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Abstract. It is proved that if a Hausdorff continuum X can be approxi-

mated by finite trees (see the text for definition) then there exists a

(generalized) arc L and a continuous surjection <p: L -» X.

1. Introduction. The celebrated Hahn-Mazurkiewicz theorem, first proved

about 1914 [4], [8], asserts that a Peano continuum is the image of [0, 1] under

some continuous mapping. Subsequent attempts to generalize the theorem to

the nonmetric setting proved unavailing, and in 1960 Mardesic [6] described a

locally connected Hausdorff continuum which is not arcwise connected (in

the generalized sense) and hence is not the continuous image of any arc.

Later Cornette and Lehman [3] exhibited a simpler example with the same

properties. The possibility remained that an arcwise connected, locally con-

nected continuum is the continuous image of some arc, but in [7] Mardesic

and Papic showed that any product of continua which is the continuous

image of an arc is necessarily metrizable. Consequently, even such a nice

continuum as L X [0, 1], where F is the "long arc", is not the continuous

image of an arc. Later results of Treybig [12], [13], A. J. Ward [15] and Young

[19] elaborated on this theme.

Quite recently some affirmative results have appeared. Cornette [2] proved

that a tree is the continuous image of some arc, and the author [17] has

extended this to rim-finite continua. Different proofs of these results have

been found independently by Pearson [10], [11].

In this paper we prove a generalization of the Hahn-Mazurkiewicz theorem

which includes all of the aforementioned affirmative results.

We recall some terminology. A continuum is a compact, connected Haus-

dorff space. An arc is a continuum with exactly two noncutpoints. A tree is a

continuum in which each pair of distinct points can be separated by some

point. A finite tree is a tree with only finitely many endpoints.

A continuum A can be approximated by finite trees if there exists a family 5"

of finite trees such that

(1) S" is directed by inclusion,

(2) U 5" is dense in X,
(3) if % is an open cover of X then there exists F(%) G S" such that if
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F(<t1) E T E 'S, and if C is a component of T - F(%), then there exists

U E % such that C E U.

Our principal result is the following.

Theorem I. If X is a continuum which can be approximated by finite trees

then there exists an arc L and a continuous surjection <¡d: L —» *.

2. Proof of Theorem 1.

Lemma 1. // [Ta, rßa] is an inverse system of trees and if the bonding

mappings rßa are monotone, then Tx = inv lim{Fa, rßa) is a tree.

Proof. Nadler [9, Theorem 3] has shown that Tx is hereditarily uni-

coherent, and Capel [1] proved that Tx is locally connected. Hence [16,

Theorem 9], Tx is a tree.

Lemma 2. // F, and T2 are trees with Tx c T2, then there exists a retraction

r: T2 -» Tx which is monotone. Moreover, if C is a component of T2 — F, then

C has one-point boundary x(C) and r(C) = x(C).

Proof. If C is a component of T2 — F, then, by the hereditary uni-

coherence of trees, C n F, is connected. Suppose C n F, contains distinct

elements x and y ; then there are connected neighborhoods Ux and Uy of x

and y, respectively, such that Ux and U are disjoint. Since C is an open set,

we can invoke a standard chaining argument to show the existence of a

continuum K which is contained in C and which meets both Ux and U . If we

define P = Ux u K u L^and Q = C n F,, then P and Q are subcontinua

of T2, P n Q E (Ux U Uy), and P n Q meets both Ux andJJy. This con-
tradicts the hereditary unicoherence of the tree T2, and hence C n Tx = C -

C consists of a single point, x(C). Define r: T2-+Tx by r\Tx = 1 and

r(C) = x(C) for each component C of T2 — Tx. It is straightforward to

verify that r is continuous. Finally, r is monotone because, for each x E T2,

r~x(x) = (x) u U [C: C is a component of T2 - F, andC n F, = {*}},

which is a connected set.

For the remainder of this section let * be a continuum which is approxi-

mated by the family 9" of finite trees. Then the system 5" = [Ta, rßa} is an

inverse system with monotone bonding maps, and hence Tx = inv lim 5" is a

tree.

Lemma 3. // (xa) E Tx then (xa) is a convergent net in X.

Proof. Letp be a cluster point of the net (xa) and suppose V is an open set

containing p. There exists a finite open cover ß of * such that if p E U E ß

then Star([/, ß) c V. By hypothesis there exists Tß E 5 such that if Tß

E T' E 5" and if C is a component of T — Tß, then C lies in some member

of ß; moreover, we may assume xß E U. If xß ^ xy then, since ryß(xy) = xß,

it follows that the component C of T — Tß which contains xy has {x^} for

boundary and hence C c Star(f7, ß) E V. Therefore the net (xa) converges

top.
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Lemma 4. The function g: Tx —> A defined by g((xa)) = lim(xa) is a continu-

ous surjection.

Proof. Letp = lim(jca) and suppose V is an open set containing p. Choose

a finite open cover ß of A and Tß G 9" as in Lemma 3. If p G U G ß, let

W = 7TßX(U n Fg) n F^, a neighborhood of (xa) in F^ (77^ denotes the

projection function). If (ya) G W then^ G U and hence, if Tß c Ty G 9", it

follows that7y G Star(C/, ¿8) c V. Therefore g((ya)) G V and so g is continu-

ous.

To see that g is surjective let (xa) G Tx with (xa) eventually constant. That

is, there exists Tß G 9" such that xy = xß for all Ty G S with Tß c Fy. Then

g((*a)) = ■"is and hence g(Tx) D Ul Since g is continuous and IJ ^ is

dense in A it follows that g(Tx) = X.

Proof of Theorem 1. By [2] and Lemma 1 there is an arc L and a

continuous surjection/: L —> Tx. By Lemma 4 the function <p = gf: L -» A is

the desired mapping.

Recently E. D. Tymchatyn [14] has applied Theorem 1 to prove that each

finitely Suslinian Hausdorff continuum is the continuous image of an arc.

This generalizes the result of Cornette, Pearson and the author [2], [10], [11],

[17] for trees and rim-finite continua.

It is irresistible to inquire whether the condition of being approximated by

finite trees is necessary as well as sufficient for a continuum to be the

continuous image of an arc. I conjecture that the answer is affirmative.

3. The classical Hahn-Mazurkiewicz theorem. Recall that a dendrite is a

metrizable tree. In attempting to deduce the classical theorem from Theorem

1, we consider a metric continuum M. We wish to show that if M can be

approximated by a sequence of finite dendrites then M is the continuous

image of [0, 1]. It follows from Theorem 1 that M is the image of some arc,

but we have no assurance that the arc is separable. The proof that M is the

continuous image of [0, 1] is facilitated by the following two lemmas.

Lemma 5. If D is a finite dendrite then there exists a continuous surjection f:

[0, 1]->D.

Proof. Since D has only a finite set [ex, . . . , en) of endpoints, « > 2, we

may write D = A2 u • • • U An where A2 = [ex, e2] is an arc and Ak = [dk,

ek] is an arc irreducible between (Ax u • • • U Ak_x) and ek where 2 < k

< «. There is a homeomorphism f2: [0, 1]—>A2; suppose fk_x: [0, 1]

—>(AX U • • • U Ak_x) is a continuous surjection with/,_,(/) = dk. Without

loss of generality we may assume 0 < / < 1. Define

ht: [0, t] -»[0, I ]    byhx(x) = x/4t,

h2: [/,l]-»[i,l]    by h2(x) = (x + 3 - 4t)/4(l - t).

Let

*.: [i> è]->[4>«*]   and   SÏ- [i. i]-*[**.4t]

be homeomorphisms which preserve the indicated endpoints. If we define
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/*-

then/*: [0, l]-»(v4, U

follows by induction.

/,_,«,"'     on[0, ¿],

«i on [ \ , i ],

A-.V   o«[|,i],

U ^4fc) is a continuous surjection, and the lemma

Lemma 6. // D and D' are finite dendrites with D c D', r: D' —» D is the

natural monotone retraction and f: [0, 1] —> D is a continuous surjection, then

there exists a monotone mapping s: [0, 1] -» [0, 1] and a continuous surjection f :

[0, 1] -» D' such that f s = rf.

Proof. There are only finitely many elements xx, . . . , xn of D which are

the boundaries of components of D' - D. For each / = 1, . . . , « let

Ki = {•*;} U U { C: C is a component of D' - D andxi E C },

and choose ti E f~l(x¡). Without loss of generality we assume 0 < tx < t2

< ■ •■ < t„ < 1. Define linear homeomorphisms «0, . . . , «„ as follows:

h0: [0, r,] -*[0, 1/ (2« + 1)]    &y «0(jc) = xf (2« + l)/„

K- K fe+i] -*[2*/ (2« + 1), (2k + 1)/ (2« + 1)]

by hk(x) = (x + 2ktk+x - (2k + \)tk)/ (2« + \)(tk + x - tk),

k = 1, . . . , « 1,

K- k,i]
2«

2« + 1 , 1 byhn(x) =
x + 2« - (2n + \)tn

(2« + 1)(1 - t„)     ■

Each of the sets K¡ is a finite dendrite, so by Lemma 5 there is a continuous

surjection

g;: [(2i - 1)/ (2« + 1), 2// (2« + 1)] -> A-,,       / = 1, . . . , «.

Defines: [0, l]->[0, 1] by

j = hr_\     on [(2/ - 2)1 (2« + 1), (2i - 1)/ (2« + 1)], 1 < i < « + 1,

*(0-4   </' e[(2i- l)/(2« + 1), 2//(2« + 1)], 1 < i < «,

and define/': [0, 1]^D' by

/' =

fhr_\    on [(2i - 2)/ (2« + 1), (2/ - 1)/ (2« + 1)],
1 </'<« + 1,

g¡    on [(2i - 1)/ (2« + 1), 2/(2« +1)],        1 < i < «.

Then it is obvious that s is continuous and monotone, that /' is a continuous

surjection and that fs = rf.

We say that a metric continuum M can be approximated by a sequence of

finite dendrites if there exists a sequence Dx, D2, . . . , Dn, ... of finite

dendrites such that
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(1) Dx G D2 C •  •  •   GDnG...,
(2) (J {Dn: n = 1,2, ...) is dense in M,

(3) if C is a component of Dn+X — Dn then diam(C) < 2~".

Theorem 2. If M is a metric continuum then the following statements are

equivalent:

(i) there exists a continuous surjection \p: [0, 1] —» M,

(ii) M is a Peano continuum,

(iii) M can be approximated by a sequence of finite dendrites.

Proof. It is well known that (i) => (ii). (For example, consult [5].)

To see that (ii) => (iii), it is a consequence of the fact that M is compact and

locally connected that M admits a sequence slLn of finite connected open

covers such that <sll„ + x refines %„ and diam(i/) < 2~" for each U G 6¡ln.

Independent of the Hahn-Mazurkiewicz theorem it can be shown that each

member of %„ is arcwise connected. (See [18, Chapter II, §5, under the

second remark on p. 39, together with 5.3].) Therefore it is possible to

construct a sequence of finite dendrites Dx, D2, . . . such that Dn meets each

member of %„, Dn c Dn+X, and each component of Dn+X — Dn lies in some

member of Glin.

To prove (iii) =$> (i), let M be approximated by the sequence Z), c D2

G ■ . . of finite dendrites. By Lemmas 5 and 6 there are continuous surjec-

tions fn and continuous monotone surjections rn and sn so that the ladder

D,

/,

[0,1]

D,

[0,1]

'n-l
L>

fn

<^- [0, 1]

is commutative. It follows that Dx = inv lim{£>„, rn) is a dendrite, the limit

of the inverse sequence {[0, 1], sn) is [0, 1], and there is induced a continuous

surjection /: [0, 1] —»• Dx. Lemmas 3 and 4 now apply and hence there is a

continuous surjection g: Dx —> M. Let i> = gf: [0, 1] -» M.
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