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Abstract. Recently, Shea and Wainger obtained a variant of the Wiener-

Lévy theorem for nonintegrable functions of the form a(t) = b(t) + ß(t),

where b(t) is nonnegative, nonincreasing, convex and locally integrable, and

ß(t), tß(t) e L1 (0, oo). It is shown here that the moment condition tß(t) e Ü

may be omitted from the hypotheses of this theorem. These results are useful

in the study of stability problems for some Volterra integral and integrodif-

ferential equations.

Introduction. It is well known that under rather weak hypotheses (see [9,

Chapter 4] and [3]) the solutions of the linear Volterra equations

(1) uii) = fit) - /J ait - s)uis) ds       (0 < t < oo),

(2) u'it) = fit) - /J ait - s)uis) ds        (M(0) = u0 ; 0 < t < oo)

may be written as

0') u(t)=f(t)-('rx(t-s)f(s)ds,
Jo

(2' ) uii) = u0 r2 it) + Jo' r2 it - s)fis) ds,

respectively. Here rxit) and r2it) are the resolvent kernels defined by

ñW = rí£^¡'    ^)=—K-,       (Rez>x0)
1 + a(z) z + a(z)

where ä(z) is the Laplace transform

à(z)=Ç e-»a(t)dt.

(This procedure may be justified when/(<) is locally integrable and f0  \a(t)\ dt

< CeaT (0 < T < oo) for some positive constants C, a.)

When studying the asymptotic behavior as t -* oo of solutions of (1) or (2),

Received by the editors December 18, 1974 and, in revised form, March 5, 1975.

AMS (MOS) subject classifications (1970). Primary 45M05; Secondary 45M10, 42A68.
Key words and phrases. Volterra equations, resolvent, Fourier transform, Laplace transform.

© American Mathematical Society 1976

109
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



110 G. S. JORDAN AND R. L. WHEELER

as well as the behavior of solutions of related nonlinear equations, it is useful

to find conditions on the kernel a(r) which guarantee that the appropriate

resolvent kernel rjit)ij = 1,2) lies in L'(0, oo).

When ait) G L'(0, oo), a classical result due to Paley and Wiener [10,

paragraph 18] states that r,(i) G L'(0, oo) if and only if

(3) J(z)*-1        (Rez>0).

Similarly, when a(f) is integrable, a more recent result of Grossman and Miller

[4] (also Shea [11]) yields r2(i) G L'(0, oo) if and only if

(4) 5(z) ¥= -z   (Re z > 0).

However, many kernels aft) of importance in applications are not in

L'(0, oo). For example, Volterra integral equations with the kernel a(f) = t~*~

arise in the theory of superfluidity [6] as well as in problems of heat transfer

between gases and solids [7].

Recently, Shea and Wainger [12] have used sophisticated methods from the

theory of Laplace and Fourier transforms to obtain variants of the classical

Wiener-Lévy theorem [10, p. 63]. It follows from their results that, for a large

class of nonintegrable kernels <ar(r), the resolvent /;(?)(/ = 1,2) is in L'(0, oo)

whenever (3) or (4) holds. Other results of interest here concerning the

behavior of ç-(r) (/ = 1,2) for nonintegrable ait) have been obtained by

Friedman [1], Miller [8] and Hannsgen [5]; see the Introduction of [12] for a

discussion of these results.

Theorem A (Shea and Wainger). Let a{t) = bit) + ßit) where

bit) is nonnegative, nonincreasing and convex on

(5)
(0, oo), with bit) G L'(0,1),

and

(6) ßit),tßit)GLxiO,oo).

Assume that <piw,z) is analytic on S = {(<5(z), z): Re z > 0} and at (0, oo) and

(oo,0), and that <p(0, oo) = 0. Then there exists rit) G Lx (0, oo) such that

(7) f(z) = <piàiz),z)       (Rez>0).

(When ait) G L*(0, oo), a\iy) is defined by a((y) = lim^^Q+^x + iy) for
-oo < y < oo.)

Thus, the fact that (3) implies rxit) G L*(0, oo) for kernels having the form

ait) = bit) + ßit) with bit) and ß(t) satisfying hypotheses (5) and (6), respec-

tively, follows from Theorem A with yxiw,z) = w(l + w)~ . Similarly, Theo-

rem A with q>2iw,z) = (z + w)~ shows that, for kernels ait) of this form,

r2(?) G L'(0, oo ) whenever (4) is satisfied.

In the same paper Shea and Wainger prove an alternate version of Theorem

A in which hypotheses (5) and (6) are replaced by

(8) ait) = b + ßit)    where b is any constant,       ßit) G L'(0, oo).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Our purpose here is to prove a sharpened version of Theorem A in which

the perturbation term ß(t) is not required to satisfy the moment condition

tß(t) G Lx(0, oo). We have

Theorem 1. Theorem A remains valid with hypothesis (6) weakened to
ß(t) G Lx(0,oo).

The proof of Theorem 1 depends on Theorem A with special choices of the

function <p(w, z) together with techniques from transform theory.

Proof of Theorem 1. We may assume b(t) S Ü (0, oo) since otherwise

Theorem 1 reduces to Shea and Wainger's alternate form of Theorem A with

hypothesis (8).

Write

/■CO

â(z) = ä(-iz) = /     e'z'a(t)dt       (Im z > 0),
(1.1) Jo

â(x) = lim^n.,. á(x + iy)       (-oo < x < oo).

Also, when r(t) G Lx(—oo, oo), define r(x), by

/oo e'x'r(t)dt       (-oo < x < oo);
-00

this notation is consistent with (1.1) when r(t) vanishes on (—oo,0).

As Shea and Wainger observe [12, §1], it suffices to find r(t) G Lx(-oo, oo)

such that

(1.2) f(x) = <p(â(x),—ix)       (—oo < x < ce).

Once  r(t)  is  found,   a   classical   argument  [10,   p.   63]   shows   that  r(t)

= 0 on (-oo,0) and that (7) holds.

In order to find this r(t) we write

(1.3) (p(â(x),-ix) = ijss(x)(p(â(x), -ix) + [1 - ^s(x)]<p(â(x),-ix)

for —oo < x < oo. In equation (1.3) 8 is a (small) positive number which will

be selected in Step 1 below, and, for each positive number 8, \pg(l)

G L (—oo, oo) is the function satisfying

(1.4) fo(x) = 1        (|x| < 8),    fo(x) = 0       (|x| > 28)

with ^g(x) linear otherwise. It is well known (see [2, p. 23]) that

*a(0 = 2K2S(t) - Ks(t)

where Ks(t) is the usual Fejér kernel

Ks(t) = tt-'O - cos 8t)/8t2       (-oo < t < oo).

The remainder of the proof consists of two steps.

Step 1. There exists r0(t) G l) (-00,00) such that
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



112 G. S. JORDAN AND R. L. WHEELER

(1-5) f0ix) = iî6(x)<p(<5(x), —ix)        (-00 < x < oo).

Proof. Since <piw,z) is analytic at (oo,0), there exists n > 0 such that

(1.6) 9(h>,z)=    2    iSmnvv-mz"       (H >TJ_1,UI<tl).

Since |á(x)| -> oo as | jc| -* 0 [5, Lemma 3], there exists 8X > 0 so small that

(1.7) \âix)\>v-x       (W<2<5,).

Define y3iw,z) = w[X + z + w]~x. Since bit) satisfies (5), we have [5, p. 546]

Re ¿(z) > 0 for Re z > 0, z ¥= 0. Hence, Theorem A can be applied with

ait) = bit) and <p = <p3 to obtain r3(f) G L'(0, oo) such that

$(*) = b\z)[X + z + ¿(z)]-1        (Re z > 0).

Similarly, if we choose <p4(>v,z) = [1 + z + w]~x in Theorem A, we obtain

r4it) G L'(0, oo) such that

r4iz) = [1 + z + ¿(z)]"1        (Re z > 0).

Therefore, if we extend the domains of the functions r3it) and r4it) to (— oo, oo)

by defining each function to be = 0 on (—oo,0), we may write

[âix)]-X = r4W/(/3(x) + r4ix)ßix))        i\x\ < 20,)•

Define the L'(-oo, oo) function g(i) by

git) = r3(0 + r4 * ^(0        (-co < t < oo)

where the domain of ßit) has been extended to (-co, oo) by defining ßit) = 0

on (—oo,0), and where r4 * ß denotes the convolution

r4 * ßit) = C  rÁl - s)ßis)ds        (-oo < t < oo).
J — 00

Observe that (1.7) together with r3(0) = 1, r4(0) = 0 and |/î(0)| < oo yield

g(x) # 0 for |jc| < 2ôi. Hence, the Wiener-Lévy theorem for compact sets [2,

p. 29] guarantees the existence of gxit) G L'(-oo, oo) such that

AW-tówr1   (ki<2ô,).
Since g, (0)4(0) = 0, there exist [2, p. 24] £(i) G L'(-oo, oo) and 0 < Ô < 8X

such that

(1-8) iix) = gxix)f,ix) - [áW]-'       (|X| < 25),

(1.9) HÊH, < fl.

As Shea and Wainger observe [12, §2], the function 02&ii) = ¡pjsit)

G L (—00,00) satisfies

hs(x) = -ix       i\x\ < 20),    92Six) = 0       (|x| > 48),

||025||.-»O   as 8 -* 0.
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Assume that the 5 (> 0) in equation (1.8) is so small that, in addition to (1.9),

we have

(1.11) IIMi < V-

Then, by (1.6), (1.8) and (1.10),

(1.12) 4<S(x)<p(â(x),-ix)  =      2     ßmnUx)[kx)]m[02s(x)]"     (-00   < X <   oo).
m,n^0

Using (1.6), (1.9), (1.11), (1.12), and the completeness of Lx(— oo, oo), we see

that r0(t) G Lx(— oo, oo) defined by

%(*)-      2     ß„n*8*im'*m) (-OP</<00)
m,n>0

(ím* — €* '•* *l denotes the «i-fold convolution in L1 (-00,00)) satisfies

(1.5). This completes the proof of Step 1.

Step 2. For 8 > 0 fixed as in Step I, there exists rc(t) G Lx (—00, 00) such that

(1.13) fc(x) = [1 - ^s(x)]<p(a(x),-ix)   (-00 < x < 00).

Proof. An examination of Shea and Wainger's proof of Theorem A [12, § 1],

shows that there exists h(t) G Lx(— 00, 00) such that

h(x) = [1 - ^s/2(x)]â(x)    (-00 < x < 00).

(The existence of this «(r) does not require that tß(t) G Lx(0, 00).) Thus, using

(1.4), we have

(1-14) <p(â(x),-ix) = <p(h(x),-ix)   (|x| > 8).

But since «(/) G L (— 00,00), Shea and Wainger's proof of the alternate

version of Theorem A with hypothesis (8) [12, §2] establishes the existence of

rc(t) G Lx(—00,00) such that

fc(x) = [1 - ^s(x)]<p(h(x),-ix)   (-00 < x < 00).

Clearly (1.13) now follows from (1.4) and (1.14), and the proof of Step 2 is
complete.

Finally, r(t) = r0(t) + rc(t) is the Lx(— 00, 00) function which satisfies (1.2);

hence, by the remark at the beginning of this section, the proof of Theorem 1

is complete.
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