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Abstract A generalized version for the Rastall theory is
proposed showing the agreement with the cosmic accelerat-
ing expansion. In this regard, a coupling between geometry
and the pressureless matter fields is derived which may play
the role of dark energy, responsible for the current acceler-
ating expansion phase. Moreover, our study also shows that
the radiation field may not be coupled to the geometry in a
non-minimal way which represents that the ordinary energy-
momentum conservation law is respected by the radiation
source. It is also shown that the primary inflationary era may
be justified by the ability of the geometry to couple to the
energy-momentum source in an empty flat FRW universe. In
fact, this ability is independent of the existence of the energy-
momentum source and may compel the empty flat FRW uni-
verse to expand exponentially. Finally, we consider a flat
FRW universe field by a spatially homogeneous scalar field
evolving in potential V(φ), and study the results of applying
the slow-roll approximation to the system which may lead to
an inflationary phase for the universe expansion.

1 Introduction

The origins of the primary inflationary era [1–4], current
accelerating phase of the universe expansion [5–9] as well
as the dark matter problem [10–12] are some of the big puz-
zles in the standard model of cosmology. Our insufficient
understanding of these problems leads the coincidence and
fine-tuning problems [13–16]. In order to solve the above
mentioned problems, some authors have been introduced a
new type of energy-momentum source [17–20]. In another

a e-mail: h.moradpour@riaam.ac.ir
b e-mail: heydarzade@azaruniv.edu
c e-mail: f.darabi@azaruniv.edu
d e-mail: inessalako@gmail.com

approach, physicist try to solve the above problems by mod-
ifying the Einstein field equations [21–26]. In this line, one
may refer to the scalar-tensor gravity [27], vector–tensor
theories [28], tensor–vector–scalar theories [29], quadratic
gravity [30], Chern–Simons theories [31], massive gravity
[32,33] and Gauss–Bonnet theory [34], for a review see also
[35]. Scalar-tensor (ST) theories of gravity are the simplest
alternative to Einstein’s general theory of gravity (GR) and
have a long history. The first attempts were done by Jor-
dan [36,37], Fierz [38], and Brans–Dicke [39]. These the-
ories possess just one massless scalar field and have a con-
stant coupling strength to matter fields. This work was gen-
eralized later to the theories in which the scalar field has
a dynamic coupling to the matter fields and/or an arbitrary
self-interaction in [40–42] as well as to the theory with mul-
tiple scalar fields [43]. In the vector–tensor theories of grav-
ity, in addition to the metric tensor, the gravitational action
is modified by adding a vector field that is non-minimally
coupled to gravity. Studying these theories one is referred
to the work by Will, Nordtvedt and Hellings [44–46]; see
also [47,48]. The tensor–vector–scalar theory is proposed by
Bekenstein [49] where the standard Einstein tensor field of
general relativity (GR) is coupled to a vector field as well
as a scalar field, hence the theory is called by this name.
This theory is a relativistic version of modified newtonian
dynamics (MOND) [50] reproducing MOND in the weak
field limit. The most important advantage to adopt tensor–
vector–scalar theory refers to the explanation of many galac-
tic and cosmological observations without the need for dark
matter [51,52]. The quadratic gravity theories are based on
the idea of adding appropriate quadratic terms in the Rie-
mann and Ricci tensors or the Ricci scalar inspired by the
string or quantum gravity theories [53]. Chern–Simons grav-
ity is the special case of the quadratic theories including only
the parity-violating term ∗RR = ∗Rα

β
γ δRβ

αδγ in which
∗Rα

β
γ δ = 1

2εγ δρσ Rα
βρσ [54]. Massive gravity theories are
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new attempts which attribute a mass to the putative gravi-
ton. The simplest work in this line and in a ghost-free man-
ner suffers from the van Dam–Veltman–Zakharov (vDVZ)
discontinuity problem [55,56]. Due to the three additional
helicity states for the massive spin-2 graviton, the limit of
small graviton mass does not coincide with Einstein GR.
For instance, the predicted perihelion advance violates the
previous observational experiments. In order to resolve the
vDVZ problem, a new model was introduced by Visser by
considering a non-dynamical flat background metric [57].
Gauss–Bonnet theory is built on adding the quadratic combi-
nation of two Riemann tensors to the Einstein–Hilbert action
in which it does not increase the differential order of the
resulting equations of motion [58,59]. In most of these mod-
ified theories, the energy-momentum source is described by
a divergence-free tensor which couples to the geometry in
a minimal way [21,22]. However, it is worthwhile men-
tioning that this property of the energy-momentum tensor,
which leads to the energy-momentum conservation law, is not
obeyed by the particle production process [60–64]. There-
fore, it is not unreasonable to consider a non-divergence-free
energy-momentum tensor and look for a new gravitational
theory. In this regard, Rastall firstly considered such kind of
sources and introduced a modification to the Einstein field
equations [23]. Also, there is another theory known as the
curvature–matter theory of gravity [24–26], in which, simi-
lar to the Rastall theory, matter and geometry are coupled to
each other in a non-minimal way, meaning that the ordinary
energy-momentum conservation law is not valid. However,
it is important to stress that all of the potential alternatives to
the general theory of relativity must be viable. This means
that they must be metric theories in order to be in agreement
with the Einstein equivalence principle, which is today sup-
ported by a very strong empirical evidence, and that they must
pass the solar system tests [35]. On the other hand, the recent
starting of gravitational wave (GW) astronomy with the event
GW150914, which is the first historical detection of GWs
[65], could be fundamental for discriminating about various
modified theories of gravity because some differences among
such theories can be emphasized in the linearized theory of
gravity and, in principle, can be found by GW experiments;
see [66,67] for details.

In this work, we proposed a generalized Rastall theory to
show that a coupling between the geometry and matter fields
helps us in providing a geometric interpretation for the dark
energy and thus the current accelerating expansion phase of
the universe. The main point in favor of the Rastall theory
and its generalized version is that the usual conservation law
on Tμν is tested only in the flat Minkowski spacetime or
specifically in a gravitational weak field limit. Indeed, this
theory reproduces a phenomenological way for distinguish-
ing features of quantum effects in gravitational systems, i.e
the violation of the classical conservation laws [24,60,68].

Also, one may find that the condition Tμν ;μ �= 0 is phe-
nomenologically confirmed by the particle creation process
in cosmology [61–64,69–73]. One also may refer to [74] in
favor of the viability of the original Rastall theory and our
proposed generalization. In this work, it is shown that the
restrictions on the Rastall parameter are of the order of ≤1%
with respect to the corresponding value of the general theory
of relativity. In other words, the results in [74] are a confirma-
tion that the Rastall theory and its generalization are viable
theories, in the sense that the deviation of any extended theory
of gravity from the standard general theory of relativity must
be weak. Beside the current accelerating expansion phase of
the universe, the radiation dominated era in this framework
is also addressed. Moreover, we will show that the ability of
the geometry to couple with the energy-momentum source
may produce the primary inflationary era in our generalized
version of the Rastall theory.

The paper is organized as follows. After reviewing the
original Rastall theory in the next section, we address a
generalization to this theory in the third section. Section 4
includes some general remarks on the constructed new theory
in FRW universe. In Sect. 5, considering a flat FRW universe
filled by a pressureless matter, we show that a non-minimal
coupling between the geometry and the energy-momentum
source may be considered as an origin for the dark energy and
thus the current accelerated phase of the universe expansion.
In Sect. 6, the radiation dominated era in our generalization
of the Rastall theory is investigated. In Sect. 7, we study two
methods to model the primary inflationary era of the universe
in our formalism. Finally, Sect. 8 is devoted to the summary
and concluding remarks.

2 A brief review on the Rastall theory

Based on the Rastall theory, the ordinary energy-momentum
conservation law is not always available in the curved space-
time and therefore we should have [23]

Tμν

;μ = λ′R;ν, (1)

where R and λ′ are the Ricci scalar of the spacetime and the
Rastall constant parameter, respectively. In fact, λ′ is a mea-
sure of the tendency of the geometry (matter fields) to couple
with the matter fields (geometry) leading to the changes into
the matter fields (geometry). This equation leads to the fol-
lowing field equations:

Gμν + κ ′λ′gμνR = κ ′Tμν, (2)

which can finally be rewritten as

Gμν = κ ′Sμν, (3)
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where κ ′ is the Rastall gravitational coupling constant and
Sμν is the effective energy-momentum tensor defined as

Sμν = Tμν − κ ′λ′T
4κ ′λ′ − 1

gμν. (4)

In fact, in this theory the matter fields and geometry are cou-
pled to each other in a non-minimal way [23–26] and its
compatibility with some observational data have firstly been
shown by Al-Rawaf and Taha [75,76]. Moreover, since the
particle production process during the cosmos evolution does
not respect the energy-momentum conservation law [60–64],
the Rastall theory may be considered as a classical back-
ground formulation for this phenomenon [69]. Finally, we
should mention that Eq. (2) implies that R(4κ ′λ′ −1) = κ ′T
where T is the trace of energy-momentum tensor. Therefore,
because λ′ is constant and the R(4κ ′λ′ −1) = κ ′T condition
applies to all spacetimes and energy-momentum sources, the
κ ′λ′ = 1

4 case is not allowed [23]. More studies on the various
aspects of this theory can be found in [74,77–90].

3 The generalized Rastall theory with varying Rastall
parameter

Basically, Rastall assumed that, for all of the spacetimes
and energy-momentum sources, the ratio of the flow of the
energy-momentum tensor (T νμ

;μ) to the Ricci scalar diver-

gence (R;ν) is constant (λ′). It means that the evolutions
of energy-momentum source and also the geometry do not
affect this ratio. As an example, consider the matter domi-
nated era in the universe history. The energy density of matter
decreases during the universe expansion, but the mentioned
ratio is a constant parameter in Rastall theory [75,76] mean-
ing that the coupling between energy-momentum source and
geometry is constant, and that it is not affected by the evo-
lution of the cosmic system. In fact, it is a very restricting
condition to assume the evolution of system does not affect
the mutual coupling. In addition, since the mutual coupling
is a constant parameter in Rastall gravity, it did not con-
tinuously change during the universe evolution [69,75,76].
Indeed, since the cosmic evolution is a continuous process
[13], it is a reasonable expectation that the mutual coupling
between the energy-momentum sources and the geometry
should be varying gradually and smoothly. Therefore, at least
theoretically, it is not prohibited to generalize the Rastall the-
ory as

Tμν

;μ = (λR);ν, (5)

leading to

(Tμν − gμνλR);ν = 0. (6)

Now, regarding the Bianchi identity, i.e.G ;ν
μν = 0, we obtain

Gμν = κ(Tμν − λgμνR), (7)

where κ is a constant and, finally, we obtain

Gμν + κλgμνR = κTμν. (8)

Although this result looks like to the field equations of the
original Rastall theory (2), here, λ is not generally constant.
Just the same as λ′ in the Rastall theory, λ is a measure for
the strength of the coupling between the geometry to the
matter fields. As is apparent, the Einstein field equations are
recovered in the appropriate limit of λ = 0, a limit in which
the matter fields and geometry are coupled to each other in a
minimal way.

4 FRW metric and general remarks on the mutual
non-minimal coupling between the geometry and
matter fields

The line element of the FRW universe is written as

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2 + r2(dθ2 + sin(θ)2dφ2)

]
,

(9)

where a(t) is the scale factor and k = −1, 0, 1 is the cur-
vature parameter corresponding to the open, flat and closed
universes, respectively. If the universe is filled by an energy-
momentum source with Tμ

ν = diag(−ρ, p, p, p) in which ρ

and p are the energy density and pressure of the cosmic fluid,
respectively, then using Eq. (8), the Friedmann equations in
a flat FRW universe are given as

(12κλ − 3)H2 + 6κλḢ = −κρ (10)

and

(12κλ − 3)H2 + (6κλ − 2)Ḣ = κp. (11)

Here, H = ȧ
a denotes the Hubble parameter, and the dot sign

indicates the derivative with respect to the cosmic time t . In
this manner, from Eq. (5), one easily obtains

d(ρ + λR)

dt
+ 3H(ρ + p) = 0, (12)

meaning that the λR term is the energy density correspond-
ing to the ability of geometry to couple with the energy-
momentum sources in a non-minimal way (λ �= 0). It is
worthwhile mentioning here that, for an empty spacetime
where ρ = p = 0, we should have d(λR)

dt = 0. In addition,
Eq. (12) can also be rewritten as
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ρ + ρg = −
∫

3H(ρ + p)dt, (13)

where ρg ≡ λR. It is obvious that, in the absence of the abil-
ity of the geometry to couple with the energy-momentum
sources in a non-minimal way (λ = 0), the usual energy-
momentum conservation law and the Einstein field equations
can be recovered through Eqs. (8) and (12). In the follow-
ing sections, we study the role of the non-minimal coupling
between geometry and energy-momentum sources in the var-
ious expansion phases of the flat FRW universe.

5 Matter dominated era and an accelerating universe

Consider a flat FRW universe with the scale factor a filled by
the pressureless dust matter fields. Using Eq. (8), one obtains
the Friedmann equations,

(12κλ − 3)H2 + 6κλḢ = −κρm, (14)

(12κλ − 3)H2 + (6κλ − 2)Ḣ = 0, (15)

where ρm denotes the energy density. It is clear that, in the
λ → 0 limit, Eqs. (14) and (15) reduce to those of the matter
dominated era in the standard cosmology [13]. In addition,
Eq. (8) leads to R = − κ

4κλ−1ρm for a dust source requir-

ing that we should have κλ �= 1
4 for ρm �= 0 in agreement

with Rastall’s original hypothesis [23]. For the deceleration
parameter, defined as q = −1− Ḣ

H2 [13], one can use Eq. (15)
to obtain

q(z) = 1 + 1

6κλ(z) − 2
, (16)

where z denotes the redshift. It is obvious that the deceler-
ation parameter of the matter dominated era in the Einstein
regime (q = 1

2 ) can be covered in the appropriate limit of
λ = 0.

For a flat FRW universe filled by a pressureless matter, the
continuity equation can be written as

ρ̇m + 3Hρm = d

dt

(
κλ

4κλ − 1
ρm

)
. (17)

If the pressureless source does not interact with geometry,
then this equation is decomposed into the following equa-
tions:

ρ̇m + 3Hρm = 0,

d

dt

(
κλ

4κλ − 1
ρm

)
= 0, (18)

meaning that the ordinary energy-momentum conservation
law is valid. Therefore, λ = 0 is a simple solution to the
d
dt (

κλ
4κλ−1ρm) = 0 equation leading to the ordinary Einstein

field equations. Now, for a non-interacting universe, it is easy

to check that Eq. (18) [or equally Eq. (17)] admits the fol-
lowing solution:

ρm = ρ0a
−3,

λ(a) = 1

4κ + κCρm
= 1

4κ + καa−3 , (19)

where ρ0 andC are integration constants and thus α = Cρ0 is
a constant. It is obvious that we have λ = 1

4κ
in the absence of

dust source, i.e for ρm = 0. Here, we only considered a sim-
ple situation in which there is no energy exchange between
the geometry and matter source. In this case, the existence of
matter source only affects the ability and tendency of geom-
etry to couple with energy source, and it does not lead to an
energy exchange between the geometry and matter source,
and thus a palpable mutual interaction between them. By
a palpable interaction, we mean an interaction leading to a
visible and measurable energy exchange between the com-
ponents of system. Therefore, it seems that the non-minimal
coupling between geometry and the matter source has some
indirect, complex and non-local aspects hidden until now, a
result in line with some previous work claiming that the prob-
able non-local features of mutual relation between geometry
and the energy sources may be considered as the origin for
the dark sectors of the cosmos [91–93]. It is also useful to
note that, even in the simplest case of (18), the properties of
the geometry, including its curvature and λ, are determined
by the energy sources filling it. This is in agreement with
the general relativity backbone, where the curvature of the
geometry (as its property) is specified by the energy sources
filling it. In a more realistic case, they may exchange energy
with each other, and therefore, one cannot always decom-
pose Eqs. (17) into (18). Now, inserting Eqs. (32) into (14)
and (15), respectively, and combining the results with each
other, one reaches

H(a) = H0

√
a3 + α

a3 , (20)

where H0 = κρ0
3α

is a constant. This equation indicates that,

for the limits of a3 � α, we have H(a) ≈ H0

√
α
a3 lead-

ing to a(t) = a0mt
2
3 with the integration constant a0m =

( 9
4 H

2
0 α)1/3, which exactly is the scale factor of the matter

dominated era in the standard model of cosmology. More-
over, for the limit of a 
 1, we have H(a) → H0 leading
to a(t) = a0 exp(H0t) for the scale factor of the current
accelerating expansion phase of the universe, in which a0 is
a constant.

Now, combining 1 + z = a−1 with λ(a) = 1
4κ+καa−3 and

inserting the result into Eq. (16), we obtain

q(z) = α(1 + z)3 − 2

2(1 + α(1 + z)3)
. (21)
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In order to describe the evolution of the universe from the
matter dominated era to the current accelerating phase, the
deceleration parameter q(z) should satisfy the three condi-
tions as (i) q(z → ∞) → 1

2 , (ii) q(z ≈ 0.6) → 0 and (iii)
q(z → 0) ≤ − 1

2 [13]. Using Eq. (21), one can verify that
the deceleration parameter of the matter dominated era of the
standard cosmology (q = 1

2 ) is obtainable in the λ → 0 limit
or equivalently in the α → ∞ limit. Moreover, at high red-
shift limit (z → ∞) and independent of the α parameter, we
have q → 1

2 , which again addresses the matter dominated
era. Therefore, the change of the pressureless matter density
in our model is the same as that of the standard cosmology, i.e
ρm = ρ0a−3. Additionally, although the deceleration param-
eter in our model differs from that of the matter dominated era
of the standard cosmology, this era is covered at the appro-
priate limit of z → ∞ in our model. Here, from Eq. (21),
for −1 < α ≤ 1

2 , we have q(z = 0) ≤ − 1
2 , which demon-

strates the satisfaction of the third condition. In addition,
since there is no divergence in the history of the evolution
of the universe from the early matter dominated era to its
current phase, q(z) should not diverge which requires that its
denominator should not vanish for any non-negative amount
of z. This requires 0 ≤ α ≤ 1

2 , which consequently leads to
the total restricting range on the deceleration parameter as
−1 ≤ q(z = 0) ≤ − 1

2 .
For example, consider the case of q(z = 0) = −0.55 [94]

which through Eq. (21) corresponds to α = 3
7 . Considering

this value of the α parameter, one can find that the q = 0 case
is associated to the redshift z � 0.67 when the universe leaves
its decelerating phase and enters to the accelerating phase.
This result is in agreement with some observational evidence
[95–97]. The deceleration parameter q(z) is plotted in Fig. 1
versus the redshift z for some values of the α parameter. It
is seen from the figure that, for small redshifts, representing
the late time in the history of the universe, the deceleration
parameter goes to negative values representing an accelerated
expanding phase in our constructed model. As a result, a non-

Fig. 1 Deceleration parameter q versus the redshift z for some values
of α

minimal coupling between the geometry and pressureless
matter, which mainly consists of dark matter, may lead to
a description for the dark energy, and therefore the current
accelerating phase of the universe expansion.

Based on the above results, this mutual relation between
geometry and the matter source suggests that this source and
its enclosing cosmic horizon may achieve the thermodynamic
equilibrium, a result which is in agreement with the recent
study by Mimoso et al., focusing on the properties and criteria
of a thermodynamic equilibrium between the cosmic horizon
and the cosmic fluids in various cosmic eras [98].

6 Radiation dominated era and the curvature-radiation
non-minimal coupling

For the flat FRW universe filled by a radiation source, the
Friedmann equations are as follows:

(12κλ − 3)H2 + 6κλḢ = −κρr, (22)

(12κλ − 3)H2 + (6κλ − 2)Ḣ = 1

3
κρr, (23)

where ρr is the energy density. Because the energy-mom-
entum associated to radiation fields is a traceless source, i.e
T = 0, by contracting Eq. (8), one finds R(4κλ − 1) = κT ,
which clearly for κλ �= 1

4 results in a null Ricci scalar for
a radiation source, i.e. R = 0. Some simple calculations for
the continuity equation and deceleration parameter also lead
to

ρ̇r + 4Hρr = 0,

ρr = ρ0r a
−4, (24)

where ρ0r is the integration constant, and

q(z) = 1, (25)

respectively. In order to obtain the last equation, we combined
Eqs. (22) and (23) with each other to get Ḣ

H2 = −2, a result

which leads to a = a0t
1
2 for the scale factor where a0 is the

integration constant, in agreement with the radiation domi-
nated era of the standard cosmology [13]. Based on Eqs. (24)
and (25), the density changes of the radiation source and the
deceleration parameter of the radiation dominated era are the
same as those of the standard cosmology meaning that the
radiation dominated era in our model is the same as that of
the standard cosmology. Indeed, since R = 0 in the radiation
dominated era, independent of the value of λ parameter we
have (λR);ν = 0 meaning that the above results are inde-
pendent of λ parameter. Now, we use the ρm → 0 limit of
the λ(a) relation obtained in Eq. (19), in order to find the
value of λ which leads to λ = 1

4κ
. It means that, since λ is

a constant quantity, the geometry and radiation do not affect
each other.
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Indeed, since radiation is a traceless source, simple calcu-
lations lead to

ρ̇r + 4Hρr + ρ̇m + 3Hρm = d

dt

(
κλ

4κλ − 1
ρm

)
, (26)

for the continuity equation in a universe filled by both radi-
ation and dust. In the absence of any interaction between
radiation, dust and geometry, this equation is decomposed
to Eqs. (17) and (24) meaning that the ρr = ρ0r a−4,
ρm = ρ0a−3 and λ(ρm) = 1

4κ+κCρm
solutions are also avail-

able in this case. Therefore, for ρm = 0, we have λ = 1
4κ

meaning that the λ = 1
4κ

case is allowed in the radiation case.
Inserting λ = 1

4κ
into either Eqs. (22) or (23) and combining

the result with (24), we again obtain Ḣ
H2 = −2 leading to

a = a0t
1
2 and thus R = 0. Here, we should mention that,

since we have R = T = 0 in this era, the R(4κλ − 1) = κT
condition is available independent of the value of λ param-
eter. Indeed, unlike the Rastall theory, where the λ′ = 1

4κ

case is not allowed [23], here, the λ = 1
4κ

case can be
allowed. Therefore, although the geometry generally has the
ability to couple with the energy-momentum source in a non-
minimal way (λ = constant �= 0), since λ is constant, geom-
etry and the radiation source do not affect each other. This
means that the ordinary energy-momentum conservation law
is respected by the radiation source as seen in (24).

Finally, we should mention that due to the fact that the
radiation source does not coupled to the geometry in a non-
minimal way, there is no energy flux between the geome-
try and radiation fields. This may be considered as the rea-
son for the failure to achieve the thermodynamic equilibrium
between the cosmic horizon and the radiation fields [98].

7 λ and the primary inflationary era

In this section, we address two methods to model the primary
inflationary era in our formalism, and we also study the role
and behavior of λ in these methods.

7.1 λ as the generator of the primary inflationary phase

Now, let us consider an empty flat FRW universe with its
describing equations as

(12κλ − 3)H2 + 6κλḢ = 0 (27)

and

(12κλ − 3)H2 + (6κλ − 2)Ḣ = 0. (28)

It is easy to check that both above equations are true only for
λ = 1

4κ
= constant and Ḣ = 0. It is worthwhile mentioning

that, as a desired result, the λ = 1
4κ

= constant solution
is in full agreement with the ρm → 0 limit of the results
obtained in Eqs. (19) and (26). Besides, since the spacetime
is empty (Tμν = 0), we should have d(λR)

dt = 0, meaning
that λ = ρg

R ,where ρg ≡ ψ is a constant. In addition, using
the above equations, one sees that the λ = 1

4κ
= constant

and Ḣ = 0 conditions lead to an exponential growth in the
scale factor, i.e. a(t) = a0 exp(H0t) where a0 and H0 are
the integration constants, with the non-vanishing Ricci scalar
R = 12H2

0 , respectively. Now, combining the above results

with each other, we obtain H0 =
√

κψ
3 . It is also obvious

that, since λ and ρg are constant, Eqs. (5) and (12) are met
here and therefore, ψ is nothing but the integration constant
in the RHS of Eq. (13). Indeed, we should remind the reader
that, since Eq. (13) is the result of Eq. (5) and thus Eq. (12),
the fulfillment of Eq. (5) [or equally (12)] is necessary and
sufficient.

On the other hand, from Eq. (8), we know that R(4κλ −
1) = T which its right hand side vanishes due to the empti-
ness of the spacetime. Then, since the Ricci scalar does not
vanish, i.e. R �= 0, we find that we should have λ = 1

4κ
. This

is in agreement with the previous mentioned results obtained
from solving Eqs. (27) and (28), applying the ρm → 0 limit
to Eq. (19). Once again, we see that unlike the original Rastall
theory, the case of λ = 1

4κ
may be allowed in this new for-

mulation of the Rastall theory.
Therefore, the inflationary era may be supported in this

model by a unique feature of the geometry which is the abil-
ity of the geometry to couple with the energy-momentum
sources in a non-minimal way in agreement with this fact
that λ = constant �= 0. In fact, the empty flat FRW spacetime
is forced to expand exponentially by this ability. We should
note that the absence of the energy-momentum source does
not mean that the geometry does not have the ability of cou-
pling to the energy-momentum sources. Indeed, in this case,
the absence of an energy-momentum source only means that
the geometry does not couple to anything. It is also worth-
while to mention that since T = 0 and λ is constant in both
the radiation dominated and the primary inflationary phases,
the obtained results about these eras may be generalizable to
the original Rastall theory.

Energy extraction during the inflationary era

We saw that the ability and tendency of geometry to couple
with the energy sources, in the non-minimal way, does not
disappear, i.e. λ �= 0, in the absence of an energy-momentum
source. In fact, this is a property of geometry which enforces
the empty FRW spacetime to expand exponentially. More-
over, from Eq. (12), we found that the λR = ρg(≡ ψ) term
behaves as an energy density. Here, ψ is the energy density
associated with the non-minimal coupling λ, and therefore,

123



Eur. Phys. J. C (2017) 77 :259 Page 7 of 9 259

we get E = ∫
ψdV = 4π

3 ψa(t)3V0 for the total energy
of co-moving volume V0 corresponding to this coupling at
any given time t . Finally, for the amount of the energy of
the co-moving volume V0 specified from spacetime at time
t + δt , due its intrinsic property to couple with the energy-
momentum sources in the non-minimal way, we have

E(t + δt) = 4π

3
ψa(t + dt)3V0

� 4π

3
ψa(t)3V0 exp

(
3

√
κψ

3
δt

)
, (29)

meaning that the released energy grows exponentially.
Therefore, in our formalism, the ability and tendency

of geometry to couple with the energy-momentum sources
enforces the universe to expand, and in fact, it is the backbone
of the universe expansion and the energy production in the
primary inflationary phase. Thus, this ability may also help
us to provide a unified mechanism explaining the primary
inflationary era as well as the current accelerating phase of
the universe expansion.

7.2 Standard inflation and λ

In the previous subsection, we found that, even in the absence
of an inflaton field, the tendency of geometry to couple with
the energy-momentum sources may lead to an inflationary
phase for the universe expansion and, consequently, the slow-
rolling parameters do not appear in that scenario. It is use-
ful to mention that there are also some inflationary models
in which the slow-roll condition does not appear [99–101].
Here, we will show that the standard inflation scenario by
implementing an inflaton field can also be valid in our for-
malism.

In order to achieve this goal, we consider a spatially
homogeneous scalar field evolving in potential V(φ). There-
fore, simple calculation yields ρφ = 1

2 φ̇2 + V(φ) and
pφ = 1

2 φ̇2 − V(φ) for the energy density and pressure of
the inflaton field [13]. Now, the Friedmann equations in a
flat FRW universe filled by the mentioned field are written
as

(12κλ − 3)H2 + 6κλḢ = −κρφ,

(12κλ − 3)H2 + (6κλ − 2)Ḣ = κpφ, (30)

which finally lead to

Ḣ = −κ

2
[ρφ + pφ], (31)

for the Raychaudhuri equation. In addition, in the same way
as the matter dominated era, considering a simple situation
in which there is no energy exchange between the energy-

momentum source and geometry, we obtain ρ̇φ + 3H(ρφ +
pφ) = − d(λR)

dt = 0, leading to

φ̈ + ∂V
∂φ

+ 3H φ̇ = 0,

λ = 1

4κ[1 + γ −1(3pφ − ρφ)] , (32)

for the continuity equation in which γ −1 is constant. Now,
if φ̈ is negligible and φ̇2 � V(φ), then pφ � −ρφ

and from Eqs. (31) and (32), we find that Ḣ � 0 and
λ(φ) � 1

4κ[1−4γ −1V(φ)] , respectively. In fact, when φ̈ is neg-

ligible, Eq. (32) helps us in getting V ′′ � 3κ
2 φ̇2, leading to

η ≡ 2
3κ

(V ′′
V ) � φ̇2

V . Therefore, during the inflation process,
when the slow-roll approximation is valid, we have η � 1
in agreement with the standard inflation hypothesis [13]. In
this manner, inserting Eq. (32) into Eq. (30), one can easily
obtain H2 � κ

3 [4V − γ ] recovering the standard inflation
results at the appropriate limit of λ → 0 (or equally γ → 0).
Moreover, since q = −1− Ḣ

H2 � −1 at the time of inflation,

we should have ε ≡ − Ḣ
H2 � 1 [13]. Now, using Eqs. (31)

and (32), one obtains ε � 8
κ
[ V ′

4V−γ
]2, where the prime sign

stands for the derivative with respect to φ. It is interesting
to note that if we define Ṽ (φ) ≡ 4V − γ , then we have

H2 � κ
3 Ṽ and ε � 8

κ
[ V ′

4V−γ
]2 = 1

2κ
(

∂ Ṽ
∂φ

Ṽ
)2 similar to those

of the standard inflation scenario [13]. Therefore, if the slow-
roll approximation is valid, then a spatially homogeneous
scalar field evolving in potential V(φ) can support the pri-
mary inflationary era in our formalism whenever the inflaton
field (or equally V(φ)) satisfies the H2 � constant > 0,
ε < 1 and η � 1 conditions. It is finally worth to mention
that approaching the end of inflation, where V(φ) → 0, we
have λ → 1

4κ
revealing the consistency with our results in

previous sections about the radiation dominated era.

8 Summary and concluding remarks

After referring to the Rastall theory, we addressed a gen-
eralization of this theory and studied some of its cosmo-
logical consequences. Based on our results, a non-minimal
coupling between the geometry and a pressureless matter
field may lead to a transition from the matter dominated
era to the current accelerating phase, in agreement with
some previous observations [95–97]. We only focused on
the Tμν

;μ = 0 = − d(λR)
dt solutions. In this case, a dust source,

which satisfies the ordinary energy-momentum conservation
law, is allowed, and as we have seen, the evolution of its
energy density is the same as that of the standard cosmology.
It should also be noted that although the same as the general
relativity Tμν

;μ = 0 in our model, since λ �= 0, the Friedmann
equations in our model differ from those of the standard cos-
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mology. In addition, we found that, in our formalism, the
evolution of the energy density in the radiation dominated
era is the same as that of the standard cosmology. Indeed, we
found that, during the radiation dominated era, λ remains a
non-zero constant quantity, meaning that the evolution of the
radiation source and the geometry do not affect the value of
λ.

Finally, we considered an empty flat FRW universe and
realized that, even in the absence of an inflaton field, a pri-
mary inflationary era can be driven in this generalized version
of Rastall theory when λ = 1

4κ
. Therefore, our study shows

that the ability and tendency of geometry to couple with the
energy-momentum sources (λ �= 0) may be the backbone
of the primary inflationary era and the current accelerating
phases of the universe expansion in a unified picture. Also, a
scenario for a universe filled by an inflaton field in the con-
text of the Rastall theory has been introduced. In this context,
as the matter dominated era, we have only focused on sim-
ple case of Tμν

;μ = 0 = − d(λR)
dt meaning that there is no

energy exchange between geometry and the cosmic fluid.
Once again, we should remind the reader that since λ �= 0,
the Friedmann equations in our model differ from those of
general relativity. It is seen that if the inflaton field meets the
usual slow-roll conditions, then it can support an inflationary
phase.
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