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The reductive perturbation method applies with some generalizations to nonlinear 
and dispersive multi-wave systems. Such systems evolve under the effect of the self· 
interaction of e'ach wave and of the mutual-interactions between them. The systems 
can be described, in the lowest order, as assemblies of the "quasi-simple" waves or the 
nonlinearly self-modulated waves, both of which include the effects due to the self· 
interactions and a part of the mutual-interactions. The rest of the mutual-interactions 
gives rise to higher order corrections in the wave forms. 

§ 1. Introduction 

The reductive perturbation method can apply to one-dimensional, uni­
directional and nonlinear wave motions in a dispersive or dissipative system, 
to yield a single non-linear equation with simple structure as the approximate 
governing equation.1> The object so far treated, however, has been limited to 
the self-interaction of the single wave. When more than two waves. coexist, 
the mutual-interactions between them give rise to additional effects both on the 
wave characteristics and on the wave profiles. A generalization of the re­
ductive perturbation method to such multi-wave systems has been attempted 
by the present authors.2),3) 

First, we consider the nonlinear wave propagation in a weakly dispersive 
or dissipative system, which is governed by the system of equations considered 
in §4 of Part I. It is assumed that, if the dispersive (or dissipative) effect is 
disregarded, there exist n simple waves corresponding to then possible families 
of characteristics. Each simple wave is distorted under the effect of the dis­
persion (or dissipation). Such a wave (often called the "quasi-simple" wave4>) 

t) Present address: Research Institute for Applied Mechanics, Kyushu University, Fukuoka. 
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Generalz"zat'ion of the Reductive Perturbatz'on Method 37 

is governed by a single nonlinear equation with a simple structure,. which 
reduces to the Korteweg-de Vries (KdV) equation, the modified KdV equation, 
the Burgers equation and so on according to the properties of the dispersions 
or dissipations and the degree of the nonlinearities. Our concern is with the 
systems in which there exist n mutually interacting "quasi-simple" waves. In 
the many-"quasi-simple" wave system, the profiles and the speed of each wave 
are both affected by the mutual-interactions. In this case, a· naive pertur­
bation approach meets with failure, bringing about secular terms in the higher 
order solutions. The expansion procedure to be used here is a generalization 
of the reductive perturbation method in which the same type of s dependence 
of the wave-amplitude is kept but the stretched coordinates include the effect of 
the variations of wave velocity. The condition that higher order terms of the 
expansion be bounded, that is to say the non-secularity condition, leads to 
equations for the correct approximating wave motions. The results given by 
this expansion procedure show that the n "quasi-simple" waves, whose orbits 
are modified due to the mutual-interactions, can be superposed in the lowest 
order approximation and the change i'n the wave profiles are due to the higher 
order corrections. The generalized reductive perturbation method, together 
with an example, is shown in § 2. 

Next, consider a wide class of nonlinear and strongly dispersive wave 
systems, which are governed by the equation given in §6 of Part l but consist 
of several waves interacting with each other. The many.:wave problem 
becomes in general complicated due to the resonance coupling between them. 
The discussion presented here is then restricted to a simple system consisting 
of only two interacting waves. When the difference in the wave-numbers and 
the frequencies of the two waves are of the order of s, the effect of mutual­
interaction can be included in the self-modulation phenomena (see § 6 of Part 
I). 5) On the other hand, if they are of the order of unity, the mutual-interaction 
affects the orbits and the frequencies of the self-modulated waves. In §3, 
the reductive perturbation method is generalized so as to include such effects 
beforehand. The result is that, quite similar to the weakly dispersive systems 
considered in §2, the wave systems are approximated in the lowest order as the 
superposition of two nonlinearly self-modulated waves which are governed by 
their respective nonlinear Schrodinger equation. As an example, the system, 
which is governed by the Klein-Gordon equation with cubic interaction, is also 
considered in § 3. 

§ 2. Weakly dispersive systems2> 

Let us consider the following equation: 

au +A~u + :E fi (n~~+K~-}-.-)u=o, at ax /3=! a=I at ax (1) 
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38 M. OIKAWA and N. YAJIMA 

where U is a.column vector with n components u1, u 2, ... , Un (n~2), A, H~'s 
and K~'s are n.Xn matrices, the elements of which are functions of U, being 

assumed sufficiently smooth, and p~2. Here, we shall investigate the pos­

sibility that n "quasi-simple" waves are superposed to describe the wave 

motions. 
The function U is now expanded for a smallness parameter E; 

(2) 

The eigenvalues of Ao( =A( Uo)), A1, A2, .. ·JAn, are assumed to be real and 

distinct. Following the Taniuti-Wei example,!) we introduce the stretched 

variables 

(3 a) 

(3 b) 

where a=(p...-1)-1::::.;:1. We consider that U is a function of x and t through 

the variables e,(j=l, 2, .. ') n) and T. In Eq. (3a), <pj(X, t) is introduced in 

anticipation that the velocities of waves vary in space and time due to the 

mutual-interactions. The factor sl-a comes from the following consideration: 

The variation in the wave velocity due to the two-wave interaction is expected 

to be proportional to the product of the wave-amplitude and the interaction 

time. The former is of the order c. The latter is considered to be the time 

during which the two waves pass through each other, and then estimated by 

dividing the width of wave ( ,..._,Q(s-a)) with their relative velocity ( ,..._,Q(l)), 

i.e., being of the order s-a. Therefore, the variation in the wave velocity is 

of the order EX s-a=El-a. 

Substituting Eqs.(2), (3a) and (3b) into Eq.(l) and equating the successive 

power of s to zero, then we get a sequence of equations. 

In the lowest order, we have 

n a 
:E (Ao-Az)-0c U1 =0. 
l=l Sl 

(4) 

Let Rz and Lz be the right and left eigenvectors of A o for the eigenvalue 1\z, 

respectively; 

LzAo=AzLz. 

Expanding U1 with the set {RJ}, 

n 
U1= :E/1(6, ... , gn, -r)RJ, 

1=1 

and using the orthogonality of eigenvectors 

(5) 

(6) 

(7) 
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Generalizatz'on of the Reductive Perturbation Method 39 

we get the equation 

(}=1, ... , n) 

The general solution of Eq. (8) is written as 

f1 f1Cr;i1\ r;~)' ... ,r;~>, T), 
n 

r;~1)=ei-n~1) :E n~1 ) ez, 
l=l 

n~J)=(A1 -Ai)fil1 , At=[:E (AJ-Ai)2]112, 
i 

(8) 

(9 a) 

(9b) 

(9 c) 

where "f} ~1)is the perpendicular component of the vector e= {glJ .. •J en} to the 

n-dimensional unit vector n<1>. Since we are interested in "quasi-simple" wave 

systems, we restrict ourselves to the case that /1 is a function of only one vari­

able 7JY)c=e1)· We then have 

(10) 

We must note here that for the two-"quasi-simple" wave problem Eq.(8) has 

only the solution (10). 
In the next order, we have 

- :E (A1-At) -:~~ flz+ :E :E (Lz, (RmT'u)AoR1)fm o/J 
j O~j j..;.Z m O~j 

8 p . oP 
+ :E (Lz, :E TI (Kg0-J\1H~0)R1) ac'Pfi 

j.fol 1'=1 a=l ~ 1 

+ 0:: +(Lz, (RzT'u)AoRz)Jz a~z fz 

8 p oP 
+(Lz, l~1 aQ

1 
(K ~0-AzH~0)Rz) aey fz 

+ Rz {CA1-Az) ~~; +(Lz, (R1T'u)AoRz)JJ} ~~ =0, (11) 

where the flz's are the expansion coefficients of U2 with{Rz}, U2= :Ef=1f/z(6) .. ') 
en, T)Rz. Now suppose that the variables cpz's satisfy 

olfJz :E (AJ-Az)dt=- :E (Lz, (R1T'u)AoRz)/J, 
j-1-l ~1 i+Z 

(12) 

i.e., 

Jt;j 
cpz= :E (Az-AJ)-1(Lz, (RJT'u)AoRl) fJ(e)de 

j-1-l 

+8z(r;iz), ... , r;~), T), (13) 

where 8z is determined by the boundary conditions for cpz. 
We can solve Eq. (11) to obtain2> 
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40 M. OIKAWA and N. YAJIMA 

j'' ds'fm(r/;} +n~ s') 07J~!l fiC'I}!) +n}!) s') 

- :E Sz,J(gJ, ez)-111:1 Tz(gz)sz+hz(r;i0 , .. ·, r;~)), 
j#l 

Sz,J=(Az-At)-1{(Lz, (R,P'u)AoR1)f]/2+(Lz, (RzP'u)AoRJ)fzfi 

s p aP-1 ) 
+(Lz, :E D (Kg0-AJHg0)R,) agP-1 f1, , 

~=1 a=1 1 

:._ ajz ajz ap 
Tz-:- a, +azfz agz +f3z agy fz, 

az=(Lz, (RzP'u)AoRz), 
8 p 

f3z=(Lz, :E D (Kg0 -AzHg0)Rz), 
~=1 a=1 

(14) 

(15) 

(16 a) 

(16 b) 

(16 c) 

where sz=:Ej=1n~0g1 and hz is an arbitrary function to be determined, in the 

next step: By imposing the boundedness of lJz in Eq. (14), i.e., the non­
secularity condition. for (/z, the term proportional to sz in Eq. (14) must vanish, 
t.e., 

Tz=O. (17) 

Equations (13) and '(17) with Eqs. (3a), (3b ), (16a), (16b) arid (16c) govern 
the n-"quasi-simple" wave systems, that apply not only to the study of special 
problems such as collisions of solitary waves but also to the study of more 
general problems, for example, the time development of nonlinear wave 
motions. The result implies that the n-"quasi-simple" Waves can be super­
posed to describe the nonlinear systems, playing an essential role as well as the 
n families of characteristics in the usual hyperbolic system. Each "quasi­
simple" wave satisfies the simple nonlinear equation (17), which becomes, for 
a special value of the parameter p, the Burgers equation (p=2) and the KdV 
equation (p=3). The interactions between these "quasi-simple" waves are 
included in the variables cpz's. 

As an example we deal with the interactions between two ion acoustic 
solitons travelling opposite to another in a collisionless plasma. Let the 
electron number density and the ion fluid velocity be n and u, which are normal­
ized in terms of the mean number density no and the sound velocity of ion 
acoustic wave (Te/mi)ll2, respectively, where Te is the constant electron 
temperature and mi the ion mass. For a collisionless plasma of cold ions and 
warm electrons, the following system of equations applies :6) 

~+~(nu)-~(~+u~)(l_~)=o,, at ox ox at ax n ox 
(18 a) 
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Generalizatz'on of the Reductive Perturbatz'on Method 41 

(18 b) 

where x and t are also normalized by the De bye length ( Te/41Tnoe2)112 and the 
inverse of the ion plasma frequency (mi/47Tnoe2)112. Writing Eqs. (18a) and 
(18b) in the form of Eq.(1), expanding .n and u in terms of a smallness para­
meter s as 

and using the systematic expansion method developed above, we obtain 

}ft + + 'Oft +l_ o3ft_=O 
a-r .Ji agi 2 agf ' 

where i=1, 2 and 

f1 =·(n1 +ui)/2, f2=(n1-u1)/~ 

g1 = a;112{x-t+(s112j2) j~2f2(g)dgj, 

g2=E112{x+t+(a:112f2) j~lf1(g)dg}' 
-r=s312t. 

(19) 

(20 a) 

(20b) 

(20 c) 

For the two-soliton problem, we putft /i(gi-Ct-r) and integrate Eq. (19) 
under the boundary conditions that fi=(oftf'Ogi)=(o2ftfog~)=(o3ftf'Og~)=0 at 
gt=±oo, to obtain 

/1 =A sech2{(A/6)112(g1-A-r/3)}, 

f2=B sech2{(B/6)112(g2-B-r/3)}, 

6 =sll2 {x-t+(3sB/2)112 tanh [(B/6)112(g2-B-r/3)]-xA}, 

g2=s112{x+t+(3sA/2)112 tanh [(A/6)112(g1-A-r/3)]-xB}, 

(21 a) 

(21 b) 

(22 a) 

(22 b) 

where XA and XB are initial phases of the two solitons. The phase shift of each 
soliton in the whole process of collision can be estimated as 

8A=[x-t]~1=0, ~2=oo-[x-t]~1=0, ~2=-oo 
-(6sB)112, 

8B= [x+t]~1=...:oo, ~ 2=0- [x+t]~1=oo, ~2=0 
=(6sA)112. 

(23 a) 

(23 b) 

Tatsumi and Tokunaga presented another example by making use of the 
generalized reductive perturbation method, that is, the interaction of weak 
nonlinear disturbances in a compressible fluid including shocks, expansion 
waves and contact surfaces. 7) According to them, the nonlinear waves belong­
ing to different families of characteristics behave almost independently of each 
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42 M. OIKAWA and N. YAJIMA 

other, while those belonging to the same family are governed either by the 

Burgers equation or by the equation of heat conduction. They applied the 

result to one-dimensional shock tt,lrbulence in a compressible fluid and found 

that the law of energy decay of shock ~urbulence is identical to that of the 

Burgers turbulence, 

§ 3. Strongly ~ispersive systemss> 

Here we consider the system of interacting two waves with the frequencies 

and the wave-numbers (w1, k1) and (w2, k2), respectively, which is governed 

by the equation 

au +A(U)'oU +B(U)=O at ax . , (24) 

where U is a column vector with n components, u1 .. u2.~ ... _, un, A an n X n matrix 

and B a column vector. The frequency and the wave-number of each wave, 

w~ and k~ (i=l, 2), satisfies the dispersion relation 

det (w~l-k~Ao+z'P' Bo)=O, (25) 

where 1 is the unit matrix, Ao=A( U<O>), (P'Bo}tJ=(oB~fouJ)u=uco> and U<O> 

is a constant solution of Eq. (24), satisfying 

B(U<O>)=O. (26) 

The present system consists of the fundamental two modes with ( w1, k1) 

and (w2,k2) and their higher harmonicscaused by the nonlinear interaction, and 

undergoes a slight mqdulation of their amplitudes and frequepcies under the 

nonlinear effects. The form of U is then anticipated as 

U= U<O>+ £: ea £: UJ~J(gl, g2, r)Zz,n, 
a=l l,n=-oo 

where Zz,n is the exponentially oscillating factor, 

Zz,n=exp[z'l {k1x-w1t+ :E er.Qy> (6, g2, r)} 
r=l 

+in{k2x-w2t+ :E er.Q~>(gl, g2, r)} ], 
r=l 

and ·gl, g2 and r are the stretched variables introduced through 

gl =e{x-A1t- i:: er~ir> (gl, g2, r)-n}, 
r=o · · 

g2=e{x-A2t~ i:: er~~r> (g,l, g2, r)-r2}, 
r=o · 

(27) 

(28) 

(29) 
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Generalization of the Reductive Perturbation Method 4'3 

In the above expressions, e is a smallness parameter, A1 and A2 are the group 

velocities, that is, 

i=1,2, (30) 

y1 and y2 are, arbitrary constants and D~n ,' ifl~n are introduced to take into 

account the frequency shifts and the orbit modifications due to the nonlinear 

interaction. Here the relative velocity IA1-A2l is assumed to be of the order 

of unity. 
The sequence of equations to be solved is obtained by inserting Eqs.(27)~ 

(30) into Eq.(24), corresponding to the successive powers of e of the same 

harmonics. In order to ensure the reality of U, we assume that 

Df)*=Df) and D¥)*=D¥), 

iflf)* = iflin and iflf/) * = iflfl) · 

In the lowest order, we have 

W U (l)_Q 
l,n l,n- ' 

Now, suppose that 

det Wz,n=O 

=FO 
for lll+lnl=1, 

otherwise. 

(31 a) 

(31 b) 

(31 c) 

(32) 

(33) 

(34 a) 

(34 b) 

Equation (34a) corresponds to the dispersion relation (25). Although Eq. 

(34b) is not always valid for arbitrary l and n, we here assume· that it hold so 

far as a few order of perturbation expansion, at most Ill+ In IS:4, is considered. 

Equations (34) then yield 

Ui~i>=~l(~l, ~2, T)R!, 

Ui,~i =~2(6, ~2, T)R2, 

Ui~~=O for lll+lni=F1,. 

(35 a) 

(35 b) 

(35 c) 

where R1 and R2 are the right eigenvectors of W1,o and Wo,1, resp~tively; 

(36) 

and ~1, ~2 are scalar functions to be determined later. 

Following the discussion in §6 of Part I, we can proceed to the next order 

to get 
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44 M. OIKAWA and N. YAJIMA 

a vel) . a ucl) 
Wl,n u~:~-(/ql-Ao)ag~'n -("A2/-Ao) ag~,n 

+i :E (l' kt +n' k2)(P Ao· Ui~l' n-n') UiP n' 
l',n' ' ' 

(37) 

This corresponds to Eq.(l.6·17). ((1.6·17) denotes Eq.(6·17) in Part I. In 
what follows, this notation will be used.) 

Multiplying Eq.(37) by the left eigenvector L1 corresponding to Rt, 

LtWt,o=O, 

and using Eq. (I. 6·14), we have 

a sot 
("At-A2)-a~=O, i.e.,. so1 =sot(gt, -r), 

corresponding to Eq. (I. 6·17), we readily obtain 

(36') 

(38) 

(39) 

Equation (37) has in general the non-trivial solutions for Ill+ In IS:2; 

u~~6= u~~;*0=S1so~, u&~~= U&~~*2 =S2so~, 
Ui_~i = U~i:*-1 = T 9'1tp2, Ui~~I = U~i:*1 = V tp1tp2, 

U&~6=X1Itp1I2 +X2Itp2l2 , 

where 

S1=- W'2.~~z'k1(P Ao·R1)R1+ ~ PP Bo: R1R1l, 

S2=- W0,12!z'k2(P Ao·R2)R2+ ~ PP Bo: R2R2l, 

T=- WJ:J {z'k1(P Ao·R2)R1 +ik2(P Ao·R1)R2+PP Bo: R1R2}, 

V:::::;:- W!.~1 {z'k1(P Ao·R2)R1 +z'k2(P Ao·R1)R'2+PP Bo: R1R'2}, 

Xt=- W0.~{ikt(P Ao·Rf)Rt-ikt(P Ao·Rt)R!+PV Bo: RiRH. 

(41) 

The solutions U~~b and U&~~ are the same as those obtained by putting k=k1 
and k=k2, respectively, in Eq. (I. 6·18b), and UiJ~b agrees with the sum of 
U62\k=k1) and Uj,2)(k=k2) given by Eq. (I. 6·18a). The solution Ui~L 
Uj_~~l and their complex conjugates are due to the mutual-interactions. 

In the third order of 6, the expressions becomes lengthier. However, we 
are now interested in how tp1, .Qj_1)and o/i1) may be determined. Only the 
third order terms with l=1 and n=O are written out; 
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Generalz'zatz'on of the Reductz've Perturbatz'on Method 45 

+ 1 ~ """BO . UCl) ·uc1) uc1) -0 
~6 ~ r'' : 1-l'-l" -n'-n" l' n' l",n"- · 

l'n'l"n" ' ' 
(42) 

Multiplying Eq. (42) by L1 from the left and using Eqs. (35), (36'), (39)'""(41) 
and the identical relations given in §6 of Part I, 

we obtain 

(43) 

where Re(f31) and Im(f31) are the real and the imaginary part of {31, respectively, 
and a1, {31 are given by 

a1=(L1, R1)-1L{k1!(P' Ao·X1)R1-(P' Ao·Sl)Ri+2(P' Ao·R1)S1 

+(P'P' Ao: R1Ri)R1- ~ (P'P'Ao: R1R1)Ril 

-i (rr Bo : (S1R1'+X1R1)+ ~ P'P'P' Bo : R1R1RilJ, (44 a) 

{31 =(L1, R1)-lL1[k1 {(P' Ao·X2)R1 +(P' Ao·R:) T +(P' Ao·R2) V 

+(P'P' Ao : R:R2)R1} 

+k2{(P' Ao· V)R2-(P' Ao·R2) V +(P' Ao·R2) T 
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46 M. OIKAWA and N. YAJIMA 

-(17 Ao· T)R2+(1717 Ao: R1R~)R2-(I7I7 Ao: R1R2)R~} 

-z" {1717 Bo : (X2R1+ T R~+ V R2) 

+171717 Bo : R2R~R1} ]. (44 b) 

We now suppose that 

(45) 

(46) 

Substituting Eqs. (45) and (46) into Eq. (43) and imposing the non-secularity 
requirement on <p1 <2>, we obtain the nonlinear Schrodinger equation 

. d(j?l -~- d 2w1 82<p1 2 _ 
1, dT + 2· dk~ ag~ -all SOli (j?l-0, (47) 

in which a1 agrees with Q in Eq. (1.6·25) if k=k1 is substituted. From Eqs. 
(43)""(47),. we finally obtain the equation for soi2), 

aso<2) 
(,\1-,\2) a/

2 
=Im(,81)lso2(g2, T)l2<p1(e1, -r). (48) 

Equations (45)""(47) are readily integrated to yield 

Di1>- ,\2 ~,\1 Re(,81) ;~•I <p2(g) 12dg+ (~h(6, -r), 

l ;~2 ({Jl2) ,\
1
-,\

2 
Im(,81) I({J2(g) l2dg+<P1(6, -r), 

.foi0)= 1J'1(g, -r), 

(49) 

(50) 

(51) 

where el, 4>1 and 1J'l are due to the self-interaction, not to the mutual-interac­
tion, and are determined in the next order equation. Among them, 6>1 and 
<P1 can be absorbed into the first order solution <p1(e1, T), and hence, without 
loss of generality, may be put to zero. The quantity 1J'1, however, cannot be 
taken zero, because it denotes a modification of the orbit of the wave packet 
and is affected by the spatial and the temporal variations of <p1(6, T). Since 
the present perturbation method is based on the assumption that the orbit of 
the wave packet has a practical meaning, then <p1(6,-r) is expected to be written 
as the product of a function of 6 and a oscillating function of -r with modulus 
1; i.e., taking into account Eq. (47) we can write 

(52) 

In this case, without performing the higher order calculations, 1J'1 is estimated 
as follows: The -r-dependent exponential factor in the expression (52) changes 
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Generalization of the Reductive Perturbation Method 47 

the frequency of the carrier wave by s2Liv1 and then the group velocity by 

s2d(Liv1)/dk1. While, the orbit modification lJ'1 changes the velocity of the 

wave packet by s2dlJI1/d-r (lJ'1 is assumed to be independent of 6). Thus, we 

obtain 

(53) 

For the case with l=O and n= 1, the results are obtained by replacing the 

subscript l with 2, and vice versa, in Eqs. (44)f""".,.(53). 
The next order correction on the orbit of wave packet, vA1\ is determined 

by the fourth order equation. However, this can be also done without actually 

performing complicated calculations: Let L1k1 and Llw1 be the variations of the 

wave-number and the frequency due to the mutual-interaction, respectively. 
These are obtained from .Qj_1)·, accurate to the second order of s, 

Llk1 =_j__ (s.Qj_D)=s2· a.Qj_l), 
ax ae2 

(54 a) 

(54 b) 

The group velocity is then modified as 

_d(w1 +Liwl) dw1 + _q~~! ___ dLik1 t!._w1 
d(kl +Likl) dkl dkl dkl dk1 

d 
=Al- (;\1-A2)-dk]. (L1k1). (55) 

Alternatively, the group velocity is obtained from the time derivative of the 

orbit of the wave packet, i.e., [dxjdt].; 1=const· Using Eq. (29), we get 

[ d_~-] ::::;\1 + [··rj__·eif;il)(6, e2, r)] 
dt e1=COnSt dt et=CODSt 

........,Al +s--1- ·---
a¢;<1) [ d6 J · 

- ae2 dt et=COnst 

a¢;<1) 
~A1 +s2(;\1-A2) ag~ . (56) 

Substituting Eqs. (49) and (54a) into Eq. (55) and taking intp account that 

cp2(e2, r) is independent of k1, we have 

(57) 
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48 M. OIKAWA and N. YAJIMA 

It will be shown later that the fourth order calculation for an example 
leads .to the same results as that estimated from the above intuitive picture. 

As an example, we deal with the Klein-Gordon equation with a cubic 
interaction term, 8) 

(58) 

where m and f3 are real constants. Introducing x and cp by the equations 

x- t =0, (59 a) 

ay cp-Tt=O, (59 b) 

and differentiating Eq.(59a) with respect to t, we can bring Eq.(58) into the 
matrix form (24): 

Here, U, A and B take the forms 

U=(~ )· 
A=(-~-~~), 

0 0 0 

_ ( m2y-f3y3) 
B= 0 . 

-cp 

(60) 

(61 a) 

(61 b) 

(61 c) 

In what fo1lows, Eq.(59a) wi11 be regarded as a subsidiary condition which 
perpetuates if it is valid initially. We now assume the expansion (27) about 
the constant solution 

Uo=O. 

Then the matrices Wz,n's defined by Eq.(33) are expressed by 

( 

-i(lw1 +nw2) -i(lk1 +nk2) m2 ) 
Wz,n= -i(lk1 +nk2) -i(lw1 +nw2) 0 . 

-1 0 -i(lw1+nw2) 

(62) 

The dispersion relations, det W ±1,0 , 0 and det Wo,±l =0, become 
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Generalization of the Reductz've Perturbation Method 49 

(63) 

which imply 

det Wl,n=I=O (64) 

unless lll+lnl is zero or unity. Hence U}~k except U~~b are given by Eq. 
(32), i.e., 

u~;k=O for lll+lnl~2, 

Ui~b=S01R1, U~~l =S02R2, 

(65 a) 

(65 b) 

where R1 and R2 are the column vectors introduced in Eqs.(36) and take the 
form 

(66 a) 

The corresponding row vectors L1 and L2 may be given by 

(66 b) 

Since det Wo,o vanishes, a different method is required to account for Ub~& 
and U~~&. Consider the component l=n=O of Eq.(60). For the first order 
in s, it yields 

..J.Cl) -yCl) -0 
'f'O•O- 0·0- '. 

hence, the subsidiary condition (59a) yields 

Xb~b=O, 

and, consequently, we have 

U (l) -0 o.o- · (67) 

Putting l=n=O in Eq.(37), taking into account pAo=rrAo=f7J7Bo=0 and 
using Eq.(67); similarly we obtain 

U C2) -0 o.o- · 

Since y Ao=f1f1 Bo=O, we find from Eqs. (40) and (41), 

Ui~k=O for lll+lnl~2. 

Introducing Eqs. (66) and (68) into Eqs. (44) 

a1 = -(3/2){:3/wl, 

{:31 = -3{:3/wl. 

(68) 

(69) 

(70 a) 

(70, b) 
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Hence, we have from Eqs. (47),....,(51) 

(71 a) 

(71 b) 

(72 a) 

(72 b) 

(73) 

(74) 

where Al =k1/w1 and A2=k2/w2. Substituting Eqs.(70) and (72) into Eq.(57), 
we obtain 

(75 a) 

(75 b) 

We now show that the above results (75) coincide with those obtained by 

the fourth order calculation. Computation of Ui~'b is straightforward; from 

Eq. (42) 

(76) 

Introducing Eq.(76) int~ the fourth order equation with 1=1 and n=O, we 
obtain after tedious calculation 

(77) 
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Imposing that the third and fourth brackets vanish individually, we obtain the 
equations to determine tf;iV and !Ji2); 

atf;i1> l-A1A.2 aDi1> 

-ag2- w1(A.1-A.2f-ae2-' 

arJi2) atj;~o) arJil) l arJil) 
~=~~-X!-=I;--~-

From the boundedness of cpi3), we have the equation for '1J'1, 

i acpl alJ'l + m 2 _{acpl a21Jil_+2 a2cpl _alJ'll 
agl aT 2w~ a6 aer agf a6 

k1 a2 
=--- cpl. 

W~ a6aT 
Finally we have 

(78) 

(79) 

(80) 

(81) 

Consequently, it is found that the wave profile is corrected in the third order of s. 
V•le put the subscript l in place of 2, and vice versa, in Eqs.(78)"'-~(8l), 

to obtain the equations for t/;~1), fJ~1>, 1J'2 and cp~3). 
Substituting Eq.(72a) into Eq.(78), we can readily obtain the same result 

as Eq.(75a). Equation (52) is substituted into Eq.(80) to yield 

(82) 

in which 1J'1 is assumed to be independent of gl· It follows from Eqs. (52) 
and (7la) that L11.11 is connected with w1 and the amplitude of /1 as L11.11oc 

(amplitude)2/wl. Thus we get 

dlJ'l d 
----;Jt = dkl (J1-1l). (83) 

These ensure the intuitive derivation of Eq. (53) and (57). 
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