First we prove the upper bound. LetF be a family satisfying
propertyPn

4 and suppose for contradiction that|F | ≥ (n− 4)((n− 2)2+ 1)+ n.
By Lemma 3.1, we can select at mostn− 4 lines such that every internal member of

F intersects at least one of them. SinceF has at least(n− 4)((n− 2)2+ 1)+ 1 internal

Fig. 3. f (iu−1, i ) < f (i, k), g( jl−1, i ) > g(i, k).
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Fig. 4

members, one of the lines intersects at least(n−2)2+2 members ofF . By Lemma 3.2,
F hasn members in convex position, contradicting propertyPn.

The lower bound is shown by the following construction. Suppose for simplicity that
n = 4k+ 3 for somek, and letF denote the family of vertical segments

Si j = {(x, y) | x = xi j , yi j ≤ y ≤ y′i j },

1≤ i ≤ 2k+ 2, 1≤ j ≤ 2 min(i, 2k− i + 3)− 1, where

xi j = i + ε j, yi j = (2k− i + 2)2+ (ε j )2, y′i j = (2k+ 3)2− i 2− (ε(k− j ))2,

andε is an extremely small positive number (see Fig. 4). Clearly,|F | = 2(k+1)2 > n2/8.
For anyS= Si, j ∈ F , let i (S) = i, j (S) = j .
Let F ′ be a subfamily ofF , Si j ∈ F ′. Observe that if(xi j , y′i j ) is not a vertex of

convF ′, then there areS1, S2 ∈ F ′ such thati (S1) > i , i (S2) = i , and j (S2) < j .
Similarly, if (xi j , yi j ) is not a vertex of convF ′, then there areS3, S4 ∈ F ′ such that
i (S3) < i , i (S4) = i , and j (S4) > j . Therefore, ifSi j is not a vertex ofF ′, thenF ′ has
at least four other members. This shows thatF ′ satisfies propertyP4.

It remains to show thatF satisfies propertyPn. To see this, consider a subfamily
F ′ ⊆ F with |F ′| ≥ n > 4k + 2. It is easy to see that there areS1, S2, S3, S4, S5 ∈ F ′
such thati (S1) < i (S2) = i (S3) = i (S4) < i (S5) and j (S2) < j (S3) < j (S4). Then, by
the above observation,S3 is not a vertex ofF ′, so the members ofF ′ are not in convex
position. This completes the proof of Theorem 2.
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4. Proof of Theorem 3

Lemma 4.1. LetF be a family of disjoint convex sets in the plane, satisfying property
P5 and at least one of the two following conditions:

(i) any two members ofF can be separated by a vertical line; and
(ii) there is a line intersecting all members ofF .

ThenF is in convex position.

Proof. Case (ii) was settled by Bisztriczky and Fejes T´oth [BF2]. So we have to prove
the assertion only in case (i).

Let A1, A2, . . . , At denote the members ofF listed from left to the right. Clearly,A1

andAt are vertices ofF , so we can choose two points,x ∈ A1, y ∈ At , that belong to
the boundary of convF . Let a(xy) (anda(yx)) denote the counterclockwise oriented
arcs fromx to y (from y to x, respectively).

Suppose thatAj is not a vertex of convF for some 1< j < t . Let

α = max{i | i < j, Ai meetsa(xy)},

β = min{i | i > j, Ai meetsa(xy)},

γ = max{i | i < j, Ai meetsa(yx)},

δ = min{i | i > j, Ai meetsa(yx)}.

(SinceA1 and At meet botha(xy) anda(yx), these numbers are well defined.) Notice
that conv(Aα ∪ Aβ ∪ Aγ ∪ Aδ) ⊃ Aj , contradicting propertyP5.

Lemma 4.2. LetF be a family of disjoint convex sets in the plane, satisfying property
Pn

11. Suppose that there are m vertical lines such that every member ofF intersects at
least one of them.

Then we can choose at mostbm/2c vertical lines so that every internal member ofF
intersects at least one of them.

Proof. Suppose that every member ofF intersects at least one of the vertical lines
`1, `2,. . . , `m, ordered from left to right. For anyi , let Fi , F<i , andF>i denote the
families of all members ofF intersecting̀ i , lying in the open half-plane to theleft of
`i , and in the open half-plane to theright of `i , respectively.

It is sufficient to show that every internal member ofF intersects at least two distinct
lines`i , and then it follows that̀2, `4, . . . , `2bm/2c meet the requirements of the lemma.

Suppose, for contradiction, that there is an internal memberA ∈ F which intersects
only one line`i , and assume that 1< i < m. (The cases wheni = 1 or m are similar,
but somewhat simpler.)

Let X andY be two vertex-arcs on the boundary of convF such that there is a point
x ∈ X in the closed half-plane to the left of`1, and there is a pointy ∈ Y in the closed
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half-plane to the right of̀m. Let a(xy) anda(yx) denote the counterclockwise oriented
arcs of the boundary of convF from x to y, and fromy to x, respectively.

Let V1 (andV4) denote the last (resp., first) vertex-arc alonga(xy), which belongs
to a member ofF<i (of F>i , respectively). If there is no such vertex-arc, letV1 = X
(resp.V4 = Y). Clearly, if there is any vertex-arc ona(x, y) betweenV1 andV4, it must
belong to an element ofFi . Let V2 (resp.,V3) denote the vertex-arc succeedingV1 (resp.,
precedingV4) alonga(x, y). Similarly, define the vertex-arcsU1,U2,U3,U4 along the
oriented arca(yx).

Let A1, A2, . . . , As denote the members ofFi listed from top to bottom, in order of
their intersections with̀i . (A appears in this list, i.e.,A = Ar for some 1≤ r ≤ s.) By
Lemma 5.1(ii),Fi is in convex position. Let x′ ∈ bd A1 andy′ ∈ bd As be two boundary
points of convFi . Let a(x′y′) (anda(y′x′)) denote the oriented arcs connectingx′ to
y′ (resp.,y′ to x′) along bd convFi . Assume without loss of generality thatA has a
boundary point ona(y′x′). We distinguish two cases.

If A hasa boundary point ona(x′y′), then let us defineG as the collection of those
members (vertices) ofF which correspond to the vertex-arcsV1, . . . ,V4,U1, . . . ,U4.

If A does not havea boundary point ona(x′y′), then let

α = max{i | i < r, Ai has a point ona(x′y′)},
β = min{i | i > r, Ai has a point ona(x′y′)}.

Since bothx′ ∈ A1 andy′ ∈ As belong toa(x′y′), α andβ are well defined. Now let
G consist ofAα, Aβ , and the members ofF , corresponding toV1, . . . ,V4,U1, . . . ,U4.

In both cases,G has at most 10 members. It is easy to check that none of the edge-arcs
of convG can be met byA. SinceA∩ `i ⊆ convG, we obtain thatA must be contained
in the convex hull ofG, contradicting propertyP11 (see Fig. 5).

Fig. 5
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Now we can prove Theorem 3. LetF be a family of disjoint convex sets in the plane
satisfying propertyPn

11. In view of Lemma 4.1(i), non members ofF can be separated
from each other by vertical lines. Thus, according to a well-known result of T. Gallai
(cited before), we can findn− 1 vertical lines such that every member ofF intersects
at least one of them.

LetF1 denote the family of all internal members ofF . Clearly,|F1| > |F | − n. By
Lemma 4.2, all members ofF1 can be pierced byb(n − 1)/2c < n/2 vertical lines.
Similarly, the familyF2 of all internal members ofF1 has more than|F |−2n members,
and all of them can be intersected by fewer thann/4 vertical lines. Applying Lemma
4.2 repeatedly, after at mostblog2 nc steps, we end up with a subfamily ofF , which
has more than|F | − n log2 n members, and they all intersect the same line. By Lemma
4.1(ii), this implies that

|F | − n log2 n < n,

concluding the proof of Theorem 3.
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[ES2] P. Erdős and G. Szekeres, On some extremum problems in elementary geometry,Annales Universitatis

Scientiarum Budapestinensis, Eötvös, Sectio Mathematica, III–IV (1960–61), 53–62.
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