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• X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are

independent random vectors.

• f : Rn → R is a C3 function.

• If, say, Xi’s and Yi’s are all independent

and EXi = EYi, EX2
i = EY 2

i , then what are

sufficient conditions on f which ensure that

f(X) and f(Y) are close in distribution?

• Reason for considering only first two mo-

ments: Can be adjusted using linear trans-

formation.

• Conditions based on first two derivatives

cannot suffice: Consider 1
n

∑
x2
i and 1

n

∑
x3
i .
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• If we let Zi = (X1, . . . , Xi, Yi+1, . . . , Yn), then

Ef(X)− Ef(Y) =
n∑
i=1

(Ef(Zi)− Ef(Zi−1)).

• Let Z0
i = (X1, . . . , Xi−1,0, Yi+1, . . . , Yn). Tay-

lor expansion gives

f(Zi)− f(Zi−1)

= (Xi − Yi)∂if(Z0
i ) +

1

2
(X2

i − Y
2
i )∂2

i f(Z0
i )

+
1

6
X3
i ∂

3
i f(Z∗i ) +

1

6
Y 3
i ∂

3
i f(Z∗∗i ).

• Under independence, and EXi = EYi, EX2
i =

EY 2
i , first two terms vanish on taking ex-

pectation.
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• Thus, if third moments are bounded, then

|Ef(X) − Ef(Y)| ≤ nψ3, where ψ3 denotes

the typical size of the third order deriva-

tives of f .

• Note: Moving from expectations to distri-

butions is easy; just work with g ◦ f instead

of f , where g : R → R is a smooth func-

tion with bounded derivatives. Then error

bound is like nmax{ψ3
1, ψ2ψ1, ψ3}.

• Note: Suppose only that the Yi’s are inde-

pendent. Then it suffices that

E(Xi|X1, . . . , Xi−1) ≈ E(Yi)

and

E(X2
i |X1, . . . , Xi−1) ≈ E(Y 2

i ),

where the approximations are good enough.
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• This means, we only need that the partial

sums of the Xi’s behave like Brownian mo-

tion.

• Donsker Invariance does not suffice for all

problems. For example, scan statistics, ran-

dom matrices, free energy, etc.
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• Scan statistics: Let X1, . . . , Xn be indepen-

dent, mean zero, unit variance, bounded

third moment.

• Let A be a collection of subsets of {1, . . . , n}.

• Let M(X) := n−1/2 maxA∈A
∑
i∈AXi.

• Question: When can we replace Xi’s by

standard Gaussians?
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• Can prove: If Y is a vector of independent

standard Gaussians, then for any smooth

function g,

|Eg(M(X))−Eg(M(Y))| ≤ Cn−1/6(log |A|)2/3,

where C is constant depending on g and

the third absolute moments of the Xi’s.

• Method: Uniformly approximate maxA∈A SA
by a smooth function using

|max
A∈A

SA − L−1 log
∑
A∈A

eLSA| ≤ L−1 log |A|

and optimize the resulting bound over L.
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• Free energy of the S-K model in spin glasses:

N−1 log
∑

σ∈{−1,1}N
exp(

∑
i<j≤N

gijσiσj)

• The limit of this as N → ∞ is known to

exist when gij’s are standard Gaussian.

• Can easily show using our method that

same limit holds with gij’s non-Gaussian.

(Already proved by Carmona and Hu.)
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• Random matrices: The Empirical Spectral

Distribution (ESD) of a matrix is the prob-

ability distribution which puts equal mass

on each of its eigenvalues.

• Let X = (xij)1≤i≤p,1≤j≤n be a data matrix

of i.i.d. N(0,1) variables, and let S be the

corresponding sample covariance matrix.

• If p/n → λ ∈ (0,∞), then the ESD of S

converges to a nonrandom limiting law de-

pending only on λ (the Marčenko-Pastur

family of distributions).

• Known (also, provable by our method) that

the xij’s need not be Normal.
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• Question: Can we have a multidimensional

version of the bivariate permutation test

for correlation?

• More precisely, if we permute each row of

a (nonrandom) data matrix independently,

does the resulting sample covariance ma-

trix have the same asymptotic properties

as in the independent Gaussian case?

• Answer: Yes, at least as far as spectral

distributions are concerned.
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• Suppose we have exchangeable random vari-

ables V1, . . . , Vn. What is the version of the

previous result in this situation?

• Answer:

– Let µ̂ = 1
n

∑n
i=1 Vi.

– Let σ̂2 = 1
n

∑n
i=1(Vi − µ̂)2.

– Let Y1, . . . , Yn be i.i.d. N(0,1), indepen-

dent of the Vi’s.

– Let Zi = µ̂+ σ̂(Yi − Ȳ ), i = 1, . . . , n.

Then, the vector (V1, . . . , Vn) ”behaves like”

(Z1, . . . , Zn), in the same sense as before.
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• For a smooth function f , |Ef(V) − Ef(Z)|
is bounded by

√
nM2ψ2 + nM3ψ3,

where, as before, ψr is the typical size of

the rth order derivatives, while M is the

typical size of max |Vi|.

• Note that using Yi instead of Yi − Ȳ won’t

work. Example: Sampling without replace-

ment.

• Possible applications: May be used to sim-

plify situations which involve complicated

but exchangeable random variables, e.g. oc-

cupancy problems, nearest neighbors, per-

mutation statistics, and so on.
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Theorem 1 Suppose V1, . . . , Vn are exchange-

able random variables with finite third moment.

Define

µ̂ =
1

n

n∑
i=1

Vi and σ̂ =

√√√√1

n

n∑
i=1

(Vi − µ̂)2.

Suppose f : Rn → R be a C3 function, and

ψ2, ψ3 are monotone functions such that for

r = 2,3, all rth order partial derivatives of f are

dominated by the function ψr(max1≤i≤n |xi|).

Let Y1, . . . , Yn be i.i.d. standard Gaussian ran-

dom variables, independent of (V1, . . . , Vn). Let

Zi = µ̂+ σ̂(Yi − Ȳ ), i = 1, . . . , n.

|Ef(V1, . . . , Vn)− Ef(Z1, . . . , Zn)|
≤ 10

√
nE(A4)1/2E(ψ2(R)2)1/2

+ 7nE(A6)1/2E(ψ3(R)2)1/2,

(1)

where A = 2 max1≤i≤n |Vi| and

R = max{2A,max1≤i≤n |Zi|}.
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• Steps in the proof: First, note that we can
assume that

∑
Vi = 0 and

∑
V 2
i = n, since

we can standardize the Vi’s and work con-
ditionally given µ̂ and σ̂.

• Next, let Fi be the sigma-algebra generated
by V1, . . . , Vi, and define

Xi = Vi +
1

n− i+ 1

i−1∑
j=1

Vj.

• Then E(Xi|Fi−1) = 0 and

E(X2
i |Fi−1) = 1 +OP ((n− i+ 1)−1/2).

We use our previous result to replace the
Xi’s by i.i.d. N(0,1) variables Y1, . . . , Yn.

• Easy to check:

Vi = Xi −
i−1∑
j=1

Xj

n− j
.
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• If we let

Y ′i = Yi −
i−1∑
j=1

Yj

n− j
,

then for i > j,

Cov(Y ′i , Y
′
j) = −

1

n− j
+

j−1∑
k=1

1

(n− k)2
.

• Can manipulate to show that this is ap-

proximately

Cov(Yi − Ȳ , Yj − Ȳ ) +O((n− i ∧ j + 1)−2).

Similar approximation holds for i = j, too.

• Now use the following result about normal

random vectors:
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Lemma 1 Let X and Y be independent vec-

tors of centered Gaussian random variables.

Suppose f : Rn → R is a twice differentiable

function with bounded derivatives. Then

Ef(Y)− Ef(X)

=
1

2

∫ 1

0

∑
1≤i,j≤n

E
[
∂2f

∂xi∂xj
(Zt)

]
(EYiYj − EXiXj) dt

where Zt =
√

1− tX +
√
tY, provided the ex-

pectations on the right side exist.
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• Back to matrices: The Stieltjes transform

of a probability distribution F is defined on

C\R by

mF (z) :=
∫ ∞
−∞

1

x− z
dF (x)

• The Stieltjes transform of the ESD of an

n× n matrix A is given by

mA(z) =
1

n
Tr((A− zI)−1).

• Stieltjes transforms have a continuous char-

acterizing relationship with distribution func-

tions.
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• Stieltjes transforms are amenable to differ-
entiation: Suppose A = A(u) is a matrix-
valued function of some scalar parameter
u. Let

G(u) = (A(u)− zI)−1.

Then
dG

du
= −G

dA

du
G

Continuing, we can arrive at a cumbersome
but explicit expression for third derivatives.

• Bounds on the derivatives can be obtained
using the properties of the Hilbert-Schmidt
norm; in particular, the following crucial
property:

If A and B are square matrices, and A is
normal, with spectral radius ρ, then ‖AB‖ ≤
ρ‖B‖.

This is useful because of the fact that ‖G‖ ≤
|Im(z)|−1.

18



• For instance, we have

|Tr((∂2
ijS)G(∂ijS)G2)|

≤ ‖∂2
ijS‖‖G(∂ijS)G2‖

≤ ‖∂2
ijS‖‖∂ijS‖|Im(z)|−3.

• Returning to the sample covariance matrix,

let f denote its Stieltjes transform at a

fixed z ∈ C\R. When p/n → λ ∈ (0,∞),

we can show that

ψ2(f) ≤ Cn−2, ψ3(f) ≤ Cn−5/2.

• Theorem 1 can now be invoked to com-

plete the argument.
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• Stein’s method of Normal approximation:

If (W,W ′) is an exchangeable pair of ran-

dom variables, and

E(W ′ −W |W ) ≈ −λW,
E((W ′ −W )2|W ) ≈ 2λ+ o(λ),

E|W ′ −W |3 � λ3/2,

where λ is a very small number, then W is

approximately standard Gaussian.

• Idea: If we generate a reversible Markov

chain W0,W1, . . ., with W0 = W and W1 =

W ′, then it behaves like a discrete approxi-

mation of a stationary Ornstein-Uhlenbeck

process.
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• Let

Xi = Wi − (1− λ)Wi−1.

• Then E(Xi|Fi−1) ≈ 0 and E(X2
i |Fi−1) ≈ 2λ.

• Reconstruct Wn from X1, . . . , Xn as

Wn = (1− λ)nW0 +
n∑
i=1

(1− λ)n−iXi.

• Use Lindeberg approach to get a bound on

Ef(Wn)−Ef((1− λ)W0 +
n∑
i=1

(1− λ)n−iYi),

where Yi’s are i.i.d. N(0,2λ).

• Finally, note that Ef(Wn) = Ef(W ), and

take n→∞.
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• This gives an approach to getting general

diffusion approximation bounds: Recover

the ”pretend Brownian motion increments”

and write the diffusion as a function of

those; then use Lindeberg method on the

”reconstruction function” to get error bounds.
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