
Tohoku Math. J.
66 (2014), 309–320

A GENERALIZATION OF THE THEORY OF
COLEMAN POWER SERIES

KAZUTO OTA

(Received March 30, 2012, revised May 7, 2013)

Abstract. Shinichi Kobayashi found a generalization of the Coleman power series
theory to formal groups of elliptic curves and applied it to a study of p-adic height pairings.
In this paper, we generalize his theory of Coleman power series to general formal groups.

1. Introduction. The theory of Coleman power series [1] says that every norm com-
patible system is interpolated by a power series. This theory has been generalized in various
ways by Perrin-Riou [8] and others, and they play important roles in Iwasawa theory. On
the other hand, Kobayashi [6] found a generalization to formal groups of elliptic curves. He
studied the interpolations of “admissible norm systems” (cf. [6]), which are not norm com-
patible. Furthermore, he applied it to computations of p-adic height pairings to prove the
p-adic Gross-Zagier formula for elliptic curves at supersingular primes. We expect a general-
ization of his theory will play an important role in proving more general p-adic Gross-Zagier
formulas. In this paper, we generalize his theory to general formal groups over unramified
rings.

Let ζpn be a primitive pn-th root of unity such that ζ p
pn+1 = ζpn , mn the maximal ideal

of Zp[ζpn] and Un = 1 + mn. Then the Coleman power series theory [1] says that every
(un)n ∈ lim←−Un, where the limit is taken with respect to the norm maps, is interpolated by a

power series. Namely, there exists a unique power series f (T ) ∈ Zp[[T ]] such that

f (ζpn − 1) = un
for all n ≥ 1. In terms of formal groups, every element of lim←− Ĝm(mn) can be interpolated.

Let E be an elliptic curve over Qp with good supersingular reduction and Ê the formal
group over Zp (of height two) associated to E. Then it is known that lim←− Ê(mn) is trivial,

where the projective limit is taken with respect to the trace maps Trm/n : Ê(mm)→ Ê(mn).
However, systems (cn)n ∈∏∞

n=1 Ê(mn) satisfying the equations

(1.1) Trn+2/ncn+2 − apTrn+1/ncn+1 + pcn = 0

in Ê(mn) for all n ≥ 1, where ap = p + 1 − #E(Fp), are also important (cf. Kobayashi
[5], Perrin-Riou [7]). For example, some systems satisfying (1.1) are constructed from certain
integral power series and applied to a construction of p-adic height pairings in [7]. In [6],
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Kobayashi studied the interpolations of systems (cn)n ∈ ∏∞
n=0 Ê(mn) satisfying (1.1) and

found a generalization of the Coleman power series theory. By his theory, a system of Heegner
points, which satisfies (1.1), can be interpolated by a power series. Thus, he applied the
system to computations of the p-adic height of Heegner points. This computation played an
important role in his proof of the p-adic Gross-Zagier formula, which relates the p-adic height
of a Heegner point to the first derivative of a p-adic L-function of E.

Here, we explain our main theorem for odd primes (see Theorem 4.6 for the general
case). Let G be a d-dimensional, commutative formal group over Zp of finite height h. We fix
an isomorphism G ∼= Spf(Zp[[X1,X2, . . . , Xd ]]) between formal schemes over Zp. Then,
we can identify G(Zp[[T ]]) with the subset (p, T )⊕d of Zp[[T ]]⊕d and G(mn) with m⊕dn
not as Zp-modules but as sets (cf. Section 2). We denote by M the Dieudonné module of G,
which is a free Zp-module of rank h. Then, M has operators Frobenius F and Verschiebung
V . Let det(t − V ) = th + bh−1t

h−1 + · · · + b0 ∈ Zp[t], � the logarithm logG of G and
trm/n : Qp(ζpm)→ Qp(ζpn) the usual trace map. Our main theorem is the following:

THEOREM 1.1 (cf. Theorem 4.6). For each system (cn)n ∈ ∏∞
n=1 G(mn) satisfying

(1.2) trn+h/n�(cn+h)+ bh−1trn+h−1/n�(cn+h−1)+ · · · + b0�(cn) = 0

in Qp(ζpn) for all n ≥ 1, the following conditions are equivalent:
(a) There exists a power series f (T ) ∈ G(Zp[[T ]]) such that

f (ζpn − 1) = cn
for all n ≥ 1;

(b) cpn+1 ≡ cn mod pZp[ζpn+1]⊕d for all n ≥ 1.

REMARK 1.2. (1) We prove our main theorem for formal groups over unramified
rings.

(2) In [7], Perrin-Riou constructed systems satisfying (1.2) similarly as in the case G =
Ê. See Section 3 for details.

(3) In the case G = Ê, we have det(t − V ) = t2 − apt + p and
⋃
n Ê(mn)tor = 0.

Therefore, we see that (1.2) is equivalent to (1.1) and that our main theorem coincides
with Kobayashi’s theorem [6, Theorem 3.15]. In this paper, we modify his proof. The
key is to use Knospe [4, Proposition 2.1].

Acknowledgment. This paper is based on Master’s thesis of the author. He would like to express
his sincere gratitude to his adviser Professor Shinichi Kobayashi for suggesting the problem to him and
for giving much advice. The author would also like to thank the referee for giving helpful comments.

2. Preliminaries. In this section, we fix notation and recall Dieudonné modules of
formal groups over unramified rings.

Let p be a prime number and k a perfect field of characteristic p. We denote by W the
ring W(k) of Witt vectors with coefficients in k and by K its fractional field with absolute
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Frobenius σ . We fix a prime element π of Zp and ϕ(T ) ∈ Zp[[T ]] such that

ϕ(T ) ≡ πT mod T 2Zp[[T ]] , ϕ(T ) ≡ T p mod πZp[[T ]] .
As is well known, ϕ induces a Lubin-Tate formal group F over Zp whose multiplication-by-π
map [π]F is given by ϕ(T ). For n ≥ 0, we denote by F [πn] the kernel of the endomorphism
[πn]F of F and put Kn = K(F [πn]). We denote by mn the maximal ideal of the valuation
ring OKn ofKn. We fix a system (πn) ∈ ∏∞

n=1 F [πn]\F [πn−1] such that [π]F (πn+1) = πn.
Let G be a d-dimensional, commutative formal group over W of finite height h. We also
fix an isomorphism G ∼= Spf(W [[X]]) between formal schemes over W , where W [[X]] =
W [[X1, . . . , Xd ]], and denote by X ⊕ Y ∈ W [[X,Y ]]⊕d the d-dimensional formal group
law. Then, for a commutative W -algebra A which is complete under the topology induced
by an ideal I of A containing p, we can identify G(I) with the set of W -homomorphisms
f : W [[X]] → A such that f (Xi) ∈ I for 1 ≤ i ≤ d . Thus, we can identify G(I) with I⊕d
as a set by f �→ (f (Xi))i . In other words, we identify G(I) with the Zp-module I⊕d whose
addition is induced by the formal group law X ⊕ Y .

In order to define Dieudonné modules, we recall the formal differential module of
W [[X]] over W . We denote by D the space of derivations of W [[X]] over W and by D∗
the dual W [[X]]-module of D. Then, we have D∗ = ⊕

1≤i≤d W [[X]]dXi . Here we denote
by dg the map D→ W [[X]] defined by D �→ Dg for g ∈ W [[X]]. We say that ω ∈ D∗ is an
exact form if ω = df = ∑

1≤i≤d(∂f/∂Xi)dXi for some f ∈ K[[X]]. For an exact form ω,
we denote by Fω ∈ K[[X]] a unique power series such that ω = dFω and Fω(0) = 0. We put

Z = {ω ∈ D∗ ; ω is exact, Fω(X ⊕ Y )− Fω(X)− Fω(Y ) ∈ pW [[X,Y ]]} ,
B = {df ∈ D∗ ; f ∈ pW [[X]]} ,

L = {ω ∈ D∗ ; Fω(X ⊕ Y ) = Fω(X)+ Fω(Y )} .
We define the Dieudonné moduleM of G byM := Z/B. Since it depends only on the special
fiber G of G, we also call it the Dieudonné module of G. It is known thatM is a freeW -module
of rank h. Let W [F,V ] be the Dieudonné ring. Namely, F and V satisfy the relations

FV = VF = p , Fx = xσF , V x = xσ−1
V

for x ∈ W . We remark that W [F,V ] acts on M as follows: For ω ∈ Z, we put Fω(X) =∑
α aαX

α . Here α ranges over all (i1, . . . , id ) ∈ Z⊕d≥0 \ {(0, . . . , 0)}, and Xα denotes the

product Xi11 · · ·Xidd for α = (i1, . . . , id). We make F and V act on M by

F(ω + B)= d(Fσω
(
Xp

))+ B =
∑

1≤i≤d

∂

∂Xi

(
Fσω

(
Xp

))
dXi + B ,

V (ω + B)= d
(∑

α

paσ
−1

pα X
α

)

+ B =
∑

1≤i≤d

∂

∂Xi

( ∑

α

paσ
−1

pα X
α

)

dXi + B .

Here pα denotes (pi1, . . . , pid ) for α = (i1, . . . , id ). Thus,M is a leftW [F,V ]-module. We
call F Frobenius operator and V Verschiebung operator, respectively, on M .



312 K. OTA

According to Honda [3, Proposition 1.3 and Lemma 1.4], we see that L ⊂ Z. By abuse
of notation, we also denote by L the image of L in M . Furthermore, one can show that M is
a left W [F,V ]-module generated by the W -submodule L of M (cf. [3, Lemma 4.3]).

We define a W [[T ]]-submodule P of K[[T ]] and its quotient P by

P =
{

f (T ) =
∞∑

n=0

anT
n ∈ K[[T ]] ; nan ∈ W for n ≥ 0, f (0) ∈ pW

}

,

P = P/pW [[T ]] .
We remark that ϕ acts on P by ϕ(f )(T ) = f σ (ϕ(T )). Then, by [3, Lemma 2.1], we see that
ϕ induces Frobenius operator F of P , which is defined by

F

( ∑

n

anT
n + pW [[T ]]

)

=
∑

n

aσn T
pn + pW [[T ]] .

By an argument similar to that in the proof of [7, Lemme 1.2], one can show that there exists
a unique σ−1-linear operator ψ of P such that ψ ◦ ϕ = p and

ϕ ◦ ψ(f )(T ) =
∑

η∈F [π]
f (T ⊕F η) ,

where ⊕F denotes the addition in F .

PROPOSITION 2.1. For f (T ) ∈ P and n ≥ 1, we have
(a) ϕ(f )(πn+1) = f σ (πn);
(b) ψ(f σ )(πn) = trn+1/n(f (πn+1)).

Here, trm/n is the usual trace map from Km to Kn for m ≥ n.

PROOF. For example, see [7, Lemme 1.4]. �

Moreover,ψ induces Verschiebung operator V of P , which is defined by

V

( ∑

n

anT
n + pW [[T ]]

)

=
∑

n

paσ
−1

pn T
n + pW [[T ]] .

Thus, P is a leftW [F,V ]-module. According to Fontaine [2], we have a canonical Zp-linear
isomorphism

G(k[[T ]]) ∼= HomW [F,V ](M,P) .
In order to construct this isomorphism, we fix some notation.

We denote by ω1, . . . , ωd the canonical invariant differentials of G, which is also called
the canonical base of L in [3]. Here, we recall that we have identified G with the formal
group law X ⊕ Y over W through the fixed isomorphism G ∼= Spf(W [[X]]). We denote by
logG = (Fωi (X)) ∈ K[[X]]⊕d the logarithm of G, which is also called the transformer in [3].
We put expG(X) = log−1

G ∈ K[[X]]⊕d . For a local ring A, we denote by mA the maximal
ideal.
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First, we construct G(k[[T ]]) → HomW [F,V ](M,P). For (fi(T )) ∈ G(k[[T ]]) =
m⊕dk[[T ]] = T k[[T ]]⊕d , we take any lift (fi(T )) in G(W [[T ]]) = m⊕dW [[T ]] = (p, T )⊕d such

that fi(0) = 0. We define an element of HomW [F,V ](M,P) by

ω �→ Fω(f1(T ), . . . , fd(T )) mod pW [[T ]] .
Note that this morphism is independent of the choice of (fi(T )) by [3, Lemma 2.1]. Thus, we
have a Zp-morphism

G(k[[T ]])→ HomW [F,V ](M,P) .
For v ∈ HomW [F,V ](M,P), we take any lift Fi(T ) of v(ωi ) such that Fi(0) = 0. We define
an element f (T ) of G(k[[T ]]) by

f (T ) = expG(F1(T ), . . . , Fd(T )) mod G(pW [[T ]]) .
Note that the power series expG(F1(T ), . . . , Fd(T )) is an element of G(W [[T ]]) by
[3, Lemma 2.4]. By [3, Proposition 3.3 and Lemma 4.1], we also see that this is indepen-
dent of the choice of (Fi(T )). Thus, we have the inverse morphism.

In the following, we often identify G(k[[T ]]) with HomW [F,V ](M,P) by this isomor-
phism.

3. Construction of systems after Perrin-Riou. In this section, we shall construct
systems satisfying a relation similar to (1.2) in the same way as in [7]. First, we recall a
lift HomW [F,V ](M,P) → HomW(M,P) constructed in [7]. It plays important roles in this
paper. We keep the same notation as in the previous section.

PROPOSITION 3.1. For each x ∈ HomW [F,V ](M,P), there exists a unique lift x̂ ∈
HomW(M,P) of x such that

(3.3) ψ(ϕ(x̂(m))− x̂(Fm)) = 0

for all m ∈ M , or equivalently, ψ(x̂(m)) = x̂(Vm) for all m ∈ M.
PROOF. This is [7, Proposition 3.2]. In [7], only the case where ϕ(T ) = (1 + T )p − 1

is treated. However, we can also prove this proposition for our ϕ by the same argument as in
[7]. �

We construct systems satisfying a relation similar to (1.2) by using the lift.
Let x be an element of G(k[[T ]]) ∼= HomW [F,V ](M,P). In the case p > 2, the power

series expG ◦(x̂(ωi)) is an element of G(W [[T ]]) = m⊕dW [[T ]] by [3, Lemma 2.4]. Thus, we
have a lift

ι : G(k[[T ]])→ G(W [[T ]]), x �→ expG ◦(x̂(ωi)) .
Hence, we have

G(W [[T ]]) = ι (G(k[[T ]]))⊕ HomW(L, pW [[T ]])
(cf. [7, Théorème 4.1]). For f (T ) = ι(x) = expG ◦(x̂(ωi)) ∈ ι (G(k[[T ]])) � G(W [[T ]]),
we put

cn = f σ−n(πn) =
(
expG ◦(x̂(ωi))

)σ−n
(πn) ∈ Gσ−n(mn) .
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In the case p = 2, we put cn = (expG ◦(2x̂(ωi)))σ−n(πn). Note that the constant term of
2x̂(ωi) is in 4W and that expG converges on 4W⊕d (cf. Lemma 4.1). As in the case p > 2,
we have a lift

ι : G(k[[T ]])⊗Q2 → G(W [[T ]])⊗Q2, x �→ 1

2
(expG ◦(2x̂(ωi))) .

See [6, Section 3] for a lift without a denominator.
We take a polynomialQ(t) = tm + bm−1t

m−1 + · · · + b0 ∈ W [t] such that

(3.4) Q(V )ωi = 0

for 1 ≤ i ≤ d (e.g. Q(t) = detW(tν −V ν |M) in the case where k is the finite field Fpν of pν

elements). By Proposition 3.1, we have

(ψm + bm−1ψ
m−1 + · · · + b0)x̂(ωi) = 0

for 1 ≤ i ≤ d . Therefore, by Proposition 2.1, we have

(3.5) trn+m/n�n+m(cn+m)+ bm−1trn+m−1/n�n+m−1(cn+m−1)+ · · · + b0�n(cn) = 0

for all n ≥ 1, where we denote by �n the logarithm logσ
−n

G of Gσ−n .

DEFINITION 3.2. Let Q(t) ∈ W [T ] be a polynomial satisfying (3.4). We say that
(cn)n ∈ ∏∞

n=1 Gσ
−n
(mn) is a Q-norm system if it satisfies (3.5).

REMARK 3.3. (1) We have shown that the map

G(W [[T ]])→
∏

n

Gσ−n (mn) , f (T ) �→ (f σ
−n
(πn))n ,

induces

ι (G(k[[T ]]))→ {Q-norm systems}
in the case p > 2. See Theorem 4.9 for the image.

(2) If G is a formal group over Zp and if there exist no non-trivial p-torsion points in
⋃∞
n=1 G(mn), then the relation (3.5) is equivalent to the relation

Trn+m/ncn+m + bm−1Trn+m−1/ncn+m−1 + · · · + b0cn = 0 ,

where Trm/n is the trace map from G(mm) to G(mn).

EXAMPLE 3.4 (The case G = Ĝm). Let G be the multiplicative formal group Ĝm.
Furthermore, we assume that k is a finite field and that p is odd for simplicity. Our lift ι
from Ĝm(k[[T ]]) to Ĝm(W [[T ]]) induces a lift

1+ mk[[T ]] → 1+mW [[T ]] .

One can show that it coincides with the map

g �→ N∞(ĝ) := lim
i→∞(N

i (ĝ))σ
−i
,
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where N : W [[T ]]× → W [[T ]]× is the norm operator defined in [1] and ĝ is any lift of g in
W [[T ]]×. Hence, we see

ι
(
Ĝm(k[[T ]])

) ∼= (1+mW [[T ]])N=σ .

By the classical theory of Coleman power series, we conclude that

ι
(
Ĝm(k[[T ]])

) ∼= lim←− Ĝm(mn) ,

where the limit is taken with respect to the trace map of Ĝm. See [1, 7] for the detail.

4. Proof of the main theorem. In this section, we prove our main theorem. We keep
the same notation as in the previous section. First, we show basic properties of formal groups.

LEMMA 4.1. Let H be a d-dimensional, commutative formal group over W . As be-
fore, we fix a W -isomorphism H ∼= Spf(W [[X]]). Let I be an ideal contained in mn.

(1) For A,B ∈ H(mn) = m⊕dn , the following congruences are equivalent.
(a) A ≡ B mod I⊕d , where we regard A,B as elements of m⊕dn .
(b) A ≡ B mod H(I), where we regard A,B as elements of H(mn).

(2) If I is contained in the ideal {x ∈ Kn ; v(x) > 1/(p − 1)}, then logH induces a
Zp-linear isomorphism

H(I) ∼= I⊕d .
Here, v denotes the valuation of Kn normalized by v(p) = 1.

REMARK 4.2. The isomorphism in (2) differs from the identification through the fixed
isomorphism H ∼= Spf(W [[X]]).

PROOF. (1)We denote byX⊕HY the formal group law induced by H ∼= Spf(W [[X]]).
Since X ⊕H Y is a formal group law, it satisfies

X ⊕H Y ≡ X + Y mod deg 2 ,

X ⊕H 0 = X , 0⊕H Y = Y .
Suppose that A ≡ B mod I⊕d , namely, there exists an element C of I⊕d such that A =
B + C. According to the congruences above, we have A = B + C ≡ B ⊕H C mod I⊕d ,
which shows thatA ≡ B mod H(I). Conversely, we suppose thatA ≡ B mod H(I). Then,
there exists an element C of I⊕d such that A = B ⊕H C, where we regard A,B as elements
of m⊕d . Hence, we have A ≡ B + C mod I⊕d , which shows that A ≡ B mod I⊕d .

(2) By [3, Theorem 2], we may identify H with the formal group law whose logarithm
is of the form

X +
∑

ν≥1

BνX
pν ∈ K[[X1, . . . , Xd ]]⊕d ,

where Bν ∈ p−νMd(W) for ν ≥ 1. Here, we put Xp
ν = t (X

pν

1 , . . . , X
pν

d ). For a matrix
D = (di,j ) with di,j ∈ Kn, we define the valuation v(D) of D by v(D) = infi,j {v(di,j )}.
Then, we have

v(Bν) ≥ −ν
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for ν ≥ 1. For x ∈ m⊕dn , we have

v(Bνx
pν ) ≥ pνv(x)− ν →∞

as ν → ∞. Hence, we see that logH(x) is well-defined. Suppose that v(x) > 1/(p − 1) in
addition. Then, we have

v(Bνx
pν )− v(x) ≥ pνv(x)− v(x)− ν > pν − 1

p − 1
− ν ≥ 0

for ν ≥ 1. Hence we have

v(Bνx
pν ) > v(x)(4.6)

for ν ≥ 1. Thus, we have v(x) = v(logH(x)). Hence, we see that logH induces an injective
Zp-morphism

logH : H(I)→ I⊕d .
We put ma

n = I. For b ≥ 0 and A ∈ (ma+b
n )⊕d , by (4.6), we have

A− logH(A) ∈ (ma+b+1
n )⊕d .

Namely, the map
logH : H(ma+b

n )→ (ma+b
n )⊕d/(ma+b+1

n )⊕d

is surjective for all b ≥ 0. By the completeness ofKn, we conclude that the map H(I)→ I⊕d
is surjective. �

REMARK 4.3. The assumption that H is defined over W allows us to use Honda’s
theory and to simplify the proof. One can show this lemma in more general case (cf. Tate [9,
§2]).

Let | | denote a p-adic absolute value on
⋃
n Kn. The following proposition plays an

important role in the proof of our main theorem:

PROPOSITION 4.4. Let P(t) = tm + dm−1t
m−1 + · · · + d0 ∈ W [t] be a polynomial

such that the p-adic absolute value of every root of P(t) is strictly greater than |p|. If (yn)n ∈∏∞
n=1 OKn satisfies

trn+m/n(yn+m)+ dm−1trn+m−1/n(yn+m−1)+ · · · + d0yn = 0

for all n ≥ 1, then yn = 0 for all n ≥ 1.

REMARK 4.5. In the case k = Fpν , the polynomialP(t) = detW(tν−V ν |M) satisfies
the condition of the proposition since F onM is topologically nilpotent and FV = VF = p.

PROOF. This is [4, Proposition 2.1]. In [4] it is assumed that p > 2, k is a finite field,
yn ∈ mn for all n ≥ 1 and that ϕ(T ) = (1+T )p− 1. However, we can prove this proposition
for our case by the same argument as in [4]. �

In the following, we fix a polynomial Q(t) ∈ W [t] satisfying (3.4) and the assumption
of Proposition 4.4 about the p-adic absolute values of the roots.

We state our main theorem.
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THEOREM 4.6. (1) Suppose p > 2. For each Q-norm system (cn)n ∈ ∏∞
n=1 Gσ

−n

(mn), the following conditions are equivalent:
(a) There exists a power series f (T ) ∈ G(W [[T ]]) = m⊕dW [[T ]] such that

f σ
−n
(πn) = cn

for all n ≥ 1;
(b) cpn+1 ≡ cn mod pO⊕dKn+1

for all n ≥ 1.
(2) Suppose p = 2. For eachQ-norm system (cn)n, the following conditions are equivalent:

(a) There exist r ≥ 0 and a power series f (T ) ∈ G(W [[T ]]) = m⊕dW [[T ]] such that

f σ
−n
(πn) = [2r ]Gσ−n cn

for all n ≥ 1;
(b) There exists r ≥ 0 such that ([2r]Gσ−(n+1) cn+1)

2 ≡ [2r ]Gσ−n cn mod 2O⊕dKn+1
for all

n ≥ 1.

REMARK 4.7. In (b), for cn ∈ Gσ−n(mn), we regard cn as an element (ci,n)i of m⊕dn
by the identification Gσ−n (mn) = m⊕dn through G ∼= Spf(W [[X]]) and put cpn = (cpi,n)i .

PROOF. We first prove that the condition (a) implies the condition (b). In the case p >
2, we suppose that there exists f (T ) ∈ G(W [[T ]]) such that

f σ
−n
(πn) = cn

for all n ≥ 1. Note that πpn+1 ≡ πn mod pOKn+1 since ϕ(πn+1) = πn. Hence, we have

c
p

n+1 = f σ
−(n+1)

(πn+1)
p ≡ f σ−n(πn) = cn mod pO⊕dKn+1

for n ≥ 1. In the case p = 2, we can also prove that the condition (a) implies the condition
(b) in the same way as in the case p > 2.

In the following, we prove that the condition (b) implies the condition (a). First, we
consider the case where p > 2. For n ≥ 1, we take a polynomial fn = (fi,n) ∈ (p, T )⊕d ⊆
W [T ]⊕d such that

f σ
−n

n (πn) = cn .
By (b), we have

f σ
−m

n (πm) ≡ f σ−nn (πn)
pn−m ≡ cpn−mn ≡ cpn−m−1

n−1 ≡ · · · ≡ cm mod pO⊕dKn
for m ≤ n. Thus, we have

fi,n+1(πm) ≡ fi,n(πm) mod pOKm(4.7)

for m ≤ n, 1 ≤ i ≤ d . We claim that

fi,n+1 ≡ fi,n mod (p, T p
n−pn−1

) .(4.8)

In fact, we have

[πn]F (T ) = Un(T )Pn(T )
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by the p-adic Weierstrass preparation theorem. Here, Un(T ) is a unit ofW [[T ]], and Pn(T ) is
a distinguished polynomial of degree pn since [πn]F (T ) ≡ T pn mod pW [[T ]]. Therefore,
we have

Φn(T ) := [πn]F (T )/[πn−1]F (T ) = U(T )P (T ) ,
where U(T ) is a unit of W [[T ]], and P(T ) = Pn(T )/Pn−1(T ) is a distinguished polynomial
of degree φ(pn) = pn − pn−1. Hence, we have

fi,n+1 − fi,n = R(T )Φn(T )+ aφ(pn)−1T
φ(pn)−1 + · · · + a0

for some R(T ) ∈ W [[T ]] and aj ∈ W (0 ≤ j ≤ φ(pn)− 1). If we put T = πn, then we have

aφ(pn)−1π
φ(pn)−1
n + · · · + a0 ∈ pOKn

by (4.7). Since {πjn }φ(p
n)−1

j=0 is free overW , we have aj ∈ pW for 0 ≤ j ≤ φ(pn)− 1. Thus,
we have proved (4.8) as claimed.

By (4.8), we see that f i,n converges to an element hi of k[[T ]] as n → ∞, where f i,n
is the image of fi,n in k[[T ]]. For the lift hi ∈ W [[T ]] of hi such that hi(0) = 0, we put
h = (hi). Then, we have hσ

−n
(πn) ≡ cn mod pO⊕dKn for n ≥ 1. Thus, by Lemma 4.1, we

have

(logG ◦h)σ
−n
(πn) ≡ �n(cn) mod pO⊕dKn .

We define x ∈ HomW [F,V ](M,P) by

(x(ωi)) = logG ◦h+ pW [[T ]]⊕d .
Here, recall that M is generated by L as a left W [F,V ]-module. We put zn = (x̂(ωi)

σ−n

(πn)) ∈ K⊕dn for n ≥ 1 (see Proposition 3.1 for the definition of x̂). Then we have

trn+m/nzn+m + bm−1trn+m−1/nzn+m−1 + · · · + b0zn = 0 ,

zn ≡ (logG ◦h)σ−n(πn) ≡ �n(cn) mod pO⊕dKn
for all n ≥ 1. If we put yn = zn − �n(cn) ∈ pO⊕dKn , then we have yn = 0 for all n ≥ 1 by
Proposition 4.4. We put f (T ) = ι(x) = expG ◦(x̂(ωi)) ∈ G(W [[T ]]). Then, we have

�n(f
σ−n(πn)) = zn = �n(cn) ,

f σ
−n
(πn) ≡ hσ−n (πn) ≡ cn mod pO⊕dKn

for all n ≥ 1. Therefore, we have f σ
−n
(πn) = cn for all n ≥ 1 by Lemma 4.1.

In the following, we treat the case p = 2. By the congruences in (b) of (2), as in the case
p > 2, we can take an element h(T ) of W [[T ]]⊕d such that h(0) = 0 and

hσ
−n
(πn) ≡ [2r ]Gσ−n cn mod 2O⊕dKn

for all n ≥ 1. Therefore, we have

([2]Gh)σ−n(πn) ≡ [2r+1]Gσ−n cn mod 4O⊕dKn ,
�n([2]Gh)σ−n(πn) ≡ �n([2r+1]Gσ−n cn) mod 4O⊕dKn
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for all n ≥ 1. We define x ∈ HomW [F,V ](M,P) by

(x(ωi)) = logG ◦h+ 2W [[T ]]⊕d .
Then, we have

(2x̂(ωi)) ≡ 2 logG ◦h = logG ◦([2]Gh) mod 4W [[T ]]⊕d .(4.9)

If we put zn = (2x̂(ωi)σ−n(πn)) ∈ K⊕dn for n ≥ 1, then we have zn = �n([2r+1]Gσ−n cn) for
all n ≥ 1 by Proposition 4.4. We put f (T ) = expG ◦(2x̂(ωi)) ∈ G(W [[T ]]). By (4.9), we
have f (T ) ≡ [2]Gh(T ) mod 4W [[T ]]⊕d . Therefore, we have

�n(f
σ−n(πn)) = zn = �n([2r+1]Gσ−n cn) ,

f σ
−n
(πn) ≡ [2r+1]Gσ−n cn mod 4O⊕dKn .

Hence, we have f σ
−n
(πn) = [2r+1]Gσ−n cn for all n ≥ 1. �

REMARK 4.8. In the proof of the case p = 2, we have also shown that if (cn) satisfies
the condition (b) for some r , then there exists f ∈ G(W [[T ]]) such that f σ

−n
(πn) = [2r+1]cn

for all n ≥ 1.

We denote by NG the set of Q-norm systems satisfying (b). In the proof of our main
theorem, we have proved the following theorem.

THEOREM 4.9. In the case p > 2, the image of the map

ι (G(k[[T ]]))→
∏

n

Gσ−n(mn) , f (T ) �→ (f σ
−n
(πn))n ,

is NG. In the case p = 2, the map ι (G(k[[T ]])⊗Q2)→ NG ⊗Q2 is surjective.

REMARK 4.10. (1) Since the map G(W [[T ]]) → ∏
n Gσ

−n
(mn) is injective by the

p-adic Weierstrass preparation theorem, we conclude ι (G(k[[T ]])) ∼= NG in the case p > 2.
In the case p = 2, we also conclude ι (G(k[[T ]])⊗Q2) ∼= NG ⊗Q2.

(2) See Example 3.4 for the case G = Ĝm of Theorem 4.9.
(3) Since these maps are independent of the fixed Q, the set NG is also independent of

the choice of Q. Thus, as in [6], we may call a Q-norm system satisfying (b) an admissible
norm system with droppingQ.
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