A generalization of the Lindeberg principle

Sourav Chatterjee

- $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ are independent random vectors.
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{3} function.
- If, say, X_{i} 's and Y_{i} 's are all independent and $\mathbb{E} X_{i}=\mathbb{E} Y_{i}, \mathbb{E} X_{i}^{2}=\mathbb{E} Y_{i}^{2}$, then what are sufficient conditions on f which ensure that $f(\mathbf{X})$ and $f(\mathbf{Y})$ are close in distribution?
- Reason for considering only first two moments: Can be adjusted using linear transformation.
- Conditions based on first two derivatives cannot suffice: Consider $\frac{1}{n} \sum x_{i}^{2}$ and $\frac{1}{n} \sum x_{i}^{3}$.
- If we let $\mathbf{Z}_{i}=\left(X_{1}, \ldots, X_{i}, Y_{i+1}, \ldots, Y_{n}\right)$, then

$$
\mathbb{E} f(\mathbf{X})-\mathbb{E} f(\mathbf{Y})=\sum_{i=1}^{n}\left(\mathbb{E} f\left(\mathbf{Z}_{i}\right)-\mathbb{E} f\left(\mathbf{Z}_{i-1}\right)\right)
$$

- Let $\mathbf{Z}_{i}^{0}=\left(X_{1}, \ldots, X_{i-1}, 0, Y_{i+1}, \ldots, Y_{n}\right)$. TayIor expansion gives

$$
\begin{aligned}
& f\left(\mathbf{Z}_{i}\right)-f\left(\mathbf{Z}_{i-1}\right) \\
& =\left(X_{i}-Y_{i}\right) \partial_{i} f\left(\mathbf{Z}_{i}^{0}\right)+\frac{1}{2}\left(X_{i}^{2}-Y_{i}^{2}\right) \partial_{i}^{2} f\left(\mathbf{Z}_{i}^{0}\right) \\
& \quad+\frac{1}{6} X_{i}^{3} \partial_{i}^{3} f\left(\mathbf{Z}_{i}^{*}\right)+\frac{1}{6} Y_{i}^{3} \partial_{i}^{3} f\left(\mathbf{Z}_{i}^{* *}\right) .
\end{aligned}
$$

- Under independence, and $\mathbb{E} X_{i}=\mathbb{E} Y_{i}, \mathbb{E} X_{i}^{2}=$ $\mathbb{E} Y_{i}^{2}$, first two terms vanish on taking expectation.
- Thus, if third moments are bounded, then $|\mathbb{E} f(\mathbf{X})-\mathbb{E} f(\mathbf{Y})| \leq n \psi_{3}$, where ψ_{3} denotes the typical size of the third order derivatives of f.
- Note: Moving from expectations to distributions is easy; just work with $g \circ f$ instead of f, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function with bounded derivatives. Then error bound is like $n \max \left\{\psi_{1}^{3}, \psi_{2} \psi_{1}, \psi_{3}\right\}$.
- Note: Suppose only that the Y_{i} 's are independent. Then it suffices that

$$
\mathbb{E}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \approx \mathbb{E}\left(Y_{i}\right)
$$

and

$$
\mathbb{E}\left(X_{i}^{2} \mid X_{1}, \ldots, X_{i-1}\right) \approx \mathbb{E}\left(Y_{i}^{2}\right)
$$

where the approximations are good enough.

- This means, we only need that the partial sums of the X_{i} 's behave like Brownian motion.
- Donsker Invariance does not suffice for all problems. For example, scan statistics, random matrices, free energy, etc.
- Scan statistics: Let X_{1}, \ldots, X_{n} be independent, mean zero, unit variance, bounded third moment.
- Let \mathcal{A} be a collection of subsets of $\{1, \ldots, n\}$.
- Let $M(\mathbf{X}):=n^{-1 / 2} \max _{A \in \mathcal{A}} \sum_{i \in A} X_{i}$.
- Question: When can we replace X_{i} 's by standard Gaussians?
- Can prove: If \mathbf{Y} is a vector of independent standard Gaussians, then for any smooth function g,
$|\mathbb{E} g(M(\mathrm{X}))-\mathbb{E} g(M(\mathrm{Y}))| \leq C n^{-1 / 6}(\log |\mathcal{A}|)^{2 / 3}$,
where C is constant depending on g and the third absolute moments of the X_{i} 's.
- Method: Uniformly approximate $\max _{A \in \mathcal{A}} S_{A}$ by a smooth function using
$\left|\max _{A \in \mathcal{A}} S_{A}-L^{-1} \log \sum_{A \in \mathcal{A}} e^{L S_{A}}\right| \leq L^{-1} \log |\mathcal{A}|$
and optimize the resulting bound over L.
- Free energy of the S-K model in spin glasses:

$$
N^{-1} \log \sum_{\sigma \in\{-1,1\}^{N}} \exp \left(\sum_{i<j \leq N} g_{i j} \sigma_{i} \sigma_{j}\right)
$$

- The limit of this as $N \rightarrow \infty$ is known to exist when $g_{i j}$'s are standard Gaussian.
- Can easily show using our method that same limit holds with $g_{i j}$'s non-Gaussian. (Already proved by Carmona and Hu.)
- Random matrices: The Empirical Spectral Distribution (ESD) of a matrix is the probability distribution which puts equal mass on each of its eigenvalues.
- Let $X=\left(x_{i j}\right)_{1 \leq i \leq p, 1 \leq j \leq n}$ be a data matrix of i.i.d. $\mathrm{N}(0,1)$ variables, and let S be the corresponding sample covariance matrix.
- If $p / n \rightarrow \lambda \in(0, \infty)$, then the ESD of S converges to a nonrandom limiting law depending only on λ (the Marčenko-Pastur family of distributions).
- Known (also, provable by our method) that the $x_{i j}$'s need not be Normal.
- Question: Can we have a multidimensional version of the bivariate permutation test for correlation?
- More precisely, if we permute each row of a (nonrandom) data matrix independently, does the resulting sample covariance matrix have the same asymptotic properties as in the independent Gaussian case?
- Answer: Yes, at least as far as spectral distributions are concerned.
- Suppose we have exchangeable random variables V_{1}, \ldots, V_{n}. What is the version of the previous result in this situation?
- Answer:

> - Let $\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} V_{i}$.
> - Let $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(V_{i}-\widehat{\mu}\right)^{2}$.

- Let Y_{1}, \ldots, Y_{n} be i.i.d. $N(0,1)$, independent of the V_{i} 's.
- Let $Z_{i}=\widehat{\mu}+\widehat{\sigma}\left(Y_{i}-\bar{Y}\right), i=1, \ldots, n$.

Then, the vector $\left(V_{1}, \ldots, V_{n}\right)$ " behaves like" $\left(Z_{1}, \ldots, Z_{n}\right)$, in the same sense as before.

- For a smooth function $f,|\mathbb{E} f(\mathbf{V})-\mathbb{E} f(\mathbf{Z})|$ is bounded by

$$
\sqrt{n} M^{2} \psi_{2}+n M^{3} \psi_{3},
$$

where, as before, ψ_{r} is the typical size of the $r^{\text {th }}$ order derivatives, while M is the typical size of $\max \left|V_{i}\right|$.

- Note that using Y_{i} instead of $Y_{i}-\bar{Y}$ won't work. Example: Sampling without replacement.
- Possible applications: May be used to simplify situations which involve complicated but exchangeable random variables, e.g. occupancy problems, nearest neighbors, permutation statistics, and so on.

Theorem 1 Suppose V_{1}, \ldots, V_{n} are exchangeable random variables with finite third moment. Define

$$
\widehat{\mu}=\frac{1}{n} \sum_{i=1}^{n} V_{i} \text { and } \hat{\sigma}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(V_{i}-\widehat{\mu}\right)^{2}} .
$$

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{3} function, and ψ_{2}, ψ_{3} are monotone functions such that for $r=2,3$, all $r^{\text {th }}$ order partial derivatives of f are dominated by the function $\psi_{r}\left(\max _{1 \leq i \leq n}\left|x_{i}\right|\right)$. Let Y_{1}, \ldots, Y_{n} be i.i.d. standard Gaussian random variables, independent of $\left(V_{1}, \ldots, V_{n}\right)$. Let $Z_{i}=\widehat{\mu}+\widehat{\sigma}\left(Y_{i}-\bar{Y}\right), i=1, \ldots, n$.

$$
\begin{align*}
& \left|\mathbb{E} f\left(V_{1}, \ldots, V_{n}\right)-\mathbb{E} f\left(Z_{1}, \ldots, Z_{n}\right)\right| \\
& \leq 10 \sqrt{n} \mathbb{E}\left(A^{4}\right)^{1 / 2} \mathbb{E}\left(\psi_{2}(R)^{2}\right)^{1 / 2} \tag{1}\\
& \quad+7 n \mathbb{E}\left(A^{6}\right)^{1 / 2} \mathbb{E}\left(\psi_{3}(R)^{2}\right)^{1 / 2},
\end{align*}
$$

where $A=2 \max _{1 \leq i \leq n}\left|V_{i}\right|$ and $R=\max \left\{2 A, \max _{1 \leq i \leq n}\left|Z_{i}\right|\right\}$.

- Steps in the proof: First, note that we can assume that $\sum V_{i}=0$ and $\sum V_{i}^{2}=n$, since we can standardize the V_{i} 's and work conditionally given $\hat{\mu}$ and $\widehat{\sigma}$.
- Next, let \mathcal{F}_{i} be the sigma-algebra generated by V_{1}, \ldots, V_{i}, and define

$$
X_{i}=V_{i}+\frac{1}{n-i+1} \sum_{j=1}^{i-1} V_{j} .
$$

- Then $\mathbb{E}\left(X_{i} \mid \mathcal{F}_{i-1}\right)=0$ and

$$
\mathbb{E}\left(X_{i}^{2} \mid \mathcal{F}_{i-1}\right)=1+O_{P}\left((n-i+1)^{-1 / 2}\right)
$$

We use our previous result to replace the X_{i} 's by i.i.d. $\mathrm{N}(0,1)$ variables Y_{1}, \ldots, Y_{n}.

- Easy to check:

$$
V_{i}=X_{i}-\sum_{j=1}^{i-1} \frac{X_{j}}{n-j}
$$

- If we let

$$
Y_{i}^{\prime}=Y_{i}-\sum_{j=1}^{i-1} \frac{Y_{j}}{n-j},
$$

then for $i>j$,

$$
\operatorname{Cov}\left(Y_{i}^{\prime}, Y_{j}^{\prime}\right)=-\frac{1}{n-j}+\sum_{k=1}^{j-1} \frac{1}{(n-k)^{2}}
$$

- Can manipulate to show that this is approximately

$$
\operatorname{Cov}\left(Y_{i}-\bar{Y}, Y_{j}-\bar{Y}\right)+O\left((n-i \wedge j+1)^{-2}\right) .
$$

Similar approximation holds for $i=j$, too.

- Now use the following result about normal random vectors:

Lemma 1 Let X and Y be independent vectors of centered Gaussian random variables. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a twice differentiable function with bounded derivatives. Then
$\mathbb{E} f(\mathbf{Y})-\mathbb{E} f(\mathbf{X})$
$=\frac{1}{2} \int_{0}^{1} \sum_{1 \leq i, j \leq n} \mathbb{E}\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(\mathbf{Z}_{t}\right)\right]\left(\mathbb{E} Y_{i} Y_{j}-\mathbb{E} X_{i} X_{j}\right) d t$
where $\mathbf{Z}_{t}=\sqrt{1-t} \mathbf{X}+\sqrt{t} \mathbf{Y}$, provided the expectations on the right side exist.

- Back to matrices: The Stieltjes transform of a probability distribution F is defined on $\mathbb{C} \backslash \mathbb{R}$ by

$$
m_{F}(z):=\int_{-\infty}^{\infty} \frac{1}{x-z} d F(x)
$$

- The Stieltjes transform of the ESD of an $n \times n$ matrix A is given by

$$
m_{A}(z)=\frac{1}{n} \operatorname{Tr}\left((A-z I)^{-1}\right) .
$$

- Stieltjes transforms have a continuous characterizing relationship with distribution functions.
- Stieltjes transforms are amenable to differentiation: Suppose $A=A(u)$ is a matrixvalued function of some scalar parameter u. Let

$$
G(u)=(A(u)-z I)^{-1}
$$

Then

$$
\frac{d G}{d u}=-G \frac{d A}{d u} G
$$

Continuing, we can arrive at a cumbersome but explicit expression for third derivatives.

- Bounds on the derivatives can be obtained using the properties of the Hilbert-Schmidt norm; in particular, the following crucial property:

If A and B are square matrices, and A is normal, with spectral radius ρ, then $\|A B\| \leq$ $\rho\|B\|$.

This is useful because of the fact that $\|G\| \leq$ $|\operatorname{Im}(z)|^{-1}$.

- For instance, we have

$$
\begin{aligned}
& \left|\operatorname{Tr}\left(\left(\partial_{i j}^{2} S\right) G\left(\partial_{i j} S\right) G^{2}\right)\right| \\
& \leq\left\|\partial_{i j}^{2} S\right\|\left\|G\left(\partial_{i j} S\right) G^{2}\right\| \\
& \leq\left.\left\|\partial_{i j}^{2} S\right\|\left\|\partial_{i j} S\right\| \operatorname{Im}(z)\right|^{-3} .
\end{aligned}
$$

- Returning to the sample covariance matrix, let f denote its Stieltjes transform at a fixed $z \in \mathbb{C} \backslash \mathbb{R}$. When $p / n \rightarrow \lambda \in(0, \infty)$, we can show that

$$
\psi_{2}(f) \leq C n^{-2}, \psi_{3}(f) \leq C n^{-5 / 2}
$$

- Theorem 1 can now be invoked to complete the argument.
- Stein's method of Normal approximation: If (W, W^{\prime}) is an exchangeable pair of random variables, and

$$
\begin{aligned}
\mathbb{E}\left(W^{\prime}-W \mid W\right) & \approx-\lambda W, \\
\mathbb{E}\left(\left(W^{\prime}-W\right)^{2} \mid W\right) & \approx 2 \lambda+o(\lambda), \\
\mathbb{E}\left|W^{\prime}-W\right|^{3} & \ll \lambda^{3 / 2},
\end{aligned}
$$

where λ is a very small number, then W is approximately standard Gaussian.

- Idea: If we generate a reversible Markov chain W_{0}, W_{1}, \ldots, with $W_{0}=W$ and $W_{1}=$ W^{\prime}, then it behaves like a discrete approximation of a stationary Ornstein-Uhlenbeck process.
- Let

$$
X_{i}=W_{i}-(1-\lambda) W_{i-1}
$$

- Then $\mathbb{E}\left(X_{i} \mid \mathcal{F}_{i-1}\right) \approx 0$ and $\mathbb{E}\left(X_{i}^{2} \mid \mathcal{F}_{i-1}\right) \approx 2 \lambda$.
- Reconstruct W_{n} from X_{1}, \ldots, X_{n} as

$$
W_{n}=(1-\lambda)^{n} W_{0}+\sum_{i=1}^{n}(1-\lambda)^{n-i} X_{i} .
$$

- Use Lindeberg approach to get a bound on $\mathbb{E} f\left(W_{n}\right)-\mathbb{E} f\left((1-\lambda) W_{0}+\sum_{i=1}^{n}(1-\lambda)^{n-i} Y_{i}\right)$, where Y_{i} 's are i.i.d. $N(0,2 \lambda)$.
- Finally, note that $\mathbb{E} f\left(W_{n}\right)=\mathbb{E} f(W)$, and take $n \rightarrow \infty$.
- This gives an approach to getting general diffusion approximation bounds: Recover the " pretend Brownian motion increments" and write the diffusion as a function of those; then use Lindeberg method on the " reconstruction function" to get error bounds.

