
 Open access Journal Article DOI:10.1137/11085219X

A Generalization of the Multishift QR Algorithm — Source link

Raf Vandebril, David S. Watkins

Published on: 26 Jul 2012 - SIAM Journal on Matrix Analysis and Applications (Society for Industrial and Applied
Mathematics)

Topics: QR algorithm, Hessenberg matrix and Eigenvalues and eigenvectors

Related papers:

 Chasing Bulges or Rotations? A Metamorphosis of the QR-Algorithm

 Computing approximate extended Krylov subspaces without explicit inversion

 Fast Computation of the Zeros of a Polynomial via Factorization of the Companion Matrix

 Eigenvalue and singular value methods

 A Fast QR Algorithm for Companion Matrices

Share this paper:

View more about this paper here: https://typeset.io/papers/a-generalization-of-the-multishift-qr-algorithm-
3f1n94d9oc

https://typeset.io/
https://www.doi.org/10.1137/11085219X
https://typeset.io/papers/a-generalization-of-the-multishift-qr-algorithm-3f1n94d9oc
https://typeset.io/authors/raf-vandebril-2vyxha5il9
https://typeset.io/authors/david-s-watkins-1w5et835ch
https://typeset.io/journals/siam-journal-on-matrix-analysis-and-applications-2o2rd46r
https://typeset.io/topics/qr-algorithm-3dbb6cm7
https://typeset.io/topics/hessenberg-matrix-1fiq0v92
https://typeset.io/topics/eigenvalues-and-eigenvectors-d2l9s7nq
https://typeset.io/papers/chasing-bulges-or-rotations-a-metamorphosis-of-the-qr-4rzs464rhe
https://typeset.io/papers/computing-approximate-extended-krylov-subspaces-without-fhc1bk6fcn
https://typeset.io/papers/fast-computation-of-the-zeros-of-a-polynomial-via-3ns79n83wd
https://typeset.io/papers/eigenvalue-and-singular-value-methods-2mlyshrwtc
https://typeset.io/papers/a-fast-qr-algorithm-for-companion-matrices-1i95e32rtn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-generalization-of-the-multishift-qr-algorithm-3f1n94d9oc
https://twitter.com/intent/tweet?text=A%20Generalization%20of%20the%20Multishift%20QR%20Algorithm&url=https://typeset.io/papers/a-generalization-of-the-multishift-qr-algorithm-3f1n94d9oc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-generalization-of-the-multishift-qr-algorithm-3f1n94d9oc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-generalization-of-the-multishift-qr-algorithm-3f1n94d9oc
https://typeset.io/papers/a-generalization-of-the-multishift-qr-algorithm-3f1n94d9oc

www.kuleuven.be

KU LEUVEN

A Generalization of the Multishift QR Algorithm
Raf Vandebril and David S. Watkins

Raf Vandebril

Department of Computer Science

KU Leuven, Belgium

Raf.Vandebril@cs.kuleuven.be

David S. Watkins

Department of Mathematics

Washington State University, USA

Watkins@math.wsu.edu

Abstract

Recently a generalization of Francis’s implicitly shifted QR

algorithm was proposed, notably widening the class of matrices

admitting low-cost implicit QR steps. This unifying framework

covered the methods and theory for Hessenberg and inverse Hes-

senberg matrices and furnished also new, single-shifted, QR-type

methods for, e.g., CMV matrices. Convergence of this approach

was only suggested by numerical experiments. No theoretical

claims supporting the results were presented. In this paper we

present multishift variants of these new algorithms. We also

provide a convergence theory that shows that the new algo-

rithm performs nested subspace iterations on rational Krylov

subspaces. Numerical experiments confirm the validity of the

theory.

Article information

• Vandebril, Raf; Watkins, David S., A generalization of the multishift QR-algorithm, SIAM Journal on Matrix

Analysis and Applications, volume 33, issue 3, pages 759-779, 2012

• This article equals the final publisher’s version. A link is found below.

• Journal’s homepage: https://www.siam.org/journals/simax.php

• Published version: http://dx.doi.org/10.1137/11085219X

• KU Leuven’s repository url: https://lirias.kuleuven.be/handle/123456789/365639

http://www.kuleuven.be
mailto:Raf.Vandebril@cs.kuleuven.be
mailto:Watkins@math.wsu.edu
https://www.siam.org/journals/simax.php
http://dx.doi.org/10.1137/11085219X
https://lirias.kuleuven.be/handle/123456789/365639

SIAM J. MATRIX ANAL. APPL. c© 2012 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 759–779

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM∗

RAF VANDEBRIL† AND DAVID S. WATKINS‡

Abstract. Recently a generalization of Francis’s implicitly shifted QR algorithm was proposed,
notably widening the class of matrices admitting low-cost implicit QR steps. This unifying framework
covered the methods and theory for Hessenberg and inverse Hessenberg matrices and furnished also
new, single-shifted, QR-type methods for, e.g., CMVmatrices. Convergence of this approach was only
suggested by numerical experiments. No theoretical claims supporting the results were presented.
In this paper we present multishift variants of these new algorithms. We also provide a convergence
theory that shows that the new algorithm performs nested subspace iterations on rational Krylov
subspaces. Numerical experiments confirm the validity of the theory.

Key words. CMV matrices, eigenvalues, QR algorithm, rational Krylov, subspace iteration

AMS subject classifications. 65F15, 15A18

DOI. 10.1137/11085219X

1. Introduction. Francis’s implicitly shifted QR algorithm [7] continues to be
the most important method for computing eigenvalues and eigenvectors of matrices.
Before we can apply Francis’s algorithm to a given matrix, we must transform the
matrix to a condensed form, usually upper Hessenberg form. In [13] a large fam-
ily of condensed forms was introduced, of which upper Hessenberg form is just one
special case. For each of those condensed forms, both an explicit and implicit QR-
like algorithm were introduced. Numerical experiments showing good results were
presented, but no convergence theory was given. In the current work we introduce
multishift algorithms, which perform multiple steps of any degree. In particular,
this allows double steps with complex conjugate shifts in real arithmetic. We also
supply a convergence theory, and we present results of numerical experiments that
support the theory. The MATLAB code is available for the interested reader at
http://people.cs.kuleuven.be/∼raf.vandebril/.

Our condensed matrices are always stored in a factored form

A = Gi1Gi2 · · ·Gin−1
R,

where R is upper triangular and each Gij is a unitary “core” transformation that
acts on only two consecutive rows. When A is unitary, R must also be unitary
and can be taken to be the identity matrix. In this case the algorithms described
in this paper reduce to fast algorithms for the unitary eigenvalue problem, capable
of computing the complete set of eigenvalues in O(n2) flops. These are related to
algorithms that have been proposed in the past. If we order theGi so that A is in upper
Hessenberg form, our algorithm is a multishift variant of the unitary QR algorithm

∗Received by the editors October 18, 2011; accepted for publication (in revised form) by J. L. Bar-
low March 26, 2012; published electronically July 26, 2012. This research was partially supported
by the Research Council KU Leuven: OT/11/055 Spectral Properties of Perturbed Normal Matrices
and their Applications.

http://www.siam.org/journals/simax/33-3/85219.html
†Department of Computer Science, KU Leuven, 3001 Leuven (Heverlee), Belgium (raf.

vandebril@cs.kuleuven.be). This author’s work was supported by the grant “Postdoctoraal On-
derzoeker” from the Fund for Scientific Research–Flanders (Belgium).

‡Department of Mathematics, Washington State University, Pullman, WA 99164-3113 (watkins@
math.wsu.edu).

759

760 RAF VANDEBRIL AND DAVID S. WATKINS

first proposed by Gragg [8]. If we order the core transformations so that A is in CMV
form [15, 3, 11], our algorithm is similar to the one proposed by Bunse–Gerstner and
Elsner [2]. A different approach to multishift QR for the unitary eigenvalue problems
was presented in [4]. Interesting to note is that [12] presents a cache friendly algorithm
for the application of multiple sets of rotations thereby elevating performance to level-
3 BLAS status, resulting in a high-performance version of the QR algorithm.

Concerning notation, we have the following conventions. Matrices are typeset in
an uppercase font: A, Q; vectors appear as boldface, lowercase letters: p, v; scalars
are depicted as lowercase letters, e.g., the elements of matrices and vectors: A = [aij]ij
and p = [pj]j ; uppercase calligraphic letters stand for subspaces: K, E .

2. Preliminaries. Let A be an n × n complex matrix whose eigenvalues we
would like to compute. We must assume A is nonsingular; the inverse matrix will
play a big role in the development. We will not store A in the conventional way,
but as a product of core transformations and an upper-triangular matrix. A core
transformation is a nonsingular matrix Gi that agrees with the identity matrix except
in the 2× 2 submatrix at the intersection of rows i and i+1 and columns i and i+1.
We say that Gi acts on rows i and i + 1 because the operation X → GiX modifies
rows i and i + 1 of X , leaving the other rows untouched. The inverse of a core
transformation is a core transformation. Although one can consider nonunitary core
transformations, we will restrict our attention to core transformations that are unitary
in this paper. Therefore, whenever we speak of a core transformation, we will mean
unitary core transformation. Unless otherwise stated, we will follow the convention
that the subscript i on the core transformation Gi indicates that it acts on rows i and
i+ 1.

The matrix A is said to be of condensed form if it admits a QR decomposition

(2.1) A = Gi1 · · ·Gin−1
R,

where i1, . . . , in−1 is a permutation of the integers 1, . . . , n − 1, each Gij is a core
transformation, and R is upper triangular. Not every permutation leads to a distinct
condensed form. If the indices i and j differ by more than one, we have GiGj = GjGi,
so it does not matter whether j goes before or after i. However, since Gi does not
generally commute with Gi+1, it does matter whether Gi is to the left or to the
right of Gi+1 in the factorization. This information is recorded in a position vector
p associated with A. This (n− 2)-tuple takes pi = ℓ if Gi is to the left of Gi+1, and
pi = r if Gi is to the right of Gi+1.

In [13] it was shown that every complex n × n matrix is unitarily similar to a
matrix in condensed form (2.1). The position vector p can be chosen arbitrarily. The
similarity transformation can be effected by a direct method with O(n3) complexity.

The condensed form (2.1) is a QR factorization of A with the Q factor further
decomposed into core transformations. We will call this a detailed factorization.

A core transformation Gi will be called nontrivial if it is not upper triangular,
i.e., gi+1,i %= 0. Since we are restricting our attention to unitary core transformations
here, nontrivial means nondiagonal. A matrix in condensed form (2.1) will be called
irreducible if each of the core transformations in the factorization is nontrivial. Notice
that if any one of the core transformations, say Gj , is trivial, then A has the form

A =

[

H1

H2

] [

R11 R12

R22

]

=

[

A11 A12

0 A22

]

,

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 761

!!

!!

!!

!!

× × × × ×
× × × ×

× × ×
× ×

×

(a) Hessenberg

!

!

!

!

!

!

!

!

× × × × ×
× × × ×

× × ×
× ×

×

(b) Inverse Hessenberg

!!

!

!

!

!

!

!

!

!

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×
×

(c) CMV pattern

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!!

!

!

!

!

!!

(d) Irregular pattern

Fig. 2.1. Graphical representation of some factorizations.

where H1 and H2 are products of j−1 and n−j−1 core transformations, respectively.
Thus the eigenvalue problem for A reduces to smaller eigenvalue problems for A11 and
A22, each of which is presented in condensed form.

2.1. Examples. As the ordering of core transformations in a detailed factoriza-
tion is crucial, we introduce a graphical manner of representing the relative positions
of the transformations to aid understanding. Each core transformation is represented
by a bracket, with arrows pointing to the rows on which the transformation acts.

Example 2.1 (Hessenberg matrix). The Q factor in the QR factorization of a
Hessenberg matrix admits a factorization Q = G1G2 · · ·Gn−1, often referred to as
the Schur parameterization [9]. The position vector is p = [ℓ, ℓ, . . . , ℓ]. Figure 2.1(a)
shows the factorization, with a descending sequence of core transformations.

Example 2.2 (inverse Hessenberg). The Q factor of a QR factorization of an
inverse Hessenberg matrix is of lower Hessenberg form, thus admitting a factoriza-
tion Q = Gn−1Gn−2 · · ·G1. The position vector p = [r, r, . . . , r] corresponds to an
ascending sequence of core transformations as shown in Figure 2.1(b).

Example 2.3 (CMV pattern). A unitary matrix Q with a factorization (consider n
even)Q = G1G3 · · ·Gn−1·G2G4 · · ·Gn−2 and associated position vector [ℓ, r, ℓ, r, ℓ, . . .]
is called a CMV matrix [15, 10, 3, 11]. In Figure 2.1(c) the alternating pattern, called
a zigzag pattern, is visualized.

Example 2.4 (irregular pattern). In Figure 2.1(d) an irregular pattern is shown,
and the upper-triangular matrix is omitted. The position vector is of the form p =
[r, r, r, r, r, ℓ, ℓ, ℓ, r, r, ℓ, ℓ, r, ℓ, r].

These generalizations of upper Hessenberg form have been studied recently in
other contexts. In particular, Fiedler matrices [5, 6] are of this form. See also the
recent work [1]. The possibility of such generalizations was first mentioned by Kimura
[10], who was also the first to mention CMV matrices, as far as we know.

762 RAF VANDEBRIL AND DAVID S. WATKINS

3. Rational Krylov spaces associated with a condensed form. It was
shown in [13] that the unitary similarity transformation that maps a matrix to a given
condensed form (2.1) is essentially uniquely determined. The argument depends on a
connection with a certain sequence of rational Krylov subspaces associated with the
condensed form. This connection is also crucial to the description of the generaliza-
tions of Francis’s algorithm that we are going to introduce, and it is needed for the
convergence theory of the algorithms.

Let p be the position vector associated with a given condensed form (2.1). For
k = 1, 2, 3, . . . , n − 1, we define the rational Krylov space Kp,k(A,v) to be a space
spanned by k vectors from the bilateral sequence

(3.1) . . . , A3v, A2v, Av, v, A−1v, A−2v, A−3v, . . . ,

where the vectors are taken in an order determined by the position vector p. The
first vector in the sequence is v. The second vector is taken to be either Av or A−1v,
depending upon whether p1 = ℓ or r, respectively. In general, once i vectors have
been chosen from the sequence (3.1), the next vector is taken to be the first vector to
the left of v that has not already been taken if pi = ℓ. Otherwise (pi = r), we choose
the first vector to the right of v that has not already been taken.

Example 3.1 (Hessenberg matrix). For a Hessenberg matrix the associated po-
sition vector comprises only ℓ’s. It follows that the standard Krylov subspaces are
retrieved:

Kp,k(A,v) = span
{

v, Av, . . . , Ak−1v
}

= Kk(A,v).

Example 3.2 (inverse Hessenberg matrix). An inverse Hessenberg matrix is char-
acterized by the exclusive appearance of r’s in the associated position vector. We
acquire the standard Krylov subspaces built from the inverse of A:

Kp,k(A,v) = span
{

v, A−1v, . . . , A−k+1v
}

= Kk(A
−1,v).

Example 3.3 (CMV pattern). The alternating occurrence of ℓ and r in the
position vector [ℓ, r, ℓ, r, ℓ, . . .] linked to a CMV matrix leads to

Kp,k(A,v) = span
{

v, Av, A−1v, A2v, A−2v, . . .
}

.

Example 3.4 (irregular pattern). The irregular pattern depicted in Figure 2.1(d)
corresponds to the position vector p = [r, r, r, r, r, ℓ, ℓ, ℓ, r, r, ℓ, ℓ, r, ℓ, r], which yields

Kp,k(A,v) = span
{

v, A−1v, A−2v, A−3v, A−4v, A−5v, Av, A2v, A3v, A−6v, . . .
}

.

Each rational Krylov space Kp,k(A,v) is just a power shifted version of a standard
Krylov space associated with A or A−1.

Lemma 3.5. Suppose that in the first k− 1 components of p the symbol ℓ appears
i times and the symbol r appears j times (i+ j = k − 1). Then

Kp,k(A,v) = span
{

A−jv, . . . , Aiv
}

= A−jKk(A,v) = AiKk(A
−1,v).

Standard Krylov spaces obey the inclusion AKk(A,v) ⊂ Kk+1(A,v). Here we
must be a bit more careful.

Lemma 3.6. For k = 1, . . . , n− 2,
(a) if pk = ℓ, then AKp,k(A,v) ⊆ Kp,k+1(A,v).
(b) if pk = r, then A−1Kp,k(A,v) ⊆ Kp,k+1(A,v).

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 763

Proof. Suppose Kp,k(A,v) = span
{

A−jv, . . . , Aiv
}

. If pk = ℓ, then Kp,k+1(A,v)

= span
{

A−jv, . . . , Ai+1v
}

, while if pk = r, then Kp,k+1(A,v) = span{A−j−1v, . . . ,
Aiv}.

For k = 1, . . . , n, define Ek = span{e1, . . . , ek}, with ej the jth canonical basis
vector. For each k, Ek is invariant under the upper-triangular matrix R and under all
core transformations Gj except Gk. If x ∈ Ek and Gjx = y, then yk = xk unless j is
k − 1 or k.

Theorem 3.7. Let A be a matrix in the irreducible condensed form (2.1) with
associated position vector p. Then for k = 1, . . . , n− 1,

Ek = Kp,k(A, e1).

Proof. The proof is by induction on k. The case k = 1 is trivial. Now let
us show that if Ek = Kp,k(A, e1), then Ek+1 = Kp,k+1(A, e1). Since Kp,k(A, e1) ⊆
Kp,k+1(A, e1), we automatically have Ek ⊆ Kp,k+1(A, e1). If we can show that ek+1 ∈
Kp,k+1(A, e1), we will be done.

We can rewrite (2.1) as

A = GLGkGRR,

where GL and GR are the products of the factors to the left and right of Gk, respec-
tively. (This factorization is not uniquely determined; any such factorization can be
used.) We consider two cases.

First suppose pk = ℓ. Then, using part (a) of Lemma 3.6 with x = e1, we
have AEk ⊆ Kp,k+1(A, e1). Using the above factorization, we are going to show
the existence of x ∈ Ek and z ∈ Ek+1 with zk+1 %= 0, such that z = Ax. If we
can do this, then z ∈ AEk, so z ∈ Kp,k+1(A, e1). By the form of z, and since
e1, . . . , ek ∈ Kp,k+1(A, e1), we easily deduce that ek+1 ∈ Kp,k+1(A, e1).

It remains to produce vectors x and z such that z = Ax, x ∈ Ek, z ∈ Ek+1, and
zk+1 %= 0. Since GR does not contain the factor Gk, the space Ek is invariant under
GRR. Since this matrix is nonsingular, it maps Ek onto Ek. Thus there is an x ∈ Ek

such that GRRx = ek. Let y = Gkek. Then y ∈ Ek+1 and, because Gk is nontrivial,
yk+1 %= 0. Let z = GLy. Since pk = ℓ, GL does not contain the factor Gk+1. Thus
Ek+1 is invariant under GL, so z ∈ Ek+1. Moreover zk+1 = yk+1 %= 0 because GL

does not contain the factor Gk. Putting the pieces together, we have z = Ax, where
x ∈ Ek, z ∈ Ek+1, and zk+1 %= 0.

Now we consider the case pk = r. Using part (b) of Lemma 3.6, we have A−1Ek ⊆
Kp,k+1(A, e1). If we can show the existence of x ∈ Ek, z ∈ Ek+1 with z = A−1x and
zk+1 %= 0, we will have z ∈ Kp,k+1(A, e1), and we can deduce as in the previous case
that ek+1 ∈ Kp,k+1(A, e1).

To produce x and z with the desired properties, we use the factorization

A−1 = R−1G−1
R G−1

k G−1
L

and make a similar argument as in the previous case. It is crucial that, since pk = r,
G−1

k+1 is a factor of G−1
L , not of G−1

R .

4. Juggling core transformations. Our generalization of the implicitly shifted
QR algorithm will be described in terms of three types of operations on core trans-
formations, which we call passing through, fusion, and translation.

764 RAF VANDEBRIL AND DAVID S. WATKINS

In the passing through operation, core transformations are “passed through”
upper-triangular matrices. Consider a product GiR, where Gi is a core transfor-
mation acting on rows i and i + 1. If we multiply the factors Gi and R together,
we get a product that is upper triangular, except for a bulge in position (i + 1, i).
The bulge can be removed by applying a core transformation acting on the right on
columns i and i+1, resulting in a new factorization R̃G̃i, where R̃ is upper triangular.
We have GiR = R̃G̃i, so the core transformation has been passed from the left to the
right of the upper-triangular matrix. In a similar manner we can pass a core trans-
formation from right to left. Now if we have a long sequence of core transformations
in a particular pattern to the left of an upper-triangular matrix, we can pass the core
transformations through one by one so that the same pattern of core transformations
emerges on the right-hand side, e.g.,

!

!

!

!

!

! !

!

!

! !

!! !

× × × × ×
× × × ×

× × ×
× ×

×

=

× × × × ×
× × × ×

× × ×
× ×

×

!

!

!

!

!

! !

!

!

! !

!! !

.

The triangular matrices are not equal, and neither are the core transformations on
the left equal to those on the right. What is preserved is the pattern of the core
transformations.

If two unitary core transformations act on the same two rows, then their product
is a unitary core transformation. The act of combining two core transformations in
this way is called fusion and is depicted graphically as

!→֒ !! ! = !! .

The only other operation we need to describe is the translation operation, which
depends on the turn-over (or shift-through) operation, depicted by

! ! !!

!

!

! =
!

!

!

!! ! .

Here we have three core transformations, one acting on rows i and i + 1 sandwiched
between two others acting on rows i− 1 and i. The product of these can be rewritten
as a different product of three core transformations, one acting on rows i − 1 and i
sandwiched between two acting on rows i and i+ 1. The proof that this can be done
is based on two variants for factoring a 3× 3 unitary matrix [14].

Having a descending or ascending sequence of sufficient length, a translation op-
eration can be carried out. Consider first a very simple case:

(4.1)

!•!
!• !!

!•

!

!

!•!
=

!•!
! ! !!

!

!

!

!•!
=

!•!
!

!

!

!! !

!•!
=

!•!
!•

!

!

!•! !

!•!
.

On the far left-hand side of (4.1) there is a descending sequence of core transformations
with one additional core transformation to the right. This lone transformation is
brought into contact with two of the transformations of the descending sequence, a

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 765

turn-over transformation is done, a new descending sequence is formed, and a lone
core transformation now sits to the left of the descending sequence. We started with
a spare core transformation on the right and we ended with a spare transformation
on the left. The spare transformation also moved down one position in the process.
This is important.

Now consider the more complicated situation:

!• ! !!

!•

!

!

!

!!

!•

! !

!!

!•

!

! !!

!• ! !

!

!

!

!

!•

! ! !

!

=

!•
! !

!

!•!

!

!

!

!

!•! !

!

!

!•!

! !

!

!•
! !

!

!

! !

!•! ! ! !

.

The descending sequence has several core transformations to the right of it. These
can be passed through the descending sequence one at a time, as described above,
resulting in the same pattern emerging to the left of the descending sequence, except
that the pattern has been moved down by one row. This is what we call a translation
through a descending sequence.

Translations through ascending sequences are defined similarly. The picture is
just the mirror image of that of a translation through a descending sequence. Core
transformations can be passed from left to right through an ascending sequence with
the pattern of the core transformations moving down by one row.

5. Generalization of Francis’s implicitly shifted QR iteration. General-
izations of both the explicit and implicit QR algorithms were given in [13]. There it
was shown that if the matrix A has condensed form with position vector p, then the
matrix Â resulting from one iteration has a different position vector p̂ derived from
p by moving each entry up by one. The vacated bottom entry can be filled in with
either an ℓ or an r, and we can control which one it is. For example, if p = [ℓ, r, r, r, ℓ],
then p̂ will be either [r, r, r, ℓ, ℓ] or [r, r, r, ℓ, r], whichever we prefer.

We are now going to introduce a multishift algorithm that does steps of degree
m, i.e., m single steps all at once. Based on our experience with single steps, we
would expect that after such a multiple step, the entries of the position vector would
be moved upward by m positions. This is indeed what happens. For example, if we
have p = [ℓ, r, r, r, r, ℓ, ℓ, ℓ] and we then do a step of degree m = 3, we obtain a matrix
whose condensed form has the position vector p̂ = [r, r, ℓ, ℓ, ℓ, a, b, c], where [a, b, c]
can be made to be any of the eight possible combinations of the two symbols ℓ and r.

An iteration of degree m begins with the choice of m nonzero shifts ρ1, . . . , ρm.
Suppose that in the first m positions of p, the symbols ℓ and r appear i and j times,
respectively. The iteration begins by calculating a vector

(5.1) x = αA−j(A− ρ1I) · · · (A− ρmI)e1.

The scalar α is any convenient scaling constant. Letting

p(z) = (z − ρ1) · · · (z − ρm),

we can write this as

x = αA−jp(A)e1.

766 RAF VANDEBRIL AND DAVID S. WATKINS

The equation

A−1(A− ρI) = −ρ(A−1 − ρ−1I)

shows that x can also be expressed as

(5.2) x = βAi(A−1 − ρ−1
1 I) · · · (A−1 − ρ−1

m I)e1

or, letting q(z) = (z − ρ−1
1) · · · (z − ρ−1

m),

x = βAiq(A−1)e1.

Alternatively we can express x using a product containing i factors of the form A−ρI
and j factors of the form A−1 − ρ−1I, in any order, with no additional power of A.
The following algorithm gives a procedure for computing x:

(5.3)

x ← e1
for i = 1, . . . , m,

if pi = ℓ
[

x ← αi(A− ρiI)x,
if pi = r
[

x ← αi(I − ρiA
−1)x.

The αi are any convenient scaling factors.
Theorem 5.1. The vector x given by (5.1), (5.2), or (5.3) satisfies x ∈ Em+1.
Proof. Let x(i) denote the vector x after i steps of (5.3). Using Lemma 3.6 and

Theorem 3.7 we see by induction on i that x(i) ∈ E i+1.
Once x has been computed, one can build m core transformations S1, . . . , Sm

such that

(5.4) S−1
1 · · ·S−1

m x = γe1.

Here, we continue with the convention that Si acts on rows i and i + 1. Next we
transform A to

(5.5) S−1
1 · · ·S−1

m ASm · · ·S1.

The rest of the iteration will consist of returning this matrix to a condensed form. To
get an idea what this matrix looks like, consider a simple case. Suppose A is 4 × 4
with p = [ℓ, ℓ] (upper Hessenberg):

A =

!!

!!

!!

× × × ×
× × ×

× ×
×

.

S−1
1 · · ·S−1

m and Sm · · ·S1 are descending and ascending sequences of core trans-
formations, respectively, so in the case m = 2, for example,

S−1
1 S−1

2 AS2S1 =

!!

!!
!!

!!

!!

× × × ×
× × ×

× ×
×

!

!

!

! .

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 767

Two core transformations lie to the right of the upper-triangular factor. Our first
step will be to pass them through the upper-triangular matrix so that all of the core
transformations are together:

S−1
1 S−1

2 AS2S1 =

!!

!!
!!

!!

!!

!

!

!

!

× × × ×
× × ×

× ×
×

.

In the course of the iteration we will repeatedly perform similarity transformations
that cause core transformations to appear to the right of the triangular matrix. In
every case we will immediately pass the core transformations through the triangular
matrix. In other cases we will need to pass core transformations from left to right
through the triangular matrix in preparation for a similarity transformation. These
are routine operations, and we can simplify our pictures by suppressing the upper-
triangular matrix. Thus we write

!!

!!
!!

!!

!!

!

!

!

! ,

leaving out the triangular matrix.1 Now consider a more complex example with n = 6,
p = [r, ℓ, ℓ, r], and m = 3:

(5.6)

! !• !!

! !•

!

!

!

!

!

!

! !

!

! !

!

!

!

!

!

.

In this picture there is a main branch, representing the matrix A, a descending branch
on the left, and an ascending branch on the right. We want to chase away the
ascending and descending branches to return the matrix to condensed form. The
chasing will be done by translation operations, which move the core transformations
downward.

Step 0. This is a preparatory step. The first m − 1 core transformations in the
main branch will be called the limb. In (5.6) the limb consists of the two transforma-
tions marked by a bullet. Step 0 translates the limb either to the left or the right and
then eliminates the mth transformation in the main branch by a fusion operation.
Precisely, we have the following:

• If pm−1 = ℓ, translate limb to left through descending branch. Otherwise,
translate limb to right through ascending branch.

• If pm = ℓ, fuse mth core transformation in main branch with mth core trans-
formation of descending branch. Otherwise, fuse with ascending branch.

In (5.6), pm−1 = p2 = ℓ, so we translate the limb to the left. Notice that translation to
the right is impossible because of the position of the mth core transformation. Once
the limb has been moved, since pm = p3 = ℓ, we fuse the mth core transformation

1This is exactly the correct picture in the case when A is unitary.

768 RAF VANDEBRIL AND DAVID S. WATKINS

with the descending sequence. After Step 0 we have

(5.7)

! !

!•

!

! !

!

!•

! !

! !

!

! !

!

!

!

!

!

.

These same operations are shown schematically for a larger example in Figure 5.1.
This matrix has dimension 22, so there are 21 core transformations, indicated by dots
in the first picture. The position vector is p = [r, ℓ, ℓ, ℓ, ℓ, r, ℓ, r, ℓ, ℓ, ℓ, r, r, r, r, ℓ, ℓ, r, r, r].
The degree of the step is m = 4.

Initial

similarity
Limb to

left

pm−1 = ℓ

Fuse mth

transform

left

pm = ℓ

Fig. 5.1. Step 0: preparatory step.

Main loop. Once Step 0 is complete, we proceed to steps k = 1, 2, . . . , n − 2.
Immediately before step k, the matrix consists of a finished part comprised of k − 1
core transformations (if k > 1), followed by descending and ascending branches of
length m, followed by a not-yet-touched part of length n − m − k (if k < n − m).
There is also a limb of length m − 1, which lies either to the left of the descending
branch or to the right of the ascending branch.

If pm+k = ℓ, the descending branch plus the top two transformations of the not-
yet-touched part form a descending sequence of length m+ 2. Transformation m+ 1
becomes a part of the descending branch. The ascending branch will be translated
through the descending branch, moving it downward. Transformation m+ 2 remains
untouched by this step, but it is in the right position not to interfere with the trans-
lation. If pm+k = r, the roles of the descending and ascending branches are reversed.
The value of pm+k determines the value of p̂k. The complete step k (k < n−m− 1)
is as follows:

• Set p̂k = pm+k.
• If p̂k = ℓ, augment descending branch by adjoining first transformation from
not-yet-touched part. Translate ascending branch to left through descending
branch.

• If p̂k = r, augment ascending branch and translate descending branch to right
through descending branch.

• If limb is on left, translate limb to right through ascending branch. Otherwise,
translate limb to left through descending branch. Limb is now in middle.

• If p̂k = ℓ, perform unitary similarity transformation that eliminates ascend-
ing branch from the left and makes it appear on the right. Pass ascending
branch through upper-triangular matrix. Transfer top core transformation
from descending branch to finished part. Position of this transformation is
consistent with the choice p̂k = ℓ. Limb ends up on left.

• If p̂k = r, pass ascending branch to right, through upper-triangular matrix.
Then perform unitary similarity transformation that eliminates descending

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 769

branch from the right and makes it appear on the left. Transfer top core
transformation from ascending branch to finished part. Position of this trans-
formation is consistent with the choice p̂k = r. Limb ends up on right.

In (5.7) we have pm+k = p4 = r (with m = 3 and k = 1), so we set p̂1 = r and
translate the descending sequence through the ascending sequence. Then, since the
limb is on the left, we translate it to the right through the ascending sequence to
obtain

(5.8)

!

!

!

!

!

!

!•

!

!

!

!

!•

! !

!

!

! ! !

!

.

We then perform a unitary similarity transformation that removes the three core
transformations of the descending sequence from the right and places them on the
left:

(5.9)

!×
! !

!

!

! !

!

!•!

! !

!

!•

!

!

!

! !

!

.

The top core transformation of the ascending sequence, marked with the symbol × in
(5.9), is removed from the ascending sequence and becomes the first transformation
in the finished part.

For our larger 22 × 22 example, step 1 is shown in Figure 5.2. The first core
transformation of the final pattern is marked by a dot in the final picture. The
second step is depicted in Figure 5.3. Subsequent steps, up to step 16 = n−m − 2,
are depicted in Figure 5.4.

Augment

descending

branch

pm+1 = ℓ

Translate

ascending

branch

pm+1 = ℓ

Limb to

middle

Execute

similarity

pm+1 = ℓ

Decouple

all

Fig. 5.2. Main loop for k = 1.

Step n−1−m. At the beginning of step k = n−1−m, there is only one remaining
not-yet-touched core transformation. Now we have a choice. We can set p̂k = ℓ and

770 RAF VANDEBRIL AND DAVID S. WATKINS

Augment

ascending

branch

pm+2 = r

Translate

descending

branch

pm+2 = r

Limb to

middle

Execute

similarity

pm+2 = r

Decouple

all

Extend

finished

part

Fig. 5.3. Main loop for k = 2.

k = 3 k = 4 k = 5 k = 6

k = 7 k = 15 k = 16

Fig. 5.4. Several chasing steps.

adjoin the final translation to the descending branch, or we can set p̂k = r and adjoin
the final transformation to the ascending branch. Then we proceed exactly as in the
previous steps. Then we do one more thing. Since there is no more untouched part
of the matrix, the bottom transformations of the ascending and descending branches
are adjacent and can be fused.

• Remove bottom core transformations from descending and ascending branches
and fuse them. The resulting core transformation will be called the bottom
transformation.

The descending and ascending branches now have length m − 1. The limb still has
length m − 1. Its bottom transformation is now at the same level as the bottom
transformation. That is, it is at the bottom of the matrix.

In our small example (5.9), at step k = 2, we are already at step n−m− 1. We
can choose to translate the ascending sequence through the descending sequence or
vice versa. Suppose we decide to do the former (choice p̂2 = ℓ). We translate the
ascending sequence through the descending sequence. Then, since the limb is on the
right, we also pass it through the descending sequence. Then we effect a similarity
transformation that removes the ascending sequence from the left and places it on the

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 771

right. The result is

(5.10)

!×
!×

!

!

! !

!•

!

! !

!

!•

! !

!→֒ !

!

! ! !

.

The bottom transformations in the descending and ascending sequences are fused
to form the bottom transformation. The top transformation is removed from the
descending sequence and becomes part of the finished part, which is denoted by ×
symbols.

For our larger example, step n− 1−m = 17 is shown in Figure 5.5.

Similarity

Choose

p̂17 = r

Decouple

bottom

core trans.

Fuse

them

Fig. 5.5. Step n− 1−m.

Final steps. The final steps are steps k = n−m through n− 2. At the beginning
of step k, the ascending and descending branches have length n − 1 − k. Together
with the bottom transformation they form a vee. The limb also has length n− 1− k,
and its bottom is level with the bottom transformation. We have a choice. In what
follows, we set either p̂k = ℓ or p̂k = r:

• If p̂k = ℓ, adjoin bottom transformation to descending branch, then translate
ascending branch to left through descending branch.

• If p̂k = r, adjoin bottom transformation to ascending branch, then translate
descending branch to right through ascending branch.

• Remove bottom translation from limb. Limb now has length n− 2− k.
• If limb is on left, fuse transformation that was removed from the limb with
bottom transformation of ascending branch, if possible. Then translate re-
maining part of limb to right through ascending branch. If the fusion opera-
tion is not possible initially, do the translation first, then fuse.

• If limb is on right, fuse transformation that was removed from the limb with
bottom transformation of descending branch, if possible. Then translate re-
maining part of limb to left through descending branch. If the fusion opera-
tion is not possible initially, do the translation first, then fuse.

• If p̂k = ℓ, perform unitary similarity transformation that moves ascending
branch from left to right. Pass ascending branch through upper-triangular
matrix. Transfer top core transformation from descending branch to finished
part. Limb ends up on left.

• If p̂k = r, pass descending branch through upper-triangular matrix. Then
perform unitary similarity transformation that moves descending branch from
right to left. Transfer top core transformation from ascending branch to
finished part. Limb ends up on right.

772 RAF VANDEBRIL AND DAVID S. WATKINS

• Remove bottom transformations from descending and ascending branches and
fuse them. This is the new bottom transformation. Descending and ascending
branches now have length n− 2− k.

From (5.10), if we take p̂k = r at step k = 3, we obtain

(5.11)

!×
!×

!

!

!×
! !

!

!

!

!

!•! !

.

At step n−2, the length of the limb is decreased to one, so the final limb translation
is skipped. Of course, the fusion operation does take place, annihilating the limb
completely. At the end of step n − 2, the lengths of the descending and ascending
branches become zero. The bottom transformation is adjoined to the finished part,
and the iteration is complete. The new matrix is a condensed matrix with position
vector p̂.

From (5.11), if we take p̂k = r at step k = 4, we obtain the final result

!×
!×

!

!

!×
!×

!

!×

!

!

.

The final position vector is p̂ = [r, ℓ, r, r].
For our larger example, step n −m = 18 is depicted in Figure 5.6 with p̂k = ℓ.

The last two steps are shown in Figure 5.7 with p̂19 = ℓ and p̂20 = r. The position
vector of the final configuration is p̂ = [ℓ, r, ℓ, r, ℓ, ℓ, ℓ, r, r, r, r, ℓ, ℓ, r, r, r, r, ℓ, ℓ, r].

Augment

descending

branch

Execute

translation

Decouple

limb

Fuse

core

trans.

Limb

to

middle

Similarity

Reorder

Fig. 5.6. Step n−m = 18 for choice = ℓ.

Augment

descending

branch

k = 19

p̂19 = ℓ

Similarity

Augment

ascending

branch

k = 20

p̂20 = r

Similarity

Fig. 5.7. Steps 19 and 20 for choices ℓ and r.

In case m = 1 (single shift), the algorithm in this section reduces to that of [13].
The length of the limb becomes zero, and all operations involving the limb can be
omitted.

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 773

6. Convergence theory. The iteration that we have just described effects a
unitary similarity transformation

(6.1) Â = Q−1AQ

to a new condensed matrix Â, which has position vector p̂.
Theorem 6.1. Suppose Â = Q−1AQ, where Â is in irreducible condensed

form with position vector p̂. Let q1, . . . ,qn denote the columns of Q, and let Qk =
span{q1, . . . ,qk}, k = 1, . . . , n. Then

Qk = Kp̂,k(A,q1), k = 1, . . . , n− 1.

Proof. Applying Theorem 3.7 to Â, we have, for k = 1, . . . , n− 1,

Ek = Kp̂,k(Â, e1).

Thus

Qk = QEk = Kp̂,k(QÂQ−1, Qe1) = Kp̂,k(A, q1).

The transforming matrix in (6.1) has the form

Q = Sm · · ·S1U,

where U is the product of all of the similarity transformations performed during steps
1, . . . , n− 1. One easily checks that none of those transformations touch the first row,
so Ue1 = e1.

Theorem 6.2. Let p(z) = (z − ρ1) · · · (z − ρm), where ρ1, . . . , ρm are the shifts.
Then

Qe1 = δx = ηA−jp(A)e1,

where δ and η are scalars.
Proof. Since Ue1 = e1, we have Qe1 = Sm · · ·S1e1. By (5.4), Sm · · ·S1e1 is a

multiple of x, where x is given by (5.1).
The next theorem, which is our main result, shows that each iteration of our

algorithm effects nested subspace iterations with a change of coordinate system [18,
section 6.2], [19, p. 396] on a sequence of rational Krylov spaces. It follows that, given
good choices of shifts, successive iterates will move quickly toward block-triangular
form, leading to a deflation.

Theorem 6.3. Consider one iteration of degree m, Â = Q−1AQ, where A and
Â are in irreducible condensed form with position vectors p and p̂, respectively. For
a given k (1 ≤ k ≤ n − 1), let i(k) and j(k) denote the number of symbols ℓ and r,
respectively, in the first k−1 positions of p (i(k)+j(k) = k−1). Define î(k) and ĵ(k)
analogously with respect to p̂. Then the iteration A → Â effects one step of subspace
iteration driven by

(6.2) Aî(k)−i(k)−j(m+1)p(A),

followed by a change of coordinate system. By this we mean that

Aî(k)−i(k)−j(m+1)p(A)Ek = Qk.

The change of coordinate system Â = Q−1AQ maps Qk back to Ek.

774 RAF VANDEBRIL AND DAVID S. WATKINS

Proof. Using Theorems 3.7 and 6.2, Lemma 3.5, and Theorem 6.1, in that order,
we get

Aî(k)−i(k)−j(m+1)p(A)Ek = Aî(k)−i(k)−j(m+1)p(A)Kp,k(A, e1)

= Aî(k)−i(k)Kp,k(A,A
−j(m+1)p(A)e1)

= Aî(k)−i(k)Kp,k(A,q1)

= Kp̂,k(A,q1)

= Qk.

To help clarify this result, consider the two extreme cases. In the Hessenberg case
(p̂ = p = [ℓ, . . . , ℓ]), the driving function (6.2) is p(A) = (A − ρ1I) · · · (A − ρmI) for
all k, in agreement with standard convergence theory. In the inverse Hessenberg case
(p̂ = p = [r, . . . , r]), the driving function is A−mp(A) ∼ (A−1−ρ−1

1 I) · · · (A−1−ρ−1
m I)

for all k.
Now consider s successive iterations. To begin with we will assume that the same

shifts are taken on all iterations. If we consider the subspace iterations that effectively
take place in the original coordinate system, we have

Ek → Aĩ(p(A))sEk,

where ĩ is the difference in the number of times the symbol ℓ appears in the first
k − 1 positions of the position vector of the final condensed matrix versus the initial
condensed matrix. The power ĩ is bounded: −n ≤ ĩ ≤ n. If the ℓ-r pattern is periodic
with period m, ĩ will be zero.

Let λ1, . . . ,λn denote the eigenvalues of A, ordered so that |p(λ1) | ≥ |p(λ2) | ≥
· · · ≥ |p(λn) |. Then the average improvement per step, taken over a sequence of s
steps, is given approximately by the ratio

(6.3) |(λk+1/λk)
ĩ/sp(λk+1)/p(λk) |.

The term that is dependent on ĩ could be significant in the short term, but it will be
insignificant in the long run.

If all the shifts are excellent approximations to m eigenvalues of A, then in the
case k = n−m we will have |p(λk+1)/p(λk) | , 1, and there will be rapid convergence
for that value of k (meaning Gk goes rapidly to diagonal form).

If we now make the more realistic assumption that the shifts are changed on each
step, (6.3) is replaced by

|(λk+1/λk)
ĩ
∏s

i=1 pi(λk+1)/pi(λk) |
1/s

,

where pi is the polynomial determined by the shifts on the ith iteration. With good
shift choices, locally quadratic convergence is obtained.

6.1. Choice of shifts. We tried two similar shifting strategies. The conceptu-
ally simplest is to compute the eigenvalues of the lower-rightm×m submatrix and use
them as the shifts. This normally yields quadratic convergence [20, 17]. In order to
implement this strategy, we must form the lower right-hand submatrix by multiplying
some of the core transformations into the upper-triangular matrix. Usually this is a

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 775

trivial task. For example, in the Hessenberg case, we just have to multiply in the
bottom m core transformations in order from bottom to top. The total cost of the
shift computation is O(m3), which is O(1) if m is a small fixed number. However, in
the inverse Hessenberg case, we must multiply in all n − 1 core transformations, as
we must go in order from nearest to furthest from the triangular matrix. Since we
need only update the last m columns, the cost is only O(nm) = O(n), which is not
too bad, but it is nevertheless more than we are used to paying for shifts. Note that
in the CMV case the computation costs O(1). In the random case the cost will also
be O(1) with high probability.

Because this strategy is occasionally more expensive than we would like, we tried
another strategy in which we just multiply the bottom m core transformations into R.
This strategy uses as shifts the eigenvalues of the lower right-handm×m submatrix of

Gj1 · · ·GjmR,

where j1, . . . , jm is a permutation of n−m, . . . , n− 1 that leaves these core transfor-
mations in the same relative order as they are in the detailed factorization of A. If
pn−m−1 = ℓ, this submatrix is exactly the same as the lower right-hand submatrix
of A, so this strategy is the same as the first strategy. When pn−m−1 = r, there will
be a difference. However, if Gn−m = I, which is the case when the bottom m × m
submatrix is disconnected from the rest of the matrix, there is again no difference.
If Gn−m is close to the identity, as we have when we are close to convergence, then
the difference will be slight, and the difference in shifts will also be slight. As a
consequence, this strategy should also yield quadratic convergence.

We tried both strategies and found that they gave similar results. For the numer-
ical experiments reported below, we used the second shift strategy.

6.2. Convergence in the single-shift case. Now consider the simple case
m = 1. With good shifts we expect rapid convergence when k = n− 1, so let’s focus

on that case. Theorem 6.3 gives (for r(A) = Aî(n−1)−i(n−1)−j(2)(A− ρI))

Qn−1 = r(A)En−1.

If we assign numerical values ℓ = 1 and r = 0 to the entries of the position vectors, we
have î(n−1)− i(n−1)− j(2) = p̂n−2−p1− j(2). It is easy to check that p1+ j(2) = 1
always, so î(n− 1)− i(n− 1)− j(2) = p̂n−2 − 1. Thus

r(A) =

{

(A− ρI) if p̂n−2 = ℓ,
(A−1 − ρ−1I) if p̂n−2 = r.

The associated ratios of eigenvalues are

|λn − ρ |

|λn−1 − ρ |
if p̂n−2 = ℓ

and

|λ−1
n − ρ−1 |

|λ−1
n−1 − ρ−1 |

if p̂n−2 = r.

776 RAF VANDEBRIL AND DAVID S. WATKINS

Since

λ−1
n − ρ−1

λ−1
n−1 − ρ−1

=

(

λn−1

λn

)(

λn − ρ

λn−1 − ρ

)

,

it should be better to take p̂n−2 = r if and only if |λn−1 | < |λn |.
Here the eigenvalues are numbered so that λn − ρ is the smallest (in magnitude)

eigenvalue of A−ρI, and λn−1−ρ is the second smallest. It is assumed that λ−1
n −ρ−1

is the smallest eigenvalue of A−1 − ρ−1I, and λ−1
n−1 − ρ−1 is the second smallest. This

is certainly not always true, but it is typically true, especially if ρ approximates λn

well.

7. Numerical experiments. We ran some tests with the objective of checking
the validity of our theoretical results. The codes, which are written in MATLAB,
are available at http://people.cs.kuleuven.be/∼raf.vandebril/. We generated random
matrices of dimension 100, 200, . . . , 500 and used four different versions of our code
to compute the Schur form and the eigenvalues of each matrix. The first version
transforms the matrix to upper Hessenberg form (position vector p = [ℓ, ℓ, . . . , ℓ]) and
retains that form throughout the multishift iterations. The second version transforms
the matrix to the CMV form (p = [ℓ, r, ℓ, r, . . .]) and retains that form. The third
reduces the matrix to a random form (entries of p chosen at random) and continues
to introduce position values ℓ or r at random (equal probability) throughout the
multishift iterations. The fourth transforms the matrix to inverse Hessenberg form
(p = [r, r, . . . , r]) and maintains that form throughout the multishift iterations. In our
test we did iterations of degree m = 4. Blocks were deflated when their size was less
than 4m. The criterion for deflation or splitting of the problem was |Gi(2, 1) | < 10−17.
In preliminary tests this deflation criterion was compared to the conventional deflation
criterion based on comparing magnitudes of the subdiagonal elements. The differences
were negligible, so we opted for the cheaper criterion.

After each run we compared the eigenvalues computed by our code with those
computed by the MATLAB eig command and always had good agreement. We
checked relative backward errors by computing ‖AU − UR‖2/‖A‖2, where A =
URUH is the computed Schur decomposition. These are shown in Figure 7.1.

50 100 150 200 250 300 350 400 450 500 550
10

−14

10
−13

10
−12

10
−11

10
−10

Problem size

R
e
la

ti
v
e
 b

a
c
k
w

a
rd

 e
rr

o
r

Hessenberg

CMV

Random

Inv. Hessenberg

Fig. 7.1. Relative backward error.

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 777

50 100 150 200 250 300 350 400 450 500 550
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Problem size

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Hessenberg

CMV

Random

Inv. Hessenberg

Fig. 7.2. Average iterations per eigenvalue.

Each run was repeated five times. Each backward error is recorded on the graph
by an appropriate symbol, and the averages of the five errors are connected by lines.
We note that the backward errors are around 10−11 or less, and the Hessenberg and
inverse Hessenberg errors are a bit better than the others.

Figure 7.2 displays the average number of iterations per eigenvalue, computed by
dividing the total number of iterations by the dimension of the matrix. We observe
that one or fewer iterations per eigenvalue are required. This is about what one would
expect for iterations of degree m = 4. It serves as confirmation of our convergence
theory in a couple of ways. First of all, we observe convergence. Second, the conver-
gence must be something like quadratic, as otherwise many more iterations would be
required. Experience with the quadratically convergent QR algorithm suggests that
about 3 to 4 iterations (with m = 1) per eigenvalue are needed, and that is what we
are observing here.

We also looked for direct evidence of quadratic convergence. According to theory,
the entry |Gn−m(2, 1) | should converge to zero quadratically. We observed this. How-
ever, the actual behavior is more complicated than the theory would suggest. If some
(say k) of the shifts approximate eigenvalues much better than the other (m−k) shifts
do, it can happen that |Gn−k(2, 1) | goes to zero instead. In fact, it often happens
that for several different k at once, the numbers |Gn−k(2, 1) | are converging to zero.
Bearing this in mind, generally quadratic convergence is observed.

Figure 7.2 indicates that the inverse Hessenberg method is some 20% more ef-
ficient than the Hessenberg method, with the other two methods in between. This
is a consequence of the class of matrices that was used in the experiments: random
matrices with independent and identically distributed entries. When we repeated the
experiments with the inverses of random matrices, the efficiencies were reversed.

7.1. Shift blurring. The results we have shown for m = 4 are typical of what
one gets for small values of m less than about 10. It is natural to ask how well the
code works for larger values of m such as 20, 30, or 40. Experience (see [16], [17,
section 7.1]) suggests that its performance might be diminished due to shift blurring.
The simplest outward symptom would be increased iteration counts. We did indeed
observe this.

778 RAF VANDEBRIL AND DAVID S. WATKINS

Table 7.1
Average number of iterations per deflation.

Number of shifts 10 20 30 40
Hessenberg 3.6 7.2 8.6 8.4
CMV type 3.9 6.2 7.2 7.4

Random 3.7 6.4 7.4 7.7
Inv. Hessenberg 4.1 6.1 8.0 7.5

Table 7.1 shows the average number of iterations per deflation for m = 10, 20,
30, and 40. In these experiments the matrices were 500× 500, and each number is an
average over three runs. An iteration of degree m is like m single steps, and a typical
deflation delivers about m eigenvalues. It follows that the number of iterations per
deflation should be about the same over all values of m. In Table 7.1 we see that for
m = 10, about four iterations are needed for each deflation. This is similar to what is
observed for smaller values of m. But for m = 20, 30, and 40, almost twice as many
iterations per deflation are needed. This is symptomatic of shift blurring.

8. Conclusions. We have introduced a family of algorithms that generalizes
Francis’s implicitly shifted QR algorithm. The new algorithms operate on condensed
forms that are generalizations of upper Hessenberg form. Multiple steps of arbitrary
degree can be taken. We have also supplied a convergence theory based on ratio-
nal Krylov subspaces, and we have presented numerical experiments that verify the
validity of our theory.

REFERENCES

[1] R. C. Barroso and S. Delvaux, Orthogonal Laurent polynomials on the unit circle and snake-

shaped matrix factorizations, J. Approx. Theory, 161 (2009), pp. 65–87.
[2] A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary

eigenproblem, Linear Algebra Appl., 154/156 (1991), pp. 741–778.
[3] M. J. Cantero, L. Moral, and L. Velazquez, Five-diagonal matrices and zeros of orthogonal

polynomials on the unit circle, Linear Algebra Appl., 362 (2003), pp. 29–56.
[4] R. J. A. David and D. S. Watkins, Efficient implementation of the multishift QR algorithm

for the unitary eigenvalue problem, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 623–633.
[5] M. Fiedler, A note on companion matrices, Linear Algebra Appl., 372 (2003), pp. 325–331.
[6] M. Fiedler, Complementary basic matrices, Linear Algebra Appl., 384 (2004), pp. 199–206.
[7] J. G. F. Francis, The QR transformation, part II, Comput. J., 4 (1961), pp. 332–345.
[8] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,

16 (1986), pp. 1–8.
[9] W. B. Gragg and L. Reichel, A divide and conquer method for unitary and orthogonal

eigenproblems, Numer. Math., 57 (1990), pp. 695–718.
[10] H. Kimura, Generalized Schwarz form and lattice-ladder realizations of digital filters, IEEE

Trans. Circuits Systems, 32 (1985), pp. 1130–1139.
[11] B. Simon, CMV matrices: Five years after, J. Comput. Appl. Math., 208 (2007), pp. 120–154.
[12] F. G. Van Zee, R. A. Van De Geijn, and G. Quintana-Ort́ı,Restructuring the QR-Algorithm

for High-Performance Applications of Givens Rotations, Technical Report TR-11-36, De-
partment of Computer Science, The University of Texas at Austin, Austin, TX, 2011.

[13] R. Vandebril, Chasing bulges or rotations? A metamorphosis of the QR-algorithm, SIAM J.
Matrix Anal. Appl., 32 (2011), pp. 217–247.

[14] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semisepara-

ble Matrices, Volume I: Linear Systems, Johns Hopkins University Press, Baltimore, MD,
2008.

[15] D. S. Watkins, Some perspectives on the eigenvalue problem, SIAM Rev., 35 (1993), pp. 430–
471.

A GENERALIZATION OF THE MULTISHIFT QR ALGORITHM 779

[16] D. S. Watkins, The transmission of shifts and shift blurring in the QR algorithm, Linear
Algebra Appl., 241/243 (1996), pp. 877–896.

[17] D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM,
Philadelphia, 2007.

[18] D. S. Watkins, Fundamentals of Matrix Computations, 3rd ed., John Wiley and Sons, Hobo-
ken, NJ, 2010.

[19] D. S. Watkins, Francis’s algorithm, Amer. Math. Monthly, 118 (2011), pp. 387–403.
[20] D. S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the eigen-

value problem, Linear Algebra Appl., 143 (1991), pp. 19–47.

