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Abstract In 1965, Motzkin and Straus established a remarkable connection between
the global maxima of the Lagrangian of a graph G over the standard simplex and the
clique number of G. In this paper, we provide a generalization of the Motzkin–Straus
theorem to k-uniform hypergraphs (k-graphs). Specifically, given a k-graph G, we
exhibit a family of (parameterized) homogeneous polynomials whose local (global)
minimizers are shown to be in one-to-one correspondence with maximal (maximum)
cliques of G.
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1 Introduction

A k-uniform hypergraph, or simply a k-graph, is a pair G = (V, E), where V =
{1, . . . , n} is a finite set of vertices and E ⊆ (V

k

)
is a set of k-subsets of V , each of

which is called a hyperedge. 2-graphs are typically called graphs. The complement of
a k-graph G is given by G = (V, E) where E = (V

k

) \ E . A subset of vertices C ⊆ V

is called a hyperclique if
(C

k

) ⊆ E . To improve readability, in the sequel we will drop
the prefix “hyper” when referring to edges and cliques of a k-graph. A clique is said
to be maximal if it is not contained in any other clique, while it is called maximum if
it has maximum cardinality. The clique number of a k-graph G, denoted by ω(G), is
defined as the cardinality of a maximum clique.
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Given a k-graph G with n vertices, the Lagrangian of G is the following homoge-
neous multilinear polynomial in n variables:

LG(x) =
∑

e∈E

∏

i∈e

xi (1)

with a view to provide a new proof of Turan’s theorem, in 1965 Motzkin and Straus
[13] established a remarkable connection between the clique number of a graph G
with n vertices and the maxima of its Lagrangian over the standard simplex of R

n ,
which is defined as:

∆ =
{

x ∈ R
n : ∀i = 1 . . . n, xi ≥ 0 and

n∑

i=1

xi = 1,

}

.

Theorem 1 (Motzkin–Straus) Let G be a graph with clique number ω(G). If x∗ is a
maximizer of LG over ∆, then:

LG(x∗) = 1

2

[
1 − 1

ω(G)

]
.

The characteristic vector of a subset of vertices S ⊆ V is the vector in ∆ defined
as:

xS
i = 1i∈S

|S| ,

where |S| denotes the cardinality of S and 1P is an indicator function returning 1 if
property P is satisfied and 0 otherwise. Moreover the support of a vector x ∈ ∆, is
the set of indices corresponding to nonnegative components of x, i.e.

σ(x) = {i : xi > 0, i = 1 . . . n} .

In the course of the proof of their result, Motzkin and Straus showed also that a subset of
vertices C is a maximum clique of G if and only if its characteristic vector xC is a global
maximizer of LG on ∆. However, not all maximizers of LG over ∆ are in the form
of characteristic vectors and these spurious solutions were characterized in 1995 by
Pelillo and Jagota [18]. They also provided an extension of the Motzkin–Straus result
by showing a one-to-one connection between (non-spurious) local maximizers of LG

over ∆ and maximal cliques of G. Later in 1997 [2], to overcome the problem of
spurious solutions, Bomze introduced a regularized version of the Lagrangian defined
as

Lτ
G(x) = LG(x) + τ

∑

i∈V

x2
i

and proved a one-to-one correspondence between local (global) maximizers of Lτ
G

over ∆ and maximal (maximum) cliques of G provided that 0 < τ < 1
2 .
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Theorem 2 (Bomze) Let G be a graph and 0 < τ < 1
2 . A vector x ∈ ∆ is a local

(global) maximizer of Lτ
G over ∆ if and only if it is the characteristic vector of a

maximal (maximum) clique of G.

The Motzkin–Straus result and its extension were successfully employed in spectral
graph theory to provide upper and lower bounds to the clique number of graphs [3,
22,23] and in optimization to provide heuristics for the maximum clique problem
[2,4,8,15,17,19,20]. Furthermore, the Motzkin–Straus theorem has been generalized
to vertex-weighted graphs [8] and edge-weighted graphs [16].

In this paper, we are interested in studying a generalization of the Motzkin–Straus
Theorem to hypergraphs. As it turns out, LG cannot be directly used to extend the
Motzkin–Straus theorem to k-graphs. Frankl and Rödl in 1984 [7] proved that by taking
a maximizer x∗ of LG with support as small as possible, the subhypergraph induced
by S is a 2-cover, i.e. a hypergraph such that every pair of vertices is contained in some
hyperedge. Since 2-covers in graphs are basically cliques, we could expect a possible
generalization of the Motzkin–Straus theorem where the clique number is replaced by
the size l of the maximum 2-cover in the hypergraph. However x∗ is not necessarily in
the form of a characteristic vector, and it is not in general possible to express LG(x∗)
as a function of l. Nevertheless, this result was used by Mubay [14] to achieve a
bound for LG(x∗) in terms of l on k-graphs and he used it to provide an hypergraph
extension of the Turán’s theorem. A further attempt to generalize the Motzkin–Straus
theorem to hypergraphs is due to Sós and Straus [21]. However, their solution applies to
conformal k-graphs, i.e. complete-subgraph graphs of ordinary graphs. This restricts
the applicability of this theorem to a class of hypergraphs isomorphic to a subclass of
2-graphs having cliques of cardinality ≥ k.

Our contribution with this paper is to provide a generalization of the Motzkin–
Straus as well as Bomze’s Theorems to k-graphs. Specifically, we present a continuous
characterization of maximal cliques in k-graphs in terms of minimizers of a particular
(parametrized) homogeneous polynomial over the standard simplex.

This shift from the combinatorial to the continuous domain may reveal unexpected
properties of the original problem as well as it could serve as the basis for the develop-
ment of continuous-based heuristics for the maximum clique problem on hypergraphs.

2 A continuous characterization of maximal cliques in k-graphs

Given a k-graph G, consider the following non-linear program.

minimize hG(x) = LG(x) + τ

n∑

i=1

xk
i

subject to x ∈ ∆, (2)

where τ ∈ R and LG is the Lagrangian of the complement of G. In order to simplify
the notation we write h instead of hG where the context is non ambiguous.

A local solution of problem (2) is a vector x ∈ ∆ for which there exists a local
neighborhood Nx such that h(y) ≥ h(x) for all y ∈ Nx, while a global solution is
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a vector x ∈ ∆ such that h(y) ≥ h(x), for every y ∈ ∆. We say that x is a strict
global/local solution if the inequalities are strict when y �= x. We define the plateau
of (2) generated by x as the smallest closed connected set U containing x such that
f (y) = f (x) for all y ∈ U . Note that the plateau generated by a strict local solution
x is the singleton {x}.

The Karush–Kuhn–Tucker (KKT) necessary conditions [12] for a vector x to be a
local solution of (2) are as follows. There should exists λ ∈ R such that for all j ∈ V ,

∂ j h(x)

{
= λ if j ∈ σ(x),

≥ λ if j /∈ σ(x).
(3)

Here, ∂ j h(x) denotes the partial derivative of h with respect to x j , i.e.

∂ j h(x) =
∑

e∈E

1 j∈e

∏

i∈e\{ j}
xi + τkxk−1

j ,

and similarity ∂ j�h(x) will denote the partial derivative with respect to x j and x�, i.e.

∂ j�h(x) = 1 j �=�

∑

e∈E

1 j,�∈e

∏

i∈e\{ j,�}
xi + 1 j=�τk(k − 1)xk−2

j .

A sufficient condition for x to be a local solution of program (2) is to be a KKT
point and to have the Hessian matrix of h in x positive definite on the subspace M(x)

defined as

M(x) =
{

ε ∈ R
n :

n∑

i=1

εi = 0, and ε j = 0 for all j such that ∂ j h(x) > λ

}

,

where the Hessian matrix of h in x is defined as

H(x) = [
∂ j�h(x)

]
j,�∈V .

In other words, if x is a KKT point and for all ε ∈ M(x) \ {0}, ε′H(x)ε > 0, then x
is a (strict) local solution of (2).

In order to grasp the intuition behind the choice of Program (2) let us investigate
some elementary properties of the minimizers of the first term and the second one
if considered separately. If we take any vector x in the simplex whose support is a
clique of G, then trivially LG(x) attains its global minimum at 0. Vice versa, for any
clique C of G, every vector in the simplex with support C is a global minimizer of
LG over ∆. Hence, the role of the first term is to force the minimizers to have a clique
as support. As for the second term, trivially, the minimizer of

∑n
i=1 xk

i over ∆ is the
simplex barycenter, i.e. the characteristic vector of V . Therefore, ideally, the role of
the second term is to enforce the minimizers to have a maximal support and the form of
characteristic vector. By linearly combining the two terms and by adequate choices of
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τ , our aim is to achieve a continuous characterization of maximal (maximum) cliques
in k-graphs which consists in a one-to-one correspondence between the set of maximal
(maximum) cliques of a k-graph G, and the local (global) solutions of (2), generalizing
in this way both the Motzkin–Straus and Bomze’s Theorems to k-graphs.

Lemma 1 Let G be a k-graph and let x be a local (global) solution of (2) with τ > 0.
If C = σ(x) is a clique of G then it is a maximal (maximum) clique and x is the
characteristic vector of C.

Proof Since x is a local solution of (2), it satisfies the KKT conditions (3). Therefore
for all j ∈ C we have that λ = τkxk−1

j > 0 and it follows that x is the characteristic
vector of C . Moreover if there exists a larger clique D that contains C , then there is a
vertex j ∈ D \ C such that ∂ j h(x) = 0 < λ. This contradicts conditions (3). Hence,
C is a maximal clique of G.

Finally, h(x) = τ |σ(x)|1−k attains its global minimum only if x is the characteristic
vector of a maximum clique. �	
Lemma 2 Let G be a k-graph and x a local (global) solution of (2).

If both the following conditions hold

1. 0 < τ ≤ 1
k(k−1)

,
2. σ(x) is minimum among all the solutions in the plateau of (2) generated by x, if

k = 2 and τ = 1
2 ,

then x is the characteristic vector of a maximal (maximum) clique of G.

Proof We claim that the support of x is a clique of G. Otherwise, suppose that an
edge ẽ ⊆ σ(x) is missing. Let j, � ∈ ẽ such that x j ≤ x� ≤ mini ∈̃e\{ j,�} xi and take
y = x + ε(e j − e�) ∈ ∆, where e j denotes a zero vector except for the j th element
set to 1 and where 0 < ε ≤ x�.

We study the sign of h(y) − h(x) in a neighborhood of x as ε → 0 by means of
the Taylor expansion of h truncated at the second-order term, where the first-order
term cancels out since x satisfies (3), as it is a local solution of (2), and thereby
∂ j h(x) = ∂�h(x):

h(y) − h(x) = ε2

2

[
∂ j j h(x) + ∂��h(x) − 2∂ j�h(x)

] + O(ε3)

= ε2

2

⎡

⎣τk(k − 1)
(

xk−2
j + xk−2

�

)
− 2

∑

e∈E

1 j,�∈e

∏

i∈e\{ j,�}
xi

⎤

⎦ + O(ε3).

Let µ = 2
∑

e∈E 1 j,�∈e
∏

i∈e\{ j,�} xi − (xk−2
j + xk−2

� ). Clearly µ ≥ 0, because at

least ẽ is in E , and x j and x� are the smallest components with indices in ẽ.
Then we can write

h(y) − h(x) = ε2

2

[
τk(k − 1)(xk−2

j + xk−2
� ) − µ − (xk−2

j + xk−2
� )

]
+ O(ε3)

= ε2

2

{(
xk−2

j + xk−2
�

)
[τk(k − 1) − 1] − µ

}
+ O(ε3). (4)
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Note from (4) that the second-order term is nonpositive and becomes zero only if
τ = 1

k(k−1)
and µ = 0. We proceed now by distinguishing 3 cases, each of which

yields a contradiction, thereby proving that σ(x) is a clique of G. This in conjunction
with Lemma 1 concludes the proof.

Case 1: 0 < τ < 1
k(k−1)

or µ > 0.
In this case, h(y) − h(x) is strictly negative for sufficiently small values of ε,

contradicting the local minimality of x.
Case 2: τ = 1

k(k−1)
, k = 2 and µ = 0.

For k = 2 we have trivially that h(y) − h(x) = 0 for any admissible ε. Hence, y is
in the plateau of (2) generated by x. By taking ε = x�, we contradict the minimality
of the support size of x stated in condition 2, because σ(y) = σ(x) − 1.

Case 3: τ = 1
k(k−1)

, k > 2 and µ = 0.

Note that if µ = 0, then ẽ is the only edge in E with vertices in σ(x) that contains
both j and �. Moreover xi is constant for all i ∈ ẽ. It follows that we could have
arbitrarily chosen j, � in ẽ for the construction of y. Hence, for every pair of vertices
in ẽ there exists only one edge in E with vertices in σ(x) containing them, namely ẽ.

Let m ∈ arg mini ∈̃e\{ j,�} xi and take z = x + ε
[
(e j + e�)/2 − em

] ∈ ∆ where
0 < ε ≤ xm . We study the sign of h(z) − h(x) in a neighborhood of x as ε → 0 by
means of the Taylor expansion of h truncated at the third-order term. Here again, the
first-order term cancels out since x satisfies (3) and therefore we obtain

h(z) − h(x)

= ε2

2

[
∂ j j h(x) + ∂��h(x)

4
+ ∂mmh(x) − ∂ jmh(x) − ∂�mh(x) + ∂ j�h(x)

2

]

+ ε3

6

[
∂ j j j h(x) + ∂���h(x)

8
− ∂mmmh(x) − 3

2
∂ j�mh(x)

]
+ O(ε4), (5)

where ∂uvwh denotes the partial derivative of h with respect to xu, xv and xw, i.e.

∂uvwh(x) = 1u �=v1u �=w1v �=w

∑

e∈E

1u,v,w∈e

∏

i∈e\{u,v,w}
xi + 1u=v=w(k − 2)xk−3

u .

By the observation made at the beginning of this case and by setting ξ = x j , it follows
that ∀u, v ∈ ẽ.∂uvh(x) = ξ k−2, and ∀u ∈ ẽ.∂uuuh(x) = (k − 2)ξ k−3 and finally
∂ j�mh(x) = ξ k−3. Hence, the sign of h(z) − h(x) for sufficiently small values of ε is

given by the sign of − ε3

8 kξ k−3 which is clearly negative and this contradicts the local
minimality of x. �	

An interesting observation suggested by Lemma 2 is that all minimizers of (2) are
strict provided that condition 1 holds, excepting the case k = 2 and τ = 1

2 . In fact, the
existence of non strict minimizers would imply, through the lemma, the existence of
non isolated characteristic vectors, which is impossible. Hence, the only case where
nonstrict solutions may appear in our formulation corresponds to the maximization of
the graph Lagrangian over ∆, that we have already seen to be affected by the possible
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presence of spurious solutions. Indeed, Bomze’s regularization coincides with choices
of τ strictly less than 1

2 , which in fact guarantees to have only strict solutions.
The following theorem provides the generalization of the Motzkin–Straus Theo-

rem (1) to k-graphs alluded to at the end of the previous section. Basically, we show
that the global minimum of hG over ∆ can be expressed as a function of the clique
number of G. This establishes a link between the combinatorial problem of finding the
clique number of a k-graph, and the global optimization of a homogeneous polynomial
over the simplex in the continuous domain.

Theorem 3 Let G be a k-graph with clique number ω(G). Then h attains its minimum
over ∆ at τ ω(G)1−k provided that 0 < τ ≤ 1

k(k−1)
.

Proof Let x be a global solution of (2) with support as small as possible. Then by
Lemma 2 we have that x is the characteristic vector of a maximum clique of G. It
follows that h(x) = τ |σ(x)|1−k = τω(G)1−k . �	

Note that this result is equivalent to the original Motzkin–Straus Theorem (1) for
graphs, if we take k = 2 and τ = 1

2 . In fact, in this case we obtain

LG(x) =
∑

{i, j}∈E

xi x j = 1

2
−

∑

{i, j}∈E

xi x j − 1

2

n∑

i=1

x2
i = 1

2
− h(x)

and it follows that

max
x∈∆

LG(x) = 1

2
− min

x∈∆
h(x) = 1

2
− 1

2ω(G)
= 1

2

[
1 − 1

ω(G)

]
.

As example of interesting application of Theorem 3, we propose an upper bound
to the maximum number of edges that a k-graph without p-cliques can contain. This
kind of problems arise in the extremal graph theory field, and are usually called Turán
problems. In particular, this problem is still open. Unfortunately, the bound that we
obtain with the following result is not the best known (see [5,6]), however this example
shows that the shift from the combinatorial to the continuous domain, may reveal
interesting theoretical properties.

Corollary 1 A k-graph G = (V, E) of order n, which contains no p-clique with
p ≥ k, has

|E | ≤
(

n

k

)
− n

k(k − 1)

{[
n

(p − 1)

]k−1

− 1

}

.

Proof If G contains no p-clique then for all x ∈ ∆ we have by Theorem 3 that

h(x) ≥ (p−1)1−k

k(k−1)
. In particular if we take the barycenter of the simplex as x, by trivial

calculations we obtain the result. �	
The next result is the converse of Lemma 2 and is instrumental to prove Theorem 4,

namely our generalization of Bomze’s Theorem to k-graphs.
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Lemma 3 Let G be a k-graph and xC the characteristic vector of a maximal
(maximum) clique C of G. Then xC is a strict local (global) solution of (2)
provided that 0 < τ < 1

k .

Proof For simplicity let x = xC . We will show that x is a strict local solution of (2)
by proving that it satisfies the sufficient conditions introduced at the beginning of this
section. First we prove that x satisfies (3) and then we show that H(x) is positive
definite on the subspace M(x).

For all j ∈ σ(x) we have ∂ j h(x) = τk|C |1−k = λ, while for all � /∈ σ(x) we have
∂�h(x) ≥ |C |1−k > λ, since σ(x) is a maximal clique and therefore at least one edge
joining � and k − 1 vertices in C is missing. Hence, x is a KKT point.

Moreover all eigenvalues of H(x)|σ(x), i.e. the Hessian in x restricted to the support
of x, are positive. In fact, H(x)|σ(x) is a diagonal matrix with positive diagonal entries

H(x)|σ(x) = τk(k − 1)|C |2−k I,

where I is the identity matrix. This implies that H(x) is positive definite on the
subspace M(x).

Finally, h(xC ) = τ |C |1−k attains its global minimum where C is as large as pos-
sible, i.e. a maximum clique. �	

Note that xC is a KKT point even for τ = 1
k . However in this case, H(x)|σ(x) = α I

does not imply that H(x) is positive-definite on M(x), in general, if ∂�h(x) = λ may
happen for some � ∈ σ(x).

Theorem 4 Let G be a k-graph and 0 < τ ≤ 1
k(k−1)

(with strict inequality for k = 2).
A vector x ∈ ∆ is a local (global) solution of (2) if and only if it is the characteristic
vector of a maximal (maximum) clique of G.

Proof It follows from Lemmas 2 and 3. �	
Note that if we take k = 2 and 0 < τ < 1

2 then local (global) minimizers of h

correspond to local (global) maximizers of L
1
2 −τ

G . In fact

h(x) =
∑

{i, j}∈E

xi x j + τ

n∑

i=1

x2
i = 1

2
−

∑

{i, j}∈E

xi x j +
(

τ − 1

2

) n∑

i=1

x2
i

= 1

2
−

⎡

⎣
∑

{i, j}∈E

xi x j +
(

1

2
− τ

) n∑

i=1

x2
i

⎤

⎦ = 1

2
− L

1
2 −τ

G (x).

Since 0 < 1
2 − τ < 1

2 , this is an equivalent formulation of Bomze’s Theorem on
graphs in terms of a minimization problem.

Theorem 4 may be directly applied for devising continuous-based heuristics for the
maximum clique problem on k-graphs, which is a relatively unexplored, though inter-
esting, hard combinatorial problem. In particular, one may generalize the maximum
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clique heuristic proposed by Pelillo [17], by employing the Baum–Eagon inequality
[1] for the minimization of hG(x) over ∆. Alternatively, the optimization literature
offers several techniques for the global minimization of polynomials over the simplex
[9–11], which can serve well our purpose.
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