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The reductive perturbation method applies with some generalizations to nonlinear
and dispersive multi-wave systems. Such systems evolve under the effect of the self-
interaction of each wave and of the mutual-interactions between them. The systems
can be described, in the lowest order, as assemblies of the ‘“‘quasi-simple”” waves or the
nonlinearly self-modulated waves, both of which include the effects due to the self-
interactions and a part of the mutual-interactions. The rest of the mutual-interactions
gives rise to higher order corrections in the wave forms.

§ 1. Introduction

The reductive perturbation method can apply to one-dimensional, uni-
directional and nonlinear wave motions in a dispersive or dissipative system,
to yield a single non-linear equation with simple structure as the approximate
governing equation.l) The object so far treated, however, has been limited to
the self-interaction of the single wave. When more than two waves coexist,
the mutual-interactions between them give rise to additional effects both on the
wave characteristics and on the wave profiles. A generalization of the re-
ductive perturbation method to such multi-wave systems has been attempted
by the present authors.2):3)

First, we consider the nonlinear wave propagation in a weakly dispersive
or dissipative system, which is governed by the system of equations considered
in §4 of Part I. It is assumed that, if the dispersive (or dissipative) effect is
disregarded, there exist z simple waves corresponding to the 7z possible families
of characteristics. Each simple wave is distorted under the effect of the dis-
persion (or dissipation). Such a wave (often called the ‘‘quasi-simple’” wave?)

) Present address: Research Institute for Applied Mechanics, Kyushu University, Fukuoka.

220z 1snbny /. uo Jesn soisnr o Juswpedaq 'S'N Aq L.ZELL61/9E'SS S Ld/ER | L 01/10p/aoie/Sd)d/Woo  dnoolWwepeDE//:Sd]Y WOy POPEOuUMOQ



Generalization of the Reductive Perturbation Method 37

is governed by a single nonlinear equation with a simple structure, which

reduces to the Korteweg-de Vries (KdV) equation, the modified KdV equation,
the Burgers equation and so on according to the properties of the dispersions
or dissipations and the degree of the nonlinearities. Our concern is with the
systems in which there exist » mutually interacting “quasi-simple’” waves. . In
the many-‘‘quasi-simple’’ wave system, the profiles and the speed of each wave
are both affected by the mutual-interactions. In this case, a naive pertur-
bation approach meets with failure, bringing about secular terms in the higher
order solutions. The expansion procedure to be used here is a generalization
of the reductive perturbation method in which the same type of ¢ dependence
of the wave-amplitude is kept but the stretched coordinates include the effect of

the variations of wave velocity. The condition that higher order terms of the

expansion be bounded, that is to say the non-secularity condition, leads to
equations for the correct approximating wave motions. The results given by
this expansion procedure show that the 7 ‘‘quasi-simple” waves, whose orbits

~ are modified due to the mutual-interactions, can be superposed in the lowest -

order approximation and the change in the wave profiles are due to the higher

order corrections. The generalized reductive perturbation method together .

with an example, is shown in §2.

Next, consider a wide class of nonlinear and strongly dispersive wave
systems, which are governed by the equation given in §6 of Part I but consist
of several waves interacting with each other. ‘The many-wave problem
becomes in general complicated due to the resonance coupling between them.
The discussion presented here is then restricted to a simple system consisting
of only two interacting waves. When the difference in the wave-numbers and
the frequencies of the two waves are of the order of ¢, the effect of mutual-
interaction can be included in the self-modulation phenomena (see §6 of Part
).  On the other hand, if they are of the order of unity, the mutual-interaction
affects the orbits and the frequencies of the self-modulated waves. In §3,
the reductive perturbation method is generalized so as to include such effects
beforehand. The result is that, quite similar to the weakly dispersive systems
considered in §2, the wave systems are approximated in the lowest order as the
superposition of two nonlinearly self-modulated waves which are governed by
their respective nonlinear Schrédinger equation.  As an example, the system,
which is governed by the Klein-Gordon equation with cubic interaction, is also
considered in §3.

§2. Weakly dispersive systems?

Let us consider the following equation:

U 9
e +A3x+2 ﬂ( aa¢+K )U-0 @)

=1 a=1
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38 M. Oikawa and N. YajiMa

where U is a column vector with 7% components ua, %3, =+, #n n>2), A, H B
and K 5s are n.xn matrices, the elements of which are functions of U, being
assumed sufficiently smooth, and p>>2. Here, we shall investigate the pos-
sibility that = ‘‘quasi-simple” waves are superposed to describe the wave
motions.

The function U is now expanded for a smallness parameter ¢;

U= Uo—f—€U1+62U2+"-. (2)

The eigenvalues of Ao(=A4(Uy)), A1, Ag, ..., Ay, are assumed to be real and
distinct. Following the Taniuti-Wei example,) we introduce the stretched
variables

§j=eMx—Nt—el"%p;(x, 2), =)
r==g0+1 Z, <3 b)

where a=(p—1)"1<1. We consider that U is a function of x and # through
the variables ¢;(;=1,2,...,%) and 7. In Eq. (3a), ¢j(x, #) is introduced in
anticipation that the velocities of waves vary in space and time due to the
mutual-interactions. The factor ¢1=% comes from the following consideration:
The variation in the wave velocity due to the two-wave interaction is expected
to be proportional to the product of the wave-amplitude and the interaction
time. The former is of the order . The latter is considered to be the time
during which the two waves pass through each other, and then estimated by
dividing the width of wave (~O(¢%)) with their relative velocity (~O(1)),
i.e., being of the order e@. Therefore, the variation in the wave velocity is
of the order & X e %=¢1-9,

Substituting Egs.(2), (3a) and (3b) into Eq.(1) and equating the successive
power of ¢ to zero, then we get a sequence of equations.

In the lowest order, we have

n - )
E1(A°_/\l)75 U,=0. 4)

Let Ry and L; be the right and left eigenvectors of Ag for the eigenvalue Ay,
respectively;

AoR1=NRy, LiAog=NL,. (5)

Expanding U; with the set {R;},
n
Ul= jglfj(fl’ M) fn» T)Rf) (6>

and using the orthogonality of eigenvectors

(Ly, Rr)=3djr, D)

220z 1snbny /. uo Jesn soisnr o Juswpedaq 'S'N Aq L.ZELL61/9E'SS S Ld/ER | L 01/10p/aoie/Sd)d/Woo  dnoolWwepeDE//:Sd]Y WOy POPEOuUMOQ



Generalization of the Reductive Perturbation Method 39

we get the equation

B A g0, G=1n) ®
The general solution of Eq. (8) is written as

=f 0, s, Oa)

’7<ij>=fi"’”§:j);£1 P&, 9 b)

MP=—Mldy A= A0, © 0

“where 7 f‘j)is the perpendicular component of the vector {= {é1, ..., €} to the
n-dimensional unit vector . Since we are interested in ‘‘quasi-simple’’ wave
systems, we restrict ourselves to the case that f; is a function of only one vari-
able 7{’(=¢;). We then have

fi=11&5, 7)- (10)

We must note here that for the two-“‘quasi-simple” wave problem Eq.(8) has
only the solution (10).
In the next order, we have

E A=) =z 85 F1+ E Z(Ll, RV ) AoRs) fm—5¢- afj
B 8 Vs

+§1(Ll’ﬁ§1 al-_l——1<Ka0 N E)Ry) 3fngj
+ P (@, (RIARY gy

s D o7
+(Lz,ﬂ§ ﬂ (K Bo—NH §)Ri) jgffl
53 {0 B2 (R doROA =0, b

i~

where the 4;’s are the expansion coefficients of U3 with {Ri}, Us=271%1(é1, ...,
£n, TVR1.  Now suppose that the variables ¢7’s satisfy

Z ()\7—7\1) %, :—j% (L, (RiF ) Ao RD) 1, (12)
ie.,
o= 5 (=) (L, (RIP0)AoR) [ “Fi(6)de
Fia A
+01(ﬂ:(|_l)1 ) nfnl)) T)) (13)

where 6; is determined by the boundary conditions for ¢;.
We can solve Eq. (11) to obtain?
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f=— T X AGULi, (RuPr)AoR))

Jj#Fm, j¥#1, m#l

[ a5 fmr ) +nips) 5 <,>ﬁ<n§”+n§”s'>
—~E S5, E)— AT T(EDsi+ (s, -+, 77(75)), (14)

Sz,j=<Az—Af>— {(Lz. (RiF o) AoRy) 32+ (L, (R u)AoR)fof;

+u B 1 Ke—NHER) sgpr i, 5)
B=1 a=1 7 ,
Ly iy O
Ti=—"+afi5; fi +Bz§g—lp—fl, (16 a)
ar=(Li, (RIF)A0Ry), 161)
b= 3, [l ly—NttEo)R) 16 o

where slz'E}'zln(ij and /; is an arbitrary function to be determined in the
next step. By imposing the boundedness of ¢; in Eq. (14), i.e., the non-
secularity condition. for ¢;, the term proportional to s; in Eq. (14) must vanish,
ie.,

77=0. )

Equations (13) and (17) with Egs. (3a), (3b), (16a), (16b) and (16c) govern
the #-‘‘quasi-simple’’ wave systems, that apply not only to the study of special
problems such as collisions of solitary waves but also to the study of more
general problems, for example, the time development of nonlinear wave
motions. -The result implies that the #-“‘quasi-simple” waves can be super-
posed to describe the nonlinear systems, playing an essential role as well as the
» families of characteristics in the usual hyperbolic system. Each ‘“quasi-
simple”” wave satisfies the simple nonlinear equation (17), which becomes, for
a special value of the parameter p, the Burgers equation (p=2) and the KdV
equation (p=3). The interactions between these ‘“‘quasi-simple’’ waves are
included in the variables ¢y's.

As an example we deal with the interactions between two ion acoustic
solitons travelling opposite to another in a collisionless plasma. Let the
electron number density and the'ion fluid velocity be 7 and #, which are normal-
ized in terms of the mean number density 7o and the sound velocity of ion
acoustic wave (7/mi)V'2, respectively, where 7, is the constant electron
temperature and #; the ion mass. For a collisionless plasma of cold ions and
warm electrons, the following system of equations applies:®

Feheedfie e

n Ox
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ou ou , 1 on _
% Y A

x - n 0x

0, (18 b)

where x and ¢ are also normalized by the Debye length (7/4me2)1’2 and the
inverse of the ion plasma frequency (mfdmmnge®)V/2. Writing Eqs. (18a) and
(18b) in the form of Eq.(1), expanding 7 and # in terms of a smallness para-
meter & as

n=14en1+e2n3+--- and wu=eu1+e2ug+---,

and using the systematic expansion method developed above, we obtain

%fT‘Jrﬁg—?Jr%%ﬁ:o, (19)
where 7=1,2 and

H=m+u)2,  fa=(m—u1)/2,

fr=evele—rt@2p2) [“fu@)dt], 202)

fr=eelet e @) [ fie)ae], 200)

r=ed2, 20 ¢

For the two-soliton problem, we put fi=Fi(é;—ci7) and integrate Eq. (19)
under the boundary conditions that fi=(3fi/d¢:)=(0%/i/0¢3)=(2%i/0&3)=0 at
é4=+ oo, to obtain

fimA sech{(A[6)V2(E,— Ar/3)}, 21 2)
JS2=2B sech?{(B/6)V2(£;— Br[3)}, (21 b)
€1=e12{x— ¢+ (3¢ B/2)V2 tanh [(B[6)V2(és— Br/3)]|—x 4}, (22 a)
fo=eV2{x+1+(3eA4/2)V'2 tanh [(A4/6)2(¢1— A7/3)]— x5}, (22 b)

where x4 and x5 are initial phases of the two solitons. The phase shift of each
soliton in the whole process of collision can be estimated as

8A= [x— t]$1=0, §gmo0 ™ [x—t]$x=0, §1=—c0

——(6eB)172, (23 a)
Op=[x+#]g;—o, t=0—[*+£]t1=c, £1=0
=(6e4)12. (23 b)

Tatsumi and Tokunaga presented another example by making use of the
generalized reductive perturbation method, that is, the interaction of weak
nonlinear disturbances in a compressible fluid including shocks, expansion
waves and contact surfaces.” According to them, the nonlinear waves belong-
ing to different families of characteristics behave almost independently of each
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other, while those belonging to the same family are governed either by the
Burgers equation or by the equation of heat conduction. They applied the
result to one-dimensional shock turbulence in a compressible fluid and found
that the law of energy decay of shock turbulence is identical to that of the
Burgers turbulence.

§3. Strongly dispersive systems3

Here we consider the system of interacting two waves with the frequencies
and the wave-numbers (w1, 41) and (w2, 42), respectively, which is governed
by the equation

U U
—; +AU) 5+ B(U)=0, (24)

where U is a column vector with # components, %1, %2, ..., %n, A an 7 Xz matrix
and B a column vector. The frequency and the wave-number of each wave,
wi and 4 (=1, 2), satisfies the dispersion relation

det (wil-—,éiA o+Z'VBo)=O, (25)

where 7 is the unit matrix, Ao=A(U®), (¥ Bo)j=(0B4/du;)yy~y;» and UO
is a constant solution of Eq. (24), satisfying

B(U®)=0. (26)

The present system consists of the fundamental two modes with (w1, £1)
and (wg, 42) and their higher harmonics caused by the nonlinear interaction, and
undergoes a slight modulation of their amplitudes and frequencies under the
nonlinear effects. The form of U is then anticipated as

U=UO+ T e 3 Ul é D Z0m @7

yN=—0°
where Z; 4 is the exponentially' oscillating factor,
Zyn=explil (ir—wrt+ 2 O €1, €2, 7)
= ,
tin {hor—wat+ f;lersz;ﬂ (&1, €2, D}, 28)
7=

and &1, &2 and 7 are the stretched variables introduced through

€1=e{x_A1th%0€T¢§_7)‘ (51) 521 T)—Tl} )

fame{e—ot— T {0 (b b )72}, 29)

T=2¢,
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Generalization of the Reductive Perturbation Method 43

In the above expressions, ¢ is a smallness parameter, A1 and A are the group
velocities, that is,

A= (aw/ak>k=k,’; =1, 2, (30)

y1 and yg are.arbitrary constants and £, §{” are introduced to take into
account the frequency shifts and the orbit modifications due to the nonlinear
interaction. Here the relative velocity |A;—Aa| is assumed to be of the order
of unity.

The sequence of equations to be solved is obtained by inserting Eqs.(27)~
(30) into Eq.(24), corresponding to the successive powers of ¢ of the same
harmonics. In order to ensure the reality of U, we assume that

U@r=U% _,, (31 a)
QU*=Q0 and QP*=0F, (31b)
Y=g and YT =y, Gl o

In the lowest order, we have
Wl,n Ul(,lf)zzoy (32)
Wl,n=——z'(lw1+nwz)[+z'(l,é1—l—nk2)/1 0+VB(). (33)

Now, suppose that

det Wia=0 for |Z|+1nl=1, (34 a)
=0 otherwise. (34 b)

Equation (34a) corresponds to the dispersion relation (25). Although Eq.
(34b) is not always valid for arbitrary / and #, we here assume that it hold so
far as a few order of perturbation expansion, at most |/|-+|7]<4, is considered.
Equations (34) then yield

USa=p1(é1, €2, )R, (35 a)
U =gpa(£1, &2, 7Rz, (35b)
UL,=0 for |/|+|nl#l,. (35 ¢)

where Ry and Ry are the right eigenvectors of W1,0 and W1, respectively;
WioR1=0 and Wy 1R2=0, (36)

and o1, ¢z are scalar functions to be determined later.
Following the discussion in §6 of Part I, we can proceed to the next order

to get
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(@) (1)
Wz,nU(lz) —()\1]—140) U ’"“—(Ag[——— 0) aU

+ ,Z,(Z%I_I_n%z)(VAO' U&)l', n—nr) Ul', n’

+ 2 VVBO _ll n— n’Ul' I"“_O (37)

2ll n’

This corresponds to Eq.(1.6-17). ((I 6:17) denotes Eq.(6-17) in Part I. In
what follows, this notation will be used.)

Multiplying Eq.(37) by the left eigenvector L; corresponding to Rj,
L1W1,0=0, (36"
and using Eq. (I. 6-14), we have

M=) 22 Pr=0, ie, pi=gir,7), (38)

corresponding to Eq. (I. 6-17), we readily obtain

dp1 dR
Uh=e? (br, bo, HR1—i g 7p (39)

Equation (37) has in general the non-trivial solutions for |/|4-|#|<2;

U(Z) —_ U(22)’.E)—Sl¢%’ U(2> —_ U(Z)* _52902’
Ufi: U(—“zl)‘,"‘q: T o192, U(l%)—l—_“ U(—-zl)."i— Voips, (40)
U@y=X1lp1 2+ X2lp2 2,

where
S1=—Wb{ia7 Ao R)Rirk-3 PV Bo: RuR),

Sop=— WE,lz{if’c‘z(VAO'Rz)Rz-I-%VVBo : Rzkz} ,
(41)
I=— WI}{Z'kl(VAo'Rg)Rl+z’é2(VA0'R1)R2-{—VVBo : RiRs},

Ve=— Wik {eh\(F Ao RE) Ry +iko(F Ao R)REH-VV By : R1RY},
Xi=—Woh{ik(V Ao RY) Ri—its(W Ao R)R{+VV By : RiRY}. )

The solutions U$y and U} are the same as those obtained by putting £=/4;
and A&=4s, respectlvely, in Eq (I. 6:18b), and U@} agrees with the sum of
UP(k=Fk1) and UP(k=+ks) given by Eq. (_I.618a). The solution U,
U, and their complex conjugates are due to the mutual-interactions.
In the third order of ¢, the expressions becomes lengthier. However, we
are now interested in how ¢1, 2{Pand ¥{¥ may be determined. Only the
third order terms with /=1 and »=0 are written out;
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aUlo 3U10

W1,0UB) — M\ I—Ao)—20 — Aol — A g)—=72

(1)
3«51

+ a U].’O

_,[@1 I A4y agzll Ol i }Um

+Z E (l é1+%lfé2)|—(7140 U(z)lr _.n/) U%:rl)n/"i"(VA() U(__p -nr) U ! n/]

+[<A11—Ao> " (ol —Ao) ‘”m)']

4L b7 BNV Ao : ULy i US ) USH s

2 llnlll!tnl!

+ X PVBo: UPy _a UP,,

ll n’

"l"_“ Z VVVBO U(lj.'zlf_ln, _nt_nu'U%:ranr U;}/),V”IHZO- (42)

6 Irprlrtnrt

Multiplying Eq. (42) by L; from the left and using Egs. (35), (36"), (39)~(41)
and the identical relations given in §6 of Part I,

dR 1 42
(Ll: (Ar/—Ao) d,él) —5 df;zl (L1, Ry),

we obtain

a—29) a“’g —Im(B1) |02 Pt

O0p1 ¢ d2wy %1 | .
+{ or 2 dR. ag%,+z“1"”1'2*01}
P (1

(09
+z{()\1——)\23 3 § +Re(B1) |2 Iz}sm

0 0
QoA ;fg 2=, (43)

where Re(B1) and Im(B)) are the real and the imaginary part of B3, respectively,
and aj, B1 are given by

a1=(L, R1)"1L1|:k1{<VA0'X1)R1—(VAQ'Sl)R’f+2(VA0'R{)51

+FP 4o : RiRY R~ (PP Ao R1R1)R{}

—Z{VVBO (SlR*—‘r-XlRl)—[——VVVBo R1R1R1” (44 a)

Br=(L1, R1) L1 [e1{V Ao X2)R1+F Ao R3) T+(VAO‘R2> V
+(VVA0 R3Ro) Ry}
+o2{F Ao V)Rs—F Ao Ro)V+F Ao R T
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—(VAQ'T>R*+(VVA0 : leg)Rz—(VVAo : R1R9)R3}
—7 {VVBO (XoR1+ TR} —{— VR2>
+VPV By : RoR3R1}]. (44 b)

We now suppose that

()‘1—)(2) 3§ + Re(B1)lp212=0, (45)
W o 46)
2

Substituting Egs. (45) and (46) into Eq. (43) and imposing the non-secularity
requirement on ¢1(®, we obtain the nonlinear Schrédinger equation

S 1 dy P
“or T2 aB ag —a1lerPer=0, 4D

in which ay agrees with Q in Eq. (1.6:25) if £=#; is substituted. From Egs.
(43)~(47), we finally obtain the equation for ¢{?,

Ma—Dg) a;"gz —Im(By) | pa(€ar ™) Por(ér, 7). 48)
Equations (45)&(47) are readily integrated to yield

Q=L Re(B) [ Ipa©) Pt + 61661, 7), (49)

@=L 1m(By) ["lpa®) P+ Br(6r, 7) 50

¢ =~ Im(B1 P2 1¢é1, 7), (50)

YO=P1(¢, 7), (51)

where @1, @; and ¥ are due to the self-interaction, not to the mutual-interac-
tion, and are determined in the next order equation. Among them, @; and
@, can be absorbed into the first order solution ¢1(¢1, 7), and hence, without
loss of generality, may be put to zero. The quantity ¥7, however, cannot be
taken zero, because it denotes a modification of the orbit of the wave packet
and is affected by the spatial and the temporal variations of ¢3(£1, 7). Since
the present perturbation method is based on the assumption that the orbit of
the wave packet has a practical meaning, then ¢1(£1,7) is expected to be written
as the product of a function of £ and a oscillating function of 7 with moduius
I; i.e., taking into account Eq. (47) we can write

p1(é1, T)=f1(€1)e 4" (52)

In this case, without performing the higher order calculations, ¥ is estimated
as follows: The 7-dependent exponential factor in the expression (52) changes
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Generalization of the Reductive Perturbation Method 47

the frequency of the carrier wave by ¢24v; and then the group velocity by
¢2d(dvy)/d%1. While, the orbit modification ¥1 changes the velocity of the
wave packet by e2d¥1/dr (W1 is assumed to be independent of ¢1). Thus, we
obtain

_ d |
Y= zil—(d v1)T. (53)

For the case with /=0 and #=1, the results are obtained by replacing the
subscript 1 with 2, and vice versa, in Egs. (44)~(53).

The next order correction on the orbit of wave packet, $§¥, is determined
by the fourth order equation. However, this can be also done without actually
performing complicated calculations: Let 44; and dw) be the variations of the
wave-number and the frequency due to the mutual-interaction, respectively.
These are obtained from £V, accurate to the second order of e,

(1 '
Akl———(eQ<1))—ez 33522 (54 a)

QY

Awl———--——( Q)= L

=od1. (54 b)

The group velocity is then modified as

d(wl—}—‘dwl) __ dwi ddwy  ddky dw,
d(b1+4k)  dfa dk1 dk1 a’él

=A1— ()\1-—?\2)32]—1 (dfer). - (39)

Alternatively, the group velocity is obtained from the time derivative of the
orbit of the wave packet, i.e., [dx/d#]¢,~const- Using Eq. (29), we get

dx
hadddl ~A (1 , , 3}
\i dt ]Elzconst 1+[ dt € o m ¢,=const

A Ii a’fz}
~A —
1te d¢s | @t Je,—comst
a¢<1>

~A1e20— ) (56)

Substituting Eqgs. (49) and (54a) into Eq. (55) and taking into account that
@o(€9, 7) is independent of %£;, we have

o> _ 4 (Re(By)
% T\ s )|¢2<§z> 2

o fog BB
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It will be shown later that the fourth order calculation for an example
~ leads to the same results as that estimated from the above intuitive picture.

As an example, we deal with the Klein-Gordon equation with a cubic
interaction term,8)

02 2%y ‘
O By, (58)

where 7 and B are real constants. Introducing y and ¢ by the equations
_ 9y _ '
43._.—-_—_ (59 b)

and d1fferent1at1ng Eq.(59a) with respect to ¢, we can bring Eq.(58) into the
matrix form (24):

BU

U +a%l =0 (60)

Heré, U, A and B take the forms
¢

U=y |, (61 a)
Yy
0 —1 0
A={—-1 0 0}, (61 b)
0 00
m2y—fy3
B= o | 61 ¢

| —¢
In what follows, Eq.(59a) will be regarded as a subsidiary condition which

perpetuates if it is valid initially. We now assume the expansion (27) about
the constant solution

Up=0.

Then the matrices Wi,u's defined by Eq.(33) are expressed by

—i(lw1+nwe) —i(lki+nks) m?
Win=| —i(lk1+nks) —i(lw1+nws) 0 . (62)
—1 0 —i(lw1-+nws)

The dispersion relations, det W 1+1,0=0 and det #p,+1=0, become
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wi=kit+m?  wi=kit+m?, (63)
which imply
det Wy,,50 (64)

unless |/|4|%]| is zero or unity. Hence U, except UL are given by Eq.
y I P 0,0 g y £q

(32), ie.,

UD=0 for [/|4+|n>2, (65 a)
URy=91R, Ut =92R2, (65b)

where Ry and Rz are the column vectors introduced in Eqs.(36) and take the
form

wi | w2 . ’
Rlz —-,él , R2= -—-,ég . (66 a)
] z

The corresponding row vectors Z; and Lz may be given by
Li=(w1, —k1, —im?), Lo=(ws, —ks, —im?). (66 b)

Since detWy,o vanishes, a different method is required to account for U (()1,(’)
and U). Consider the component /=7=0 of Eq.(60). For the first order
in ¢, it yields

hence, the subsidiary condition (59a) yields
x6:0=0,
and, consequently, we have
Uhy=0. (67)

Putting /=7=0 in Eq.(37), taking into account pAo=ppAo=ppBo=0 and
using Eq.(67); similarly we obtain

U@=0. 68)
Since pAo=ppBo=0, we find from Egs. (40) and (41),

UB=0 for |I|l+]n>2. (69)
Introducing Eqs. (66) and (68) into Egs. (44)

a1=—(3/2)B/ws, (70 a)

Br1=—3B/w;. (70.b)
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Hence, we have from Eqs. (47)~(51)

agol 1 m? 32 B

or T2 Wl 2 T o, | PLPA=0 (71 a)
L3P | 1 m? %, ,3
Tor T2 W 38 T 2w, P20 (71b)
(_ 3Blwr (& \
Qi —7\;_—)\;/ l0a(€) 12d€, (72 a)
op=3Blws %0 ) ae, (72b)
» As—A1
PP =0 =0, (73
pP=VY1(é1,7),  P=Yaé2, ), (74)

where A;j=£1/w1 and Ag=4Aa/ws. Substituting Eqs.(70) and (72) into Eq.(57),
we obtain
8«/1(11) 3B 12122
0wl (\—A)2
P 3/3 1—MAe
1 wi (A\i—Ag)?

————|pa(é2) 12, (75 a)

—5 |91 2. (75b)

We now show that the above results (75) coincide with those obtained by
the fourth order calculation. Computation of U} is straightforward; from

Eq. (42)

d2R
UB=¢® R, { 9P 36 2 }wl 1
R L
_3_@_ 1 - 2 . 0¥ a<P1}afR1
{wl Sy el i S LA (76)

Introducing Eq.(76) into the fourth order equation with /=1 and »=0, we
obtain after tedious calculation

: 2
=5 o+ g
(A %1 0p1 WL m?® 3p1 32W1  m? 3% 0¥,
_’{IE dor L of1 or 208 061 08 o} 08 agl}
_(}\1__/\2> 3501 {al,b(l) 1—-—A1/\2 89(11)}
061 | 92  wi(li—Ag) 3¢

1102 |2}

0P WP P 1 P } o,

e B RE =T a7
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Imposing that the third and fourth brackets vanish individually, we obtain the
equations to determine ¥{¥ and Q§?;

WL 1—Mr 0QP

= , 78
0fs  wi(A1—Ag) o€ (78)
0P WP L 1 oL 9
% — ok ok M—lg Or @)
From the boundedneéss of ¢{¥, we have the equation for ¥,
. 0p1 0¥ | m? {3% 0%y 19 9%p, Va'f’l}
Y6 or | 2wl o0& 08 0£2 O
_A 2
=¥ dkrr Ot (80)
Finally we have
@ __ 2
Sol . 2w%w%()‘1—)\2)2 ¢1|¢2[ . (8].)

‘Consequently, it is found that the wave profile is corrected in the third order of ¢.
We put the subscript 1 in place of 2, and vice versa, in Eqgs.(78)~(81),
to obtain the equations for yg, QP ¥, and ¢§>.
Substituting Eq.(72a) into Eq.(78), we can readily obtain the same result
as Eq.(75a). Equation (52) is substituted into Eq.(80) to yield

A
ar T et 82)

in which ¥; is assumed to be independent of £;. It follows from Egs. (52)
and (71a) that dv; is connected with w; and the amplitude of f1 as dvjoc
(amplitude)?/w;. Thus we get

MW, d
el V002

(83)
These ensure the intuitive derivation of Eq. (53) and (57).
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