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Abstract— Scan matching techniques have been widely used
to compute the displacement of robots. This estimate is part
of many algorithms addressing navigation and mapping. This
paper addresses the scan matching problem in three dimen-
sional workspaces. We propose an generalization of the Metric
based Iterative Closest Point (MbICP) to the 3D case. The main
contribution is the development of all the mathematical tools
required to formulate the ICP with this new metric, including
the derivation of point to plane distances based on the new
metric. We also provide experimental results to evaluate the
algorithms and different combinations of ICP and MbICP to
illustrate the advantages of the metric based approach.

I. INTRODUCTION

Scan matching techniques are widely used to track the

robot position using range data in many applications such

as navigation and mapping. The principle is to compute the

sensor displacement between two consecutive configurations

by maximizing the overlap between the range measurements

obtained at each configuration (see Figure 1). Although

they are local in nature, in Robotics they have widely used

as an improved odometry in navigation systems [1] or to

solve the initial problem in SLAM [2], to ameliorate the

loop-closing, etc. The most popular scan matching methods

usually follow the Iterative Closest Point (ICP) algorithm

(principle borrowed from the computer vision community

[3]). The ICP algorithm addresses this problem with an

iterative process in two steps. At each iteration:

1) matching: establishment of correspondent points be-

tween scans with a closest point criterion,

2) minimization: computation of the sensor displacement

by a least square minimization of the error of the

correspondences.

In two dimensions, a common feature of most versions of

ICP is the usage of the Euclidean distance to establish the

correspondences and to estimate the displacement [4], [5],

[6]. The limitation of this distance is the difficulty to capture

the sensor rotation [7]. To overcome this limitation, some

new metric distances have been proposed to compensate

translation and rotation simultaneously [8] improving the

performance of previous methods. Based on these principles

other techniques have been proposed to address the same
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Fig. 1. The scan matching problem: estimate the relative displacement
between two configurations given two scans taken at these configurations,
shown in black and red (gray in B&W), respectively.

issue but within probabilistic frameworks [9], [10]. Although

outdoor 3D laser scanners are nowadays common in indoor

and outdoor environments, only few 2D improvements have

been studied in 3D. For instance, [11] uses one of the scans

as a random generator for the other one and was extended

to 3D in [12]. Another example is [13] that using the

Hough transform aligns the scans and estimates the posterior

distribution of relative poses. An approximated 3D version of

the algorithm is able to align the scans, but further processing

is required to improve accuracy [14].

In addition to this 3D generalization, many geometric ICP

variants have been proposed in the Vision community to

deal with the registration problem in 3D (see [15] for a sur-

vey). The different approaches modify the correspondences

computation between meshes based on intersecting rays,

projection of points to the mesh, orthogonal vectors, com-

patibility tests or on metrics using color information. This

information is also used to re-weigh the correspondences in

the minimization step. In [16], authors propose a variation to

ICP by using a Z-buffer to find correspondences. The method

does not necessarily obtain the closest point but accelerates

the computation time using the GPU (Graphic Processor

Unit). A closed-form estimate for the ICP covariance was

proposed in [17]. Recently, Generalized-ICP [18] extended

the point to plane distance proposed in [19]. By incorporating

a probabilistic interpretation, it uses planar approximations to

implement a plane-to-plane minimization and to take advan-

tage of the structure of the environment. Another approach

is to consider a global consistent matching between partially

overlapping point sets, known as N-Registration in the Vision

comunity (see [20] for a comparison) and N-Scan Matching

problem in Robotics comunity [21].

In both communities, the idea of creating a geometric

metric to improve the method performance, such as the one
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proposed in [8], has not been explored in the 3D case. This

paper describes the generalization of the metric-based ICP

(MbICP) [8] to three dimensional workspaces. The emphasis

of the work is on the development of all the mathematical

formulation required to address the scan matching problem in

three dimensional workspaces based on this new metric. This

includes the derivation of the distance expression between

points, segments, planes and facets; and the corresponding

minimization expressions for pose estimation. Furthermore,

we show extensive evaluations to compare the ICP, the

MbICP and a natural combination of the MbICP and the

ICP. Results show that the MbICP has the best performance

specially in the presence of large errors in rotation.

II. MATHEMATICAL TOOLS

This section presents the generalization to 3D workspaces

of the metric introduced in [8], to implement the two main

steps of an ICP-like algorithm: 1) compute the correspon-

dences (point to point and point to facet) between two scans

and 2) estimate the displacement of the sensor.

A. Expression of the Metric distance

A rigid body transformation in R3 can be decomposed
into a rotation of angle θ (−π < θ < π) about a unit vector
n = (nx, ny, nz) and a translation of vector (x, y, z) , and thus
uniquely defined by vector q = (x, y, z, θ nx, θ ny, θ nz). We
define the norm of q as:

‖q‖ =
p

tT t + L2θ2 =
q

t2x + t2y + t2z + L2θ2 (1)

where L ∈ R+. Let dp : R3 × R3 → [0,∞) be the function
defined as

dp(p1,p2) = min{‖q‖ | p2 = R(n, θ)p1 + t} (2)

where R(n, θ) is a rotation matrix

R(n, θ) = nn
T (1 − cos θ) + U(n) sin θ + I cos θ (3)

and U(n) is a skew-symmetric matrix

U(n) =

2

4

0 −nz ny

nz 0 −nx

−ny nx 0

3

5 (4)

It is easy to see that dp as defined in equation (2) is a distance

since it verifies:

1) dp(p1,p2) = dp(p2,p2)

2) dp(p1,p2) = 0 ⇔ p1 = p2

3) dp(p1,p3) ≤ dp(p1,p2) + dp(p2,p3)

Notice that dp is the distance between two points (p1,p2),

defined as the minimum norm among the rigid body trans-

formations that move p1 to p2.
Unfortunately there is no closed form expression of dp

with respect to the coordinates of the points. However, as-
suming small rotations, equation (2) can be linearized about
θ → 0. Then, cos θ ≈ 1, sin θ ≈ θ and R(n, θ) ≈ I + U(n)θ.
Consequently, the rigid transformation can be approximated
as follows:

p2 ≈ p1 + U(n)θp1 + t = p1 − U(p1)θn + t (5)

which can be expressed as

t = U(p1)r + δ (6)

where r = θn, δ = p1 −p2 and θ2 = rT r = ‖r‖2
2. Notice that

equation (6) a linear system with respect to r.
In this case the norm is given by

‖q‖2 = t
T
t + L

2
θ
2 = (δ + U(p1)r)

T (δ + U(p1)r) + L
2
θ
2

= r
T

“

U
T (p1)U(p1) + L

2
I
”

r − 2δ
T
U

T (p1)r + δ
T
δ

= r
T
Ar − 2bT

r + c (7)

with A = UT (p1)U(p1) + L2I and b = U(p1)δ.
According to equation (2), the approximated distance

dap is given by the minimization of the norm (7) given
the parameter r. The result is r∗ = A−1b, and thus the
approximated distance is:

dap(p1,p2)
2 = δ

T
h

I − U
T (p1)A

−1
U(p1)

i

δ = δ
T
M(p1)δ

(8)

with M(p1) = I − UT (p1)U(p1)
k

and k = ‖p1‖
2
2 + L2.

Developing (8) the approximated distance is

dap(p1,p2)
2 =

r

δ
T
δ −

δUT (p1)U(p1)δ

k
= (9)

=

r

‖δ‖2
2 −

‖p1 × δ‖2
2

k
. (10)

The iso-distance surfaces for such as new distance are
computed by

{p2 ∈ R
3 | dap(p1,p2) = c}. (11)

These curves are ellipsoids centered in p1 with principal axis

given by the vector v1 = c p1

‖p1‖2
and any other two vectors

orthogonal one to each other of magnitude c(1 +
‖p1‖

2

2

L2 )
1

2 .

Thus, L balances the trade-off between translation and rota-

tion. When L → ∞, the new distance tends to the Euclidean

distance, otherwise, the parameter L acts as weighting factor

between translation and rotation.

B. Expressions for the Correspondence Step

In the previous section, we derived the point to point

distance based on the metric of expression 1. In practice,

range data is discrete and, therefore, points in each scan

are different. The standard way to solve this problem is

to assume a continuous local structure between points in

the reference scan. In 2D, this implies building segments in

between points of the reference scan [7], while in 3D facets

or planes are the most common structures [19].

In order to obtain the expression of the distance from a

point to a triangular facet (geometric triangle among three

3D points, the distances from a point to segment and from

a point to plane and facet are described first.
1) Point to Segment Distance: Let s be a segment defined

by two points s1, s2 ∈ R3. The goal is to compute the point
p∗ ∈ [s1 s2] with the minimum distance to p1:

dps(p1,p
∗) = min

λ∈[0,1]
dap(p1, (1 − λ)s1 + λs2). (12)

Denoting d(λ) = dap(p1, (1 − λ)s1 + λs2), the approximated
distance between p1 and the line that contains the segment
s is

d
2(λ) = ‖δ(λ)‖2

2 −
p1 × δ(λ)

k
= aλ

2 − 2bλ + c (13)

with a = uT
2 M(p1)u2 = ‖u2‖

2
2 −

‖p1×u2‖
2

2

k
, b =

−δ1M(p1)u2 = −δ
T
1 u2 + (p1×δ1)T (p1×u2)

k
, k = ‖p1‖

2
2 + L2
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and c = δ
T
1 M(p1)δ1 = ‖δ1‖

2
2 −

‖p1×δ1‖
2

2

k
(where u2 = s2 − s1

and δ1 = s1 − p1).
The minimum of equation (13) is λ∗ = b

a
. Therefore, the

distance of point p1 to segment s is given by:

dps(p1, [s1 s2]) =

8

<

:

dap(p1, s1) =
√

c if λ∗ < 0,

dap(p2, s2) =
√

a − 2b + c if λ∗ > 1,

d(λ∗) =
√
−λ∗b + c if 0 ≤ λ∗ ≤ 1.

(14)

2) Point to Plane Distance: Let [v1 v2 v3] be the plane
defined by three points v1,v2,v3 ∈ R3. The minimum
distance to a point p1 is:

dpp(p1, [v1 v2 v3]) = min
λ1,λ2∈[0,1]

d(λ) (15)

where d(λ) = dap(p1,v1 + λ1(v3 − v1) + λ2(v2 − v1)).
The approximated distance between p1 and the plane that
contains the facet v is:

d
2(λ) = ‖δ(λ)‖2

2 −
‖p1 × δ(λ)‖2

2

k
(16)

where λ = [λ1 λ2]
T , δ(λ) = δ1 + λ1u1 + λ2u2, u1 = v3 −v1,

u2 = v2 −v1 and δ1 = v1 −p1. Equation (16) can be written

d
2(λ) = λ

T
Aλ − 2BT

λ + C (17)

where A =

»

a c
c b

–

, B =

»

d
e

–

and C = f , and with:

a = u
T
1 M(p1)u1 = ‖u1‖

2
2 −

‖p1 × u1‖
2
2

k
, (18)

b = u
T
2 M(p1)u2 = ‖u2‖

2
2 −

‖p1 × u2‖
2
2

k
, (19)

c = −δ
T
1 M(p1)u1 = −δ

T
1 u1 +

(p1 × δ1)
T (p1 × u1)

k
, (20)

d = −δ
T
1 M(p1)u2 = −δ

T
1 u2 +

(p1 × δ1)
T (p1 × u2)

k
, (21)

f = δ
T
1 M(p1)δ1 = ‖δ1‖

2
2 −

‖p1 × δ1‖
2
2

k
. (22)

where, again, k = ‖p1‖
2
2 + L2.

The minimum of equation (17) is λ
∗ = A−1B and the

closest point is p0 = p(λ∗) = v1 + λ1u1 + λ2u2.
3) Point to Facet Distance: Let v be a facet (triangle)

defined by the three previous points v1,v2,v3 ∈ R3. The
minimum distance to a point p1 is a piecewise function that
depends on the position of the point p(λ∗) with respect to
the facet given by (Figure 2):

dpf (p1, v) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

dap(p1, [v1 v2]) if λ∗
1

<0 and

8

<

:

λ∗
2

>0 and λ∗
1
+λ∗

2
<1,

or λ∗
2

<0 and d<0,

or λ∗
1
+λ∗

2
>1 and e<b

dap(p1, [v1 v3]) if λ∗
2

<0 and

8

<

:

λ∗
1

>0 and λ∗
1
+λ∗

2
<1,

or λ∗
1

<0 and d≥0,

or λ∗
1
+λ∗

2
>1 and d<a

dap(p1, [v2 v3]) if λ∗
1
+λ∗

2
>1 and

8

<

:

λ∗
1

>0 and λ∗
2

>0,

or λ∗
1

<0 and e≥b,

or λ∗
2

<0 and d≥a

dap(p1, p(λ∗)) otherwise
(23)

The distances of equation (23) are

dap(p1, [v1 v2]) =

8

>

<

>

:

√
f if e

b
< 0√

b − 2e + f if e
b

> 1
q

− e2

b
+ f otherwise

(24)

dap(p1, [v1 v3]) =

8

>

<

>

:

√
f if d

a
< 0√

a − 2d + f if d
a

> 1
q

− d2

a
+ f otherwise

(25)

dap(p1, [v2 v3]) =

8

>

<

>

:

√
i if h

g
< 0√

g − 2h + i if h
g

> 1
q

−h2

g
+ i otherwise

(26)

Fig. 2. This figure depicts the different zones where the closest point to
p1 in the plane defined by the segment or facet could lie.

(a) Point-to-point L =∞ (b) Point-to-point L = 2

(c) Point-to-segment L =∞ (d) Point-to-segment L = 2

(e) Point-to-facet L =∞ (f) Point-to-facet L = 3

Fig. 3. Isodistance curves of the the new metric, including the particular
case of the euclidean distance (L =∞).

with g = uT
3 M(p1)u3 = ‖u3‖

2
2 −

‖p1×u3‖
2

2

k
, h =

−δ2M(p1)u3 = −δ
T
2 u3+ (p1×δ2)T (p1×u3)

k
, i = δ

T
2 M(p1)δ2 =

‖δ2‖
2
2 −

‖p2×δ2‖
2

2

k
and u3 = v3 − v2, δ2 = v2 − p1.

Figures 3(a) to 3(f) illustrate the effect of the L parameter.

Notice that the new metric captures the rotation by deforming

the Euclidean distance to a segment or to a facet with a

combination of the ellipsoids of their corresponding vertices.

C. Expression for the minimization

Based on the distance of Eq. 23, ICP algorithms establish a
set of correspondences between two scans. The minimization
step uses these correspondences to estimate the relative
displacement between the two scans. This is done by mini-
mizing the sum of squared distances of the correspondences
i.e., using a least squares estimator. To derive the estimator,
we use the following notation: pi is a point in the new scan
while p′

i is its corresponding point in the reference scan
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(model). The goal is to compute the rotation and translation
that minimizes the performance index

Edist(q) =
n

X

i=1

d
2
pp(pi,p

′
i) (27)

with p′
i = R(n, θ)pi + t. This expression does not have a

closed form solution. By linearizing about θ = 0, we obtain:

Edist(q) =

n
X

i=1

δ
T
i (q)M(pi)δi(q) (28)

being δi(q) = δi + U(pi)r − t and δi = p′
i − pi. Expanding

equation (28),

Edist(q) = q
T
Aq − 2BT

q + C (29)

A =

n
X

i=1

h

M(pi) −M(pi)U(pi)

−UT (pi)M(pi) U(pi)M(pi)U(pi)

i

, (30)

B =
n

X

i=1

h

M(pi)
M(pi)U(pi)

i

δi, C =

n
X

i=1

δ
T
i M(pi)δi (31)

The minimum of equation (29) is q∗ = A−1B, which is the

displacement that minimizes the correspondence error.

III. EXPERIMENTAL RESULTS

This section analyses the performance of the new 3D

metric. We considered three different algorithms that differ

in the distances used to estimate the correspondences and to

define the minimization criterion:

• ICP: Standard ICP based on the Euclidean metric,

• MbICP: Uses the new metric to compute the correspon-

dences and to estimate the relative displacement,

• MbICP-mixed: Uses the new metric to establish the

correspondences and the Euclidean one to estimate the

relative displacement.

The MbICP-mixed algorithm is motivated by the fact that

the metric-based minimization step does not have a closed

form and solves a linearized version of the problem. Thus, a

closed form solution may provide better solutions. In particu-

lar, for known correspondences the Euclidean minimization

ICP behaves better than the metric based version, but this

difference disappears in the presence of noise and wrong

correspondences.

The analysis is done using a dataset of 72 3D laser scans

[22] recorded in a bakery with a 2D laser scan mounted

on a robotic platform. In order to obtain 3D scans, the 2D

laser was mounted on a servo drive. Since the robot moved

during data acquisition, the robot motion was compensated

to create 3D scans prior to the scan matching process.

The implementation of the three algorithms is essentially

the same, but for the distance expression used to compute

the correspondences (Eq. 23) and the estimation of the

displacement (based on Eq. 29). In order to create the

facets, we assume that scans form quads typically obtained

by the pan and tilt sweeping of a laser ray. Thus, we do

not perform any Delaunay triangulation to obtain the local

structure, but simply form two facets per each quad (four

consecutive points in both directions). All the algorithms use

a sliding window search which restricts the correspondence

search to points or facets that lay within a given angular

window. We filter out boundary points by implementing

a simple adaptive break-point detector similar to the one

proposed in [23] so we can detect gaps between points

and reject points which are too far or too close (to avoid

considering points that correspond to the robot used to collect

the measurements). We used the trimmed version [24] to

filter spurious correspondences when obtaining the maps. For

the stopping criteria, we followed the criterion proposed in

[4] and considered the error ratio during several time steps.

A. Robustness, Precision and Convergence Analysis

The robustness and precision analysis follows the same

methodology as the one presented in [8]. Each scan was

matched against itself, but with random initial locations. We

defined 8 different levels of error, starting form ±0.025m

in translation and 7.5 degrees in rotation (Experiment 1) up

to 0.2m and 60 degrees (Experiment 8), with increments of

0.025m and 7.5 degrees on each experiment. Based on these

values, we run a 50 samples of Monte Carlo simulation for

each scan and each noise level of noise making a total of

28800 runs. Although we also carried out the same tests using

point to point distances, we only report results for the point

to facet case which provided better results. Since we match

a scan against itself, the matching of both scans should in

principle be perfect at convergence and we can calculate the

error made by each method against the ground truth (zero

rotation and zero translation).

We analyze first the robustness of the methods. For this

analysis, we considered a successful run those solutions

that converged in less than 150 iterations, whose error in

translation was lower than 25 mm and whose error in rotation

was lower than 0.25 degrees. Based on this thresholds we

compute the percentage of true positives (the solution con-

verged below the threshold); false positives (the algorithm

converged with errors above the threshold); true negatives

(the algorithm did not converged and was still above thresh-

old); and false negatives (the algorithm did not converge but

the solution was already below threshold).

Table I shows the results for each method. When the error

is small all the methods achieved 100% of true positives. As

the error increases from experiment #1 to #8, the percentage

of true positives decreases for all the methods. The MbICP

performed better than the other methods since it has the

highest percentage of true positives and the lowest number

of false positives.

We now study the precision achieved by each algorithm.

For this analysis, we considered only the true positives and

define the error (25 mm and 0.25 degrees) in three equal

intervals corresponding to high (H), medium (M) and low

(L) precision. Table II shows the results for each method.

The performance of all methods is quite similar, although

the MbICP obtained slightly better results.

Finally, we consider the convergence rate and the execu-

tion time of each method. Figure 4(a) depicts the mean num-

ber of iterations used by each method for each experiment.

There are no significant differences between the methods
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TABLE I

ROBUSTNESS ANALYSIS OF SCAN MATCHERS.

Exp. Method ICP MbICP mixed MbICP pure

#1

TP 100 100 100
FP 0 0 0
TN 0 0 0
FN 0 0 0

#2

TP 100 100 100
FP 0 0 0
TN 0 0 0
FN 0 0 0

#3

TP 100 100 100
FP 0 0 0
TN 0 0 0
FN 0 0 0

#4

TP 99.89 99.89 100
FP 0 0 0
TN 0.1111 0.1111 0
FN 0 0 0

#5

TP 98.58 99.19 99.36
FP 0.3056 0.25 0.1111
TN 1.111 0.3889 0.4722
FN 0 0.1667 0.05556

#6

TP 96.67 98.5 99
FP 0.6944 0.1944 0.1944
TN 2.583 1.306 0.8056
FN 0.05556 0 0

#7

TP 94.11 97.28 97.67
FP 1.528 0.7222 0.2778
TN 4.333 1.944 1.889
FN 0.02778 0.05556 0.1667

#8

TP 90.56 95.25 96.58
FP 3.444 1.556 0.9167
TN 5.944 3.167 2.361
FN 0.05556 0.02778 0.1389

(a) Iterations (b) Computational Time

Fig. 4. Number of iterations and computational time required by the ICP,
MbICP and the MbICP mixed for the different levels of error.

(smaller than five iterations in average). The MbICP-mixed

required the least number of iterations followed by the

MbICP and the ICP. Regarding execution times, MbICP

iterations are more expensive than ICP. The ICP is the fastest

algorithm (see Figure 4(b)). The figure shows how the time

depends mainly on the computation of the correspondences,

which is quadratic in the number of points. Since the

angular window is bigger for bigger errors, the computational

time increased in a quadratic way. The constant overhead

required by the MbICP algorithm is the price to pay for the

improvement in robustness and precision.

B. Maps

Figures 5(a) to 5(f) show robot trajectories estimation

and super-imposed laser scans at each position for a whole

experiment (one loop in an old bakery), where in this case

the matching has been performed between consecutive scans.

In the experiment, the odometry data is quite accurate and it

is not hard to obtain a good estimation since the environment

TABLE II

PRECISION ANALYSIS OF SCAN MATCHERS.

Exp. Method ICP MbICP mixed MbICP pure

#1

H 99.97 100 100
M 0.02778 0 0
L 0 0 0

#2

H 99.94 99.97 100
M 0.05556 0.02778 0
L 0 0 0

#3

H 99.75 99.89 100
M 0.25 0.1111 0
L 0 0 0

#4

H 99.67 99.81 100
M 0.3337 0.1947 0
L 0 0 0

#5

H 99.32 99.75 99.94
M 0.6762 0.252 0.05591
L 0 0 0

#6

H 99.34 99.83 99.92
M 0.6609 0.1692 0.08418
L 0 0 0

#7

H 98.88 99.8 99.94
M 1.122 0.1999 0.05688
L 0 0 0

#8

H 98.87 99.45 99.8
M 1.135 0.5541 0.2013
L 0 0 0

is well structured and no relevant differences between ICP

and MbICP algorithms can be shown. In order to evaluate

the performance of ICP and MbICP (pure) under several

wheel slippage and terrain conditions or complex scenarios,

we have introduce artificial random errors (low, medium and

large) to odometry data with magnitudes as in experiments

#2, #5 and #7 of Tables I and II, respectively. In this case, it

is clearly shown that the MbICP provides good quality maps

and estimations even with large errors in odometry data. The

ICP degenerates even at medium errors, although, it has to

be remarked that, it has just one single failure in rotation (see

figure 5(b)). As a consequence of this failure, the robot is not

able to properly close the loop. For larger odometry errors

ICP performance is clearly degraded and several failures

have been found, in translation and rotation. We have tested

both algorithms with several parameter configurations, and

selected the best ever found in any case. The estimation of

the MbICP, through all experiments (#1 to #8), has shown

to be more robust and accurate than ICP, specially when

rotation errors are large.

IV. CONCLUSIONS

This paper describes the extension of 2D metric-based

scan matching (MbICP) to 3D. The focus is on the derivation

of the distance and minimization expressions for the 3D case

and, in particular, to consider point to plane and point to facet

correspondences. Experimental results show that most of the

advantages of MbICP are also present in 3D, since it is more

robust and more precise than the standard ICP algorithm. The

new metric also requires less iterations to converge. However,

contrary to the 2D case, the increased cost per iteration is

not compensated by the smaller number of iterations and

results in slightly higher computational times. Future work

will focus on integrating metric based algorithms in a 3D

probabilistic framework to take advantage of some of the

most recent developments in 3D scan matching algorithms.
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(a) ICP with low odometry errors. (b) ICP with medium odometry errors. (c) ICP with large odometry errors.

(d) MbICP with low odometry errors. (e) MbICP with medium odometry er-
rors.

(f) MbICP with large odometry errors.

Fig. 5. 2D map views (XY plane) and elevation map of an old bakery obtained with different scan matching algorithms and odometry errors.

ACKNOWLEDGEMENTS

Authors want to thank Pedro Piniés for the 3D dataset.

REFERENCES

[1] L. Montesano, J. Minguez, and L. Montano, “Modeling dynamic sce-
narios for local sensor-based motion planning,” Autonomous Robots,
vol. 25, no. 3, pp. 223–251, 2008.

[2] A. Nchter, K. Lingemann, J. Hertzberg, and H. Surmann, “Heuristic-
based laser scan matching for outdoor 6d slam,” in In Advances in

artificial intelligence. 28th annual German Conf. on AI, 2005, pp.
304–319.

[3] P. Besl and N. McKay, “A method for registration of 3d shapes,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 2,
no. 14, pp. 239–256, 1992.

[4] S. Pfister, K. Kreichbaum, S. Roumeliotis, and J. Burdick, “Weighted
range sensor matching algorithms for mobile robot displacement
estimation,” in IEEE International Conference on Robotics and Au-

tomation, 2002, pp. 1667–74.

[5] J.-S. Gutmann, “Amos: comparison of scan matching approaches for
self-localization in indoor environments,” in Proceedings of the First

Euromicro Workshop on Advanced Mobile Robots (EUROBOT 96)

EURBOT-96, 1996, p. 61.

[6] O. Bengtsson, “Localization in changing environments - estimation
of a covariance matrix for the idc algorithm,” in Proceedings 2001

IEEE/RSJ International Conference on Intelligent Robots and Systems

Expanding the Societal Role of Robotics in the the Next Millennium

(Cat No 01CH37180) IROS-01, vol. 4, 2001, p. 1931.

[7] F. Lu and E. Milios, “Robot pose estimation in unknown environments
by matching 2d range scans,” Intelligent Robots Systems, no. 20, pp.
249–275, 1997.

[8] J. Minguez, L. Montesano, and F. Lamiraux, “Metric-based iterative
closest point scan matching for sensor displacement estimation,” IEEE

Trans. on Robotics, vol. 22, no. 5, pp. 1047–1054, 2005.

[9] L. Montesano, J. Minguez, and L. Montano, “Probabilistic scan
matching for motion estimation in unstructured environments,” in
Conference on Intelligent Robots and Systems (IROS), 2005, pp. 3499–
3504.

[10] L. Montesano, “Detection and tracking of moving objects from a mo-
bile platform. application to navigation and multi-robot localization.”
Ph.D. dissertation, Universidad de Zaragoza, Spain, 2006.

[11] P. Biber and W. Strafler, “The normal distributions transform: A new
approach to laser scan matching,” in IEEE Int. Conf. on Intelligent

Robots and Systems, Las Vegas, USA, 2003.

[12] E. Takeuchi, “A 3-d scan matching using improved 3-d normal
distributions transform for mobile robotic mapping,” in 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2006.
[13] A. Censi, “Scan matching in a probabilistic framework,” in

Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), Orlando, Florida, 2006, pp. 2291–2296. [Online].
Available: http://purl.org/censi/2006/gpm

[14] A. Censi and S. Carpin, “Global 6dof scan-matching in the hough
domain,” in IEEE Int. Conf. Robotics and Automation, 2009.

[15] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” 3D Digital Imaging and Modeling, International Conference

on, vol. 0, p. 145, 2001.
[16] R. Benjemaa and F. Schmitt, “Fast global registration of 3d sampled

surfaces using a multi-z-buffer technique,” in Image and Vision Com-

puting, 1997, pp. 113–120.
[17] A. Censi, “An accurate closed-form estimate of icp’s covariance,” in

Proceedings 2007 IEEE International Conference on Robotics and

Automation, 2007, p. 3167.
[18] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Proceedings

of Robotics: Science and Systems, Seattle, USA, June 2009.
[19] Y. Chen and G. Medioni, “Object modeling by registration of multiple

range images,” in Proceedings 1991 IEEE International Conference on

Robotics and Automation, 1991, p. 2724.
[20] S. J. Cunnington and A. J. Stoddart, “N-view point set registration: A

comparison,” in British Machine Vision Conference, 1999.
[21] P. Biber, “nscan-matching: simultaneous matching of multiple scans

and application to slam,” in In Robotics and Automation. ICRA

Proceedings IEEE International Conference on, 2006, pp. 2270–2276.
[22] O. Wulf, K. O. Arras, H. I. Christensen, and B. Wagner, “2d mapping

of cluttered indoor environments by means of 3d perception,” in
Proc. IEEE International Conference on Robotics and Automation

(ICRA’04), New Orleans, USA, 2004.
[23] G. Araujo and M. Aldon, “Line extraction in 2d range images for

mobile robotics,” Journal of Intelligent and Robotic Systems, no. 40,
pp. 267–297, 2004.

[24] D. Chetverikov, “The trimmed iterative closest point algorithm,” in
Object recognition supported by user interaction for service robots

ICPR-02, vol. 3, 2002.

1372


