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Abstract 

Calls arrive at a switch, where they are assigned to any one of the available idle outgoing 
links. A call is blocked if all the links are busy. A call assigned to an idle link may be 
immediately lost with a probability which depends on the link. For exponential holding times 
and an arbitrary arrival process we show that the conditional distribution of the time to reach 
the blocked state from any state, given the sequence of arrivals, is independent of the policy 
used to route the calls. Thus the law of overflow traffic is independent of the assignment 
policy. An explicit formula for the stationary probability that an arriving call sees the node 
blocked is given for Poisson arrivals. We also give a simple asymptotic formula in this case. 
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1. Introduction 

Telephone calls arrive at a switching centre, which has n outgoing links, 
grouped into k t r u n k s  of n l , . . . ,  n k links respectively. A call assigned to a link in 
trunk ot is immediately lost with probability ( 1 -  %) where the different loss 
probabilities (1 - %) model the cumulative effects of the topology of the network 
and the congestion of other links and nodes downstream of the node under 
consideration. If the call is successful, the link immediately becomes busy for a 
holding or conversation time, which is independent of the arrival process and 
exponentially distributed, with mean 1 /# .  The number of idle links in each trunk, 
0 <~ i 1 <~ h i , . . .  , 0 <~ i k <~ n k ,  specifies the s t a t e ,  ( i  1 . . . .  , i k ) ,  of the node. For a stage 
1 = (i 1 . . . . .  ik) and 1 ~< a ~< k such that i~ ~: 0, let I~ denote the state 

Ia = ( i l  . . . .  , i a _ l ,  i~  - -  1 ,  i a + l , . . .  , i k ) .  

* Work on this paper was done while the author was at Bellcore and at Berkeley. 
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The policy for routing incoming calls is specified by numbers U(I,  I , )  satisfying 

u(i ,  io) 0, 

Z U(I ,  I , )  = 1 if 14= (0 , . . . ,  0), 
l~<a~<k, i~O  

so that, when the node is in state I, and the policy is U, for 1 ~< a ~< k with i ,  4= 0 
an incoming call is assigned to trunk o~ with probability U(I, 1,0. When all 
outgoing links are busy the switch is said to be in the blocked state. 

In general this models the allocation of resources of different types where a 
resource allocated to a request has a certain probability of relinquishing it 
immediately or servicing it from an exponentially distributed interval. When the 
% = 0 we get a model that has been extensively studied in the literature (Benes 
[1], Khintchine [3], Takacs [5] and the references therein). For Poisson arrivals, 
the well known expression for the stationary probability that the switch is in the 
blocked state is called the Erlang formula. The refined model of the first 
paragraph was proosed by Gopinath, Garcia and Varaiya, and we refer the reader 
to Gopinath et al. [2] for further motivation for its introduction. Poisson arrivals 
are considered in Gopinath et al. [2], and the remarkable fact is proved that the 
distribution of the time to reach the blocked state from any initial state is 
independent of the assignment policy. A formula is conjectured for the blocking 
probability when there are two types of outgoing trunks. 

In sections 2 and 3 we establish the conjectured formula of Gopinath et al. [2] 
for an arbitrary number of outgoing links, thus generalizing the Erlang formula. 
In section 4 we show that, in fact, for an arbitrary arrival process, the conditional 
distribution of the time to reach the blocked state starting from any initial state, 
given the sequence of arrivals, is independent of the routing policy, so that the 
law of overflow traffic is independent of policy. In section 5 we give a simple 
asymptotic formula for the blocking probability formula derived in section 3. 

2. P o i s s o n  arrivals; the case  k = 2 

The evolution of the state of the node is described by a continuous time finite 
state Markov process with state space 

X =  ( I =  (i I . . . .  , ik) such that 0~<il ~< n l , . . . ,O  ~<ik~<nk). 

Recall that, given state I and 1 ~< a ~< k such that i~ 4= O, we let 

I,~=(il,...,i,~_1, i,~--1, i,,+1 . . . .  ,ik). 

Similarly, given 1 4 /8  ~< k such that i/~ 4= n B, let 

I p = ( i  I . . . . .  i/~_1, ie+ 1, ip+l,...,i~). 
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(O, nz) ( n l ,  r12) 

(0,0) (n~,O) 

Fig. 1. 

If the policy is U, the transition rate matrix of the Markov process is given by 

Rv(I ,  J ) = 0  if J4=I~, J--/=I •, J4=I, (2.1) 

Re, ( I ,  I~) = ~ U ( I ,  I,,) where )~,, = %.  X, (2.2) 

Rv(I ,  I ~) = (nr  il3)1*, (2.3) 

Ru(I  , I ) =  - Y'~ )%U(I, I ~ ) -  s (nB-ifl)l.t. (2.4) 
l <~a~k,i=4=O l <~fl~k,it~=t=n p 

Let { pu(I), I ~ X} be the steady state distribution of this Markov process. The 
blocking probability Pb is pu[(0 , . . . ,  0)], and, by Gopinath et al. [2], we know that 
Po is independent of the routing policy. Our method will be to calculate the 
formula for Pb by calculating the steady state distribution for a special analyti- 
cally convenient policy, which has the property that the transition rate matrix of 
the associated Markov process is "decoupled" in a way that will become clear 
below. 

In this section we consider the case k = 2, in which our idea for calculating the 
Erlang formula for the blocking probability is most easily understood. The 
transition matrix is conveniently thought of by means of the state diagram of fig. 
1. Left to right and down to up transitions represent links becoming free, while 
transitions in the opposite directions occur when a new call arrives. The rates 
associated with the arrows in the state diagram can be inferred from the 
equations (2.1)-(2.4). Note that they depend on the policy U. 

A probability distribution p ( I )  on the state space is the stationary distribution 
pv(I)  iff it satisfies the balance equations 

Y' .p(I)Rv(I ,  J ) = 0  for each J. (2.5) 
1 
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These translate, in the state diagram, into one balance equation per node, the 
balance being the equality of the total incoming rate to the total outgoing rate. In 
general, for a policy U, the individual state to state transition rates need not be 
balanced. Our key observation is that there is a special policy, which is in fact 
unique, where these extra balance equations are satisfied by the equilibrium 
policy. As one would expect, this makes the calculation of the closed form 
generalized Erlang formula feasible. This is expressed in proposition 1, which is 
proved in section 3 as a special case of proposition 2. 

P R O P O S I T I O N  1 

Consider the special policy for which 

U(I, I~) - i,, (2 .6)  
i 1 + i 2 

and denote 

P( i l ,  i2) = 

n 2 
( ~ : ) ( i 2 ) (  Ix 1''( ')~2] 

n, n2 ( n l ) ( n 2 ) (  i~ i j , [  i~ i j  2 

j, =0 j z=0  

Then we have 

p( I )U(  I, I,~)X,~ =p(  I,~)( n,~ - ( i,~ - 1))/~ 

for each I, and for each 1 ~< a ~< 2 such that i,~ =~ O. p ( I )  is the steady state 
distribution for the policy (2.6) and the blocking probability 

Pb = 

j, =0 j2=O 

is, in fact, the blocking probability for every routing policy. 

3. P o i s s o n  arrivals; the general  case  

P R O P O S I T I O N  2 

Consider the special policy for which 

U(1, 1 ~ ) -  i l + . . . + i k  (3.1) 
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and denote 

( ~2 ) ( nk l[ ~--- i' I't lik(il + d-ik), 
"'" ikJ,X1 ) ""(Xk] "'" 

J'l =0 Jk =0 

Then we have 

p( I)  . U( I, I,) . X, =p( I,) . (n, - ( i , -  l)) . # (3.3) 

for each I, and each 1 ~< et ~< k such that i ,  :~ 0, where p(1) is the stationary 
distribution for the policy (3.1) and the blocking probability 

1 
Pb = (3.4) 

znl E nk ( ni ) ( nk ) ( Ja+ ' ' '+Jk )  ! ( Ix]j1 (I~'jkS---) 
"'" Jl "'" Jk X-T] "'" " k /  Jl =0 jk=0 

is, in fact, the blocking probability for every routing policy. 

Proof 
The function (3.1) defines a policy because 

Z U(I, I , ) = 1  
l <~ e~<k,i ~=/=O 

and (3.2) defines a probability distribution on the state space because ZiP (I) = 1. 
Let I be a state and 1 ~< a ~< k be such that i,  4= O. Then we compute 

- -  ~ " ' T  

p(,) (::)...(::) 
where 

( ~'-~--]" ( ls ]i'-I ( ~--]ik(ilq- + i , - - 1 +  +ik)! 
X1] " " k X . }  ""~Xk]  . . . . . .  

(~l)il...(~--a)i~...(~--k)'k(il+...+ia+...+ik)' 

Thus 

p( I~) i~ X~ 1 U( I, I~) . X, 
p ( I )  n , ~ + ( i , ~ - l )  ~ ( i a+ . . .  +i~)! ( n a - ( i , - 1 ) ) . / _ t "  

This verifies that the probability distribution (3.2) satisfies the equations (3.3). 
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Next, we verify that p(I)  also satisfies the balance equations (2.5), which 
proves that p(I)  is the stationary distribution for the process with the policy 
(3.1). First observe that for any sate J and 1 ~< a ~< k such that j~ 4= 0 we have 

( L ) ~ = J ,  (3.5) 

and for 1 ~</3 ~< k such that ja :~ na we have 

(J~)t~ = J.  (3.6) 

The balance equation corresponding to column J of the transition rate matrix R u 
reads 

E P(J~)Rv(L ,  J ) +  E P(Ja)Rv(Jl~, J) 
1 ~a<~k, j .~O 1 <~fl<~k,joq~n# 

+ p ( J ) R v ( J ,  J ) = 0 .  (3.7) 

Note that 

Ru( L ,  J)  = Ru(  L ,  ( L )  ~ = (no - - 
from equations (2.3) and (3.5). We also have 

Rv ( JB, j )  = Ru ( Jl~, ( j#)[~) = )tBU ( Je, j )  
from equations (2.2) and (3.6). 

Using (2.4) and the above, equation (3.7) may be rearranged to read 

~., [ P ( J ~ ) ( n ~ - ( j ~ -  I))Iz-P(J)2t~U(J, J~)] 
l <~a<~k,j~,~O 

+ E [p(J~))~#U(J #, J ) - p ( J ) ( n # - j ~ ) l . t  ] = 0 ,  

which holds because each individual term vanishes by (3.2). This verifies that 
p ( I )  is the stationary distribution for the policy (3.1). 

Finally, the blocking probability is just the stationary probability of the state 
(0 , . . . ,  0) giving (3.4). Equation (2.10) generalizes the Erlang's formula. [] 

Explicitly evaluating the expression in (3.4) would require a large number of 
operations even in modest situations. Thus, it is useful to have an integral 
representation for Pb from which good approximations to the closed form 
solution can be made, as will be seen in section 5. This can be arrived at through 
the gamma-function identity 

n ! = f o  t " e x p ( - t )  dt. 

Using this for (Jl + -.. +Jk) ! in (3.4) gives 

= . . l i l t  j l + + j ~  e x p ( - t )  at  Pb 1 Y'~ "'" Y'~ Jl "" Jk ] \ JO Jl =0 jk=O 
Jl /.L )J/' 
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Interchanging the summation and the integral, 

1 
Pb = 

~Jl =o jk=o \ J1 

Finally, observing that 

1+ xo] ,=o io] x ] 

jl i, l l 
Jk Jt)kl " ' ' ~ k J  ] 

gives 

pb = 

tg "' t/~ ]"~ e x p ( - t )  d t  

d t  

4. Arbitrary arrivals 

To utilize the calculations in Gopinath  et al. [2], throughout this section the 
state of the switch is specified by  the subset of idle links. For  a state I and link 
i ~ I  ( j ~ I ) ,  I i (U)  denotes I - i  (resp. / t 0 { j } ) .  The instantaneous loss 
probabil i ty associated to link i is 1 - c;. A policy consists of specifying numbers  
U( I, Ii) satisfying 

U( I, I,) >~ O, Y~ U( I, I,) = I i f I r  
i~l 

Clearly this is no more general than the setup in section 2. Let R denote the 
matrix with entries 

R(I ,  I i ) = , i U ( I  , Ii), R ( O ,  ~ ) = 1  

and all other entries 0. 

Deterministic arrivals 
If the switch is in state 1 4= ~ at time t = 0 and calls arrive in a deterministic 

sequence at times t I < t 2 < . . . ,  t 1 >~ 0, we let r  denote the time of the first 
visit to the blocked state ~ ,  when the poficy is U. The numbers  p~, = Prob( ' rv ( I  ) 
= tk) determine the distribution of "ru(I ). Let M denote the matrix with entries 

M ( J ,  j i )  = # 

M ( J ,  J ) =  - - (n- -  IJI)P, 
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and 0 elsewhere. Then we have 

k 

Y'. p j = e f  exp(Mq)R exp(Mtz)R.. .exp(Mtk) R% 
j = l  

(4.1) 

where e s denotes the column vector with 1 in location J and 0 elsewhere. 
Following Gopinath et al. [2], for d>~ 1, let N(J, d) denote the set of all I J [  

tuples ( n j, j ~ J ) such that nj >~ 1 and Ej  ~ snj = d. Let v d denote the column 
vector with 

Vd(J) = (- -1)  IJl(g-1) E 1-I C/. 
N(j,  d) J~J  

If we set v o = e~, then 

R v  d = Vd+ l,  0 ~ d <~ n.  

(Equations (9) and (12) of Gopinath et al. [2]). Further, there are constants c r, 
r >~ 1, ( independent of the policy) such that 

d-1  

MVd = -- t  -t 2 r 
r = l  

--tL(n--d)Vd, d>~O. 

(Equation (14) of Gopinath et al. [2]). The independence of Pk, k >i 1 of the 
policy can now be established from (3.1) by induction on k. 

Arbitrary arrivals 
If the switch is in state I 4: ~ at t = 0 and the input is an arbitrary arrival 

process independent  of the holding times and routing decisions, it follows that the 
conditional distribution of the time to reach the blocked state, given the sequence 
of arrivals, is independent  of the policy. Once in the blocked state, the switch 
remains blocked for an exponential holding time of mean 1/nl~ independent  of 
the arrival process, after which it enters one of the state { i ), 1 ~< i ~< n, with equal 
probability 1/n. Therefore, the distribution of the time of the second visit to the 
blocked state, conditioned on the sequence of arrivals, is independent  of policy, 
and so on. Thus the law of overflow traffic is independent  of policy. 

Renewal arrivals 
Suppose the arrival process is renewal. If the first call sees the switch blocked, 

the distribution of the state of the switch seen by the second call is independent  
of policy. Thus, if N ~ (2, 3, . . .  } is the next blocked call, EN is independent  of 
policy. The blocking probability, Pb = 1 / ( E N -  1) is therefore independent  of 
policy. It may be of some interest to calculate an  explicit formula for it using the 
techniques of Takacs [5]. 
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5. An asymptotic formula for the blocking probability 

In this section we obtain an asymptotic formula for the integral in section 3 
and thus for the blocking probability. Recall that there are k trunks of n l , . . . ,  n k 
links respectively. To obtain an asymptotic formula we shall assume that n~ = ai 
with a~ >/0, i = 1 , . . . ,  k and m goes to infinity. The integral in section 3 presents 
some problems, and can not be  dealt with by  means of a Laplace or saddle point  
expansion. This motivated us to prove the lemma below, for which we however 
later found the reference Sirovich [4]. In particular we obtain the following result 
form (2.5.10) of Sirovich [4] that (note that there is a misprint in (2.5.10), in view 
of (2.5.7)): 

LEMMA 1 
Let R ( x )  = f f  e h(x't) dt where h(x ,  t) is continuous in x and twice continu- 

ously differentiable in t. Assume that for each fixed x, h(x ,  t) has a single 
maximum point at t o = to(X ) and that 0 < 182h/Ot2(x, to(X)) I < 00. I f  

( 82h" to(X)) ) (5.1) 83hst 3 ( x ,  to ( X ) )( t - to ( X ) ) = O --~t2 ( x,  

as x ~ oo for each fixed t ~ (a,  fl) then 

eh~,,o(~)) f ~ [02h, ( t - t o ( X ) )  2 
R ( x )  - J,~ e x p / - z - u  to(X)) at.  

2 LOt ~ 

We shall use the Vinogradov notation f << g to mean that f =  O(g) .  With the 
notat ion as in section 3 let Pi = t~/Xi, i = 1, . . . .  k. We use lemma 1 to prove the 
following asymptotic formula: 

THEOREM 1 
Assume n; = aim, i = 1 , . . . ,  k where /~i 

p ; > 0 ,  i=  l , . . . , k ,  
o o  

f0 e-t(1 + tPl)nl""(1 + tpk) nk d t -  

j~k (1 

as m ~ m and where w satisfies 

njpj 
Y" l + p j w  = 1 .  

j <~k 

> 0 for all i and m EJV'. Then for 

)1,2 
+ wf 



286 V. A nantharam et al. / Generalization of Erlang formula 

Proof 
Define h(x,  t) by 

= x(  • % log(1 + t&)]-t (5.2) h(x ,  t) 
~ j<~k / 

for x > 0 and t > 0. Then, 

Oh %PJ 1 (5.3) 
3---7 = x E l + tpj 

j<~k 

32h ajpy 
- - -  x Y'~ (5.4) 
3t2 j~<k (1 + tpj) 2 

33h - 2x E %P] )3" (5.5) 
Ot3 jCk (1 + tpj 

From, (5.3) we see that the maximum t o = to(X ) for h(x,  t) satisfies 

%Pj 1 (5.6) 
E 1+t0---7- x' j <~k 

which shows that as x ~ ~ ,  to(X) ~ ~ .  Therefore, for x sufficiently large, 

- - > � 8 9  p~.) 1 (5.7) 
j <~ k j <~ k TO " 

%Pj 
1= E 1 + t o  & x j<<.k 

We also have trivially, 

ajpj 
l = E 1 + top j 
X j ~ k  

1)1 
- -  E 7 , o  J \ j<~k 

(5.8) 

Therefore from (5.7) and (5.8) we have, solving for to(X ) and noting that % and 
pj are constants, 

to(X ) << x 

to(X ) > >  X .  

Hence, by (5.4) and (5.9), for x sufficiently large, 

1 aJ p2 > >  - - .  

32h(x't~ 2 =xEj<~k ( l + t o p j )  2 x 

Similarly by (5.5) and (5.10), 

1 03h (x,  to(X))= 2x E ~ << - -  
Ot 3 j~k (1 + t0Pj) 3 x2" 

(5.9) 
(5.10) 

(5.11) 

(5.12) 
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Thus by (5.9), (5.11) and (5.12) it follows that, for each fixed t > 0, 
32h 

33h (x, t o ( X ) ) ( t - t o ( X ) ) < < - - ( x ,  to(X)) 
3t a 3t 2 

and thus (5.1) of the theorem is satisfied. Thus, by lemma 1 

oo oo [02h [ ( t _  to(X))  2 
fo eh(X't) dt-- eh(x't~ fo exp[--~,x,  to(X)) 2 

=CalXlZ ex [-c lx) l'-'~ -2 dt 

where 

( ) e-t~ c~(x)= H (1 +ejto) ~ 
j~<k 

and 

c~(x)= E ~jzp} 
j~k (1 + topj) 2 

by definition of h(x, t) and (5.4). Now 

f0 ~176 e x p [ - - ~ ( t - t 0 )  a] dt 

V 2  ~ 

) = 2 ~ exp(-u 2) d u -  exp(-u 2) du 
o o  t o 

Since, for v >t 1, 
o o  o o  

L exp(-wE) dw~<L wexp(-w 2) dw=�89  2 ) 

it follows that, 

fo~176189 dt=v/2~rc2 + O(exp(-lCEt2)) 

from (5.16). Therefore, by (5.13), 
o o  

fo e h ( x ' t )  a t -  2v/2-~cl(x) 1 

dt 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 
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Thus, for n i - ~  aim , i = 1,. . . ,  k, 
0 0  .OO 

fo e-t(1 + t p l )~ ' " "  (1 + tpl,) "~ dt=  Jo eh('") dt 

_ 2 ~ c 1 ( m )  1 
cl/-~2{m) 

= 2V~(J ~<-k(!+pjw)nj) e - w / l  ~j<~k (1 +----njPfwpj) 2 )1/2 

where w satisfies (from 5.6) 

njpj -- 1. 
E 1--7-- j ~k wpj 

thus proving the theorem. [] 
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