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A B S T R A C T  

The offline parsable grammars apparently 
have enough formal power to describe human 
language, yet the parsing problem for these 
grammars is solvable. Unfortunately they exclude 
grammars that use x-bar theory - and these 
grammars have strong linguistic justification. We 
define a more general class of unification 
grammars, which admits x-bar grammars while 
preserving the desirable properties of offline 
parsable grammars. 

Consider a unification grammar based on term 
unification. A typical rule has the form 

t o - - ~  t 1 . . .  t n 

where t o is a term of first order logic, and tt...t n 
are either terms or terminal symbols. Those t i 
which are terms are called the top-level terms of 
the rule. Suppose that no top-level term is a 
variable. Then erasing the arguments of the top- 
level terms gives a new rule 

C 0 ---,¢. Cl....C n 

where each c i is either a function letter or a 
terminal symbol. Erasing all the arguments of 
each top-level term in a unification grammar G 
produces a context-free grammar called the 
comext-free backbone of G. If the context-free 
backbone is finitely ambiguous then G is offline 
parsable (Pereira and Warren, 1983; Kaplan and 
Bresnan, 1982). The .parsing problem for offline 
parsable grammars ts solvable. Yet these 
grammars apparently have enough formal power 
to describe natural language - at least, they can 
describe the crossed-serial dependencies of Dutch 
and Swiss German, which are presently the most 
widely accepted example of a construction that 
goes beyond context-free grammar (Shieber 
1985a). 

Suppose that the variable M ranges over 
integers, and the function letter "s" denotes the 
successor function. Consider the rule 

1 p(M) ---) p(s(M)) 

A grammar containing this rule cannot be offline 

parsable, because erasing the arguments of the 
top-level terms in the rule gives 

2 p ---~ p 

which immediately leads to infinite ambiguity. 
One's intuition is that rule (1) could not occur in a 
natural language, because it allows arbitrarily long 
derivations that end with a single symbol: 

p(s(0)) ~ p(0) 
p(s(s(0))) ~ p(s(0)) ~ p(0) 
p(s(s(s(0)))) ~ p(s(s(0))) ~ p(s(0)) --> p(0) 
, , ° .  

Derivations ending in a single symbol can occur 
in natural language, but their length is apparently 
restricted to at most a few steps. In this case the 
offline parsable grammars exclude a rule that 
seems to have no place in natural language. 

Unfortunately the offline parsable grammars 
also exclude rules that do have a place in natural 
language. The excluded rules use x-bar theory. 
In x-bar theory the major categories (noun phrase, 
verb phrase, noun, verb, etc.) are not primitive. 
The theory analyzes them in terms of two 
features: the phrase types noun, verb, adjective, 
preposition, and the bar levels 1,2 and 3. Thus a 
noun phrase is maJor-cat(n,2) and a noun is major- 
cat(n,1). This is a very simplified account, but it is 
enough for the present purpose. See (Gazdar, 
Klein, Pullum, and Sag 1985) for more detail. 

Since a noun phrase often consists of a 
single noun we need the rule 

3 major-.cat(n,2) ~ major-.cat(n,l) 

Erasing the arguments of the category symbols 
gives 

4 major-cat ~ major-cat 

and any grammar that contains this rule is 
infinitely ambiguous. Thus the offline parsable 
grammars exclude rule (3), which has strong 
linguistic justification. 

One would like a class of grammars that 
excludes the bad rule 

p(s(Y)) -., p(Y) 

and allows the useful rule 
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major-cat(n,2) --~ major-cat(n,1 ) 

Offline parsable grammars exclude the second 
rule because in forming the context-free backbone 
they erase too much information - they erase the 
bar levels and phrase types, which are needed to 
guarantee finite ambiguity. To include x-bar 
grammars in the class of offline parsable 
grammars we must find a different way to form 
the backbone - one that does not require us to 
erase the bar levels and phrase types. 

One approach is to let the grammar writer 
choose a finite set of features that will appear in 
the backbone, and erase everything else. This 
resembles Shieber's method of restriction 
(Shieber 1985b).Or following Sato et.al. (1984) 
we could allow the grammar writer to choose a 
maximum depth for the terms in the backbone, 
and erase every symbol beyond that depth. Either 
method might be satisfactory in practice, but for 
theoretical purposes one cannot just rely on the 
ingenuity of grammar writers. One would like a 
theory that decides for every grammar what 
information is to appear in the backbone. 

Our solution is very close to the ideas of Xu 
and Warren (1988). We add a simple sort system 
to the grammar. It is then easy to distinguish 
those sorts S that are recursive, in the sense that a 
term of sort S can contain a proper subterm of sort 
S. For example, the sort "list" is recursive because 
every non-empty list contains at least one sublist, 
while the sorts "bar level" and "phrase type" are 
not recursive. We form the acyclic backbone by 
erasing every term whose sort is recursive. This 
preserves the information about bar levels and 
phrase types by using a general criterion, without 
requiring the grammar writer to mark these 
features as special. We then use the acyclic 
backbone to define a class of grammars for which 
the parsing problem is solvable, and this class 
includes x-bar grammars. 

Let us review the offline parsable grammars. 
Let G be a unification grammar with a set of rules 
R, a set of terminals T, and a start symbol S. S 
must be a ground term. The ground grammar for 
G is the four-tuple (L,T,R' ,S), where L is the set 
of ground terms of G and R" is the set of ground 
instances of rules in R. If the ground grammar is 
finite it is simply a context-free grammar. Even i f  
the ground grammar is in.f'mite, we can define the 
set of derivation trees and the language that it 
generates just as we do for a context-free 
grammar. The language and the derivation trees 
generated by a unification grammar are the ones 
generated by its ground grammar. Thus one can 
consider a unification grammar as an abbreviation 
for a ground grammar. The present paper excludes 

grammars with rules whose right side is empty; 
one can remove this restriction by a 
straightforward extension. 

A ground grammar is depth-bounded if for 
every L > 0 there is a D > 0 such that every parse 
tree for a string of length L has a depth < D. In 
other words, the depth of a p.arse tree is bounded 
by the length of the stnng it derives. By 
definition, a unification grammar is depth- 
bounded iff its ground grammar is depth-bounded. 
One can prove that a context-free grammar is 
depth-bounded iff it is finitely ambiguous (the 
grammar has a f'mite set of symbols, so there is 
only a finite number of strings of given length L, 
and it has a finite number of rules, so there is only 
a finite number of possible parse trees of given 
depth D). 

Depth-bounded grammars are important 
because the parsing problem is solvable for any 
depth-bounded unification grammar. Consider a 
bottom-up chart parser that generates partial parse 
trees in order of depth. If the input (~ is of length 
L, there is a depth D such that all parse trees for 
any substring of a have depth less than D. The 
parser will eventually reach depth D; at this depth 
there are no parse trees, and then the parser will 
halt. 

The essential properties of offline parable 
grammars are these: 

Theorem 1. It is decidable whether a given 
unification grammar is offline parsable. 

Proof: It is straightforward to construct the 
context-free backbone. To decide whether the 
backbone is finitely ambiguous, we need only 
decide whether it is depth-bounded. We present an 
algorithm for this problem. 

Let C a be the set of pairs [A,B] such that A 

B by a tree of depth n. Clearly C t is the set of 
pairs [A,B] such that (A ----) B) is a rule of G. Also, 
Cn+ 1 is the set of pairs [A,C] such that for some 
B, [A,B] ~ C a and [B,C] ¢ C t. Then if G is 
depth-bounded, C a is empty for some n > 0. If G 
is not depth-bounded, then for some non-terminal 
A, A =~ A. 

The following algorithm decides whether a 
cfg is depth-bounded or not by generating C n for 
successive values of n until either C a is empty, 
proving that the grammar is depth-bounded, or C a 
contains a pair of the form [A, A], proving that the 
grammar is not depth-bounded. The algorithm 
always halts, because the grammar is either depth- 
bounded or it is not; in the first case C n -- ~ for 
some n, and in the second case [A,A] e C a for 
some n.  

238 



Algorithm 1. 
n : =  1; 
C I := {[A,BI I (A ~ B) is a rule o f G  } 
while true do 
[ if C n = ~ then return true; 

if (3 A .  [A,A] ~ Ca) then return false; 

Cn, I := {[A,C] 1(3 B .  [A,B] ~ C n 

^ [B,C] ~ Ct)}; 
n := n+t; 

] 
Theorem 2. If a unification grammar G is 

offline parsable, it is depth-bounded. 

Proof: The context-free backbone of G is 
depth-bounded because it is finitely ambiguous. 
Suppose that the unification grammar G is not 
depth-bounded; then there is a string a of symbols 
in G such that cx has arbitrarily deep parse trees in 
G. If t is a parse tree for a in G, let t '  be formed 
by replacing each non-terminal f(xt...xn) in t with 
the symbol f. t '  is a parse tree for ct in the 
context-free backbone, and it has the same depth 
as t. Therefore a has arbitrarily deep parse trees in 
the context-free backbone, so the context-free 
backbone is not depth-bounded. This 
contradiction shows that the unification grammar 
must be depth-bounded. 

Theorem 2 at once implies that the parsing 
problem is solvable for offline parsable grammars. 

We define a new kind of backbone for a 
unification grammar, called the acyclic backbone, 
The acyclic backbone is like the context-free 
backbone in two ways: there is an algorithrn to 
decide whether the acyclic backbone is depth- 
bounded, and ff the acyclic backbone is depth- 
bounded then the original grammar is depth- 
bounded. The key difference between the acyclic 
backbone and the context-free backbone is that in 
forming the acyclic backbone for an x-bar 
grammar, we do not erase the phrase type and bar 
level features. We consider the class of unification 
grammars whose acyclic backbone is depth- 
bounded. This class has the desirable properties of 
offline parsable grammars, and it includes x-bar 
grammars that are not offline parsable. 

For this purpose we augment our grammar 
formalism with a sort system, as defined in 
(GaUier 1986). Let S be a finite, non-empty set of 
sorts. An S-ranked alphabet is a pair (Y~,r) 
consisting of a set ~ together with a function r :Y~ 
-+ S* X S assigning a rank (u,s) to each symbol f 
in I:. The string u in S* is the arity o f f  and s is the 
sort off .  Terms are defined in the usual way, and 
we require that every sort includes at least one 
ground term. 

As an illustration, let S = { phrase, person, 
number I. Let the function letters of 57 be { np, vp, 
s, 1st, 2nd, 3rd, singular, plural }. Let ranks be 
assigned to the function letters as follows, 
omitting the variables. 

r(np) = ([person, n umber],phrase) 
r(vp) = ([person, number],phrase) 
r(s) = (e,phrase) 
r(lst) = (e,number) 
r(2nd) = (e,number) 
r(3rd) = (e,number) 
r(singular) = (e,person) 
r(plural) = (e,person) 

We have used the notation [a,b,c] for the string of 
a, b and c, and e for the empty string. Typical 
terms of this ranked alphabet are np(lst,singular) 
and vp(2nd, plural). 

A sort s is cyclic if there exists a term of sort 
s containing a proper subterm of  sort s. If not, s is 
called acyclic. A function letter, variable, or term 
is called cyclic if its sort is cyclic, and acyclic if 
its sort is acyclic. In the previous example, the 
sorts "person","number", and "phrase" are acyclic. 
Here is an example of a cyclic sort. Let S = 
{list,atom} and let the function letters of E be { 
cons, nil, a, b, c }. Let 

r(a) = (e,atom) 
r(b) = (e,atom) 
r(c) = (e,atom) 
r(nil) = (e,list) 
r(cons) = ([atom,list],list) 

The term cons(a,nil) is of  sort "list", and it 
contains the proper subterm nil, also of  sort "list". 
Therefore "list" is a cyclic sort. The sort "list" 
includes an infinite number of  terms, and it is easy 
to see that every cyclic sort includes an infinite 
number of  ground terms. 

If G is a unification grammar, we form the 
acyclic backbone of G by replacing all cyclic 
terms in the rules of G with distinct new variables. 
More exactly, we apply the following recursive 
transformation to each top-level term in the rules 
of  G. 

transform(f(t t...tn) ) -- 
if the sort of f is cyclic 
then new-variable0 
else f(transform(t 1)...transform(tn)) 

where "new-variable" is a function that returns a 
new variable each time it is called (this new 
variable must be of  the same sort as the function 
letter t'). Obviously the rules of  the acyclic 
backbone subsume the original rules, and they 
contain no cyclic function letters. Since the 
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acyclic backbone allows all the rules that the 
original grammar allowed, if it is depth-bounded, 
certainly the original grammar must be depth- 
bounded. 

Applying this transformation to rule (1) 
gives 

p(X) --~ p(Y) 

because the sort that contains the integers must be 
cyclic. Applying the transformation to rule (3) 
leaves the rule unchanged, because the sorts 
"phrase type" and "bar level" are acyclic. In any 
x-bar grammar, the sorts "phrase type" and "bar 
level" will each contain a finite set of  terms; 
therefore they are not cyclic sorts, and in forming 
the acyclic backbone we will preserve the phrase 
types and bar levels. In order to get this we result 
we need not make any special provision for x-bar 
grammars - it follows from the general principle 
that if any sort s contains a finite number of  
ground terms, then each term of sort s will appear 
unchanged in the acyclic backbone. 

We must show that it is decidable whether a 
given unification grammar has a depth-bounded 
acyclic backbone. We will generalize algorithm 1 
so that given the acyclic backbone G '  of  a 
unification grammar G, it decides whether G '  is 
depth-bounded. The idea of  the generalization is 
to use a set S of  pairs of  terms with variables as a 
representation for the set of  ground instances of  
pairs in S. Given this representation, one can use 
unification to compute the functions and 
predicates that the algorithm requires. First one 
must build a representation for the set of pairs of  
ground terms [A,B] such that (A --> B) is a rule in 
the ground grammar of  G ' .  C l e a r l y  this 
representation is just the set of  pairs of terms 
[C,D] such that (C ~ D) is a ru le  o f G ' .  

Next there is the function that takes sets S t 
and S 2 and finds the set link(Si,S 2) of all pairs 

[A,C] such that for some B, [A,B] e S t and [B,C] 

S 2. Let T t be a representation for S t and T 2 a 
representation for S 2, and assume that T t and T 2 
share no variables. Then the following set of  
terms is a representation for link(St,S2): 

{ s([A,C]) I 
(3 B ,B ' .  [A,B] ~ T 1 A [B' ,C] E T 2 

A S is the most general unifier 
of  B and B '  ) 

I 
One can prove this from the basic properties of  
unification. 

It is easy to check whether a set of pairs of  

terms represents the empty set or not - since every 
sort includes at least one ground term. a set of 
pairs represents the empty set iff it is empty. It is 
also easy to decide whether a set T of pairs with 
variables represents a set S of ground pairs that 
includes a pair of the form [A,A] - merely check 
whether A unifies with B for some pair [A,B] in 
T. In this case there is no need for renaming, and 
once again the reader can show that the test is 
correct using the basic properties of unification. 

Thus we can "lift" the algorithm for 
checking depth-boundedness from a context-tree 
grammar to a unification grammar. Of  course the 
new algorithm enters an infinite loop for some 
unification grammars - for example, a grammar 
containing only the rule 

1 p(M) -+ p(s(M)) 

In the context-free case the algorithm halts 
because if there are arbitrarily long chains, some 
symbol derives itself - and the algorithm will 
eventually detect this. In a grammar with rules 
like (1), there are arbitrarily long chains and yet 
no symbol ever derives itself. This is possible 
because a ground grammar can have infinitely 
many non-terminals. 

Yet we can show that if the unification 
grammar G contains no cyclic function letters, the 
result that holds for cfgs will still hold: if there are 
arbitrarily long chain derivations, some symbol 
derives itself. This means that when operating on 
an acyclic backbone, the algorithm is guaranteed 
to halt. Thus we can decide for any unification 
grammar whether its acyclic backbone is depth- 
bounded or not. 

The following is the central result of this 
paper: 

Theorem 3. Let G '  be a unfication grammar 
without cyclic function letters. If the ground 
grammar of  G '  allows arbitrarily long chain 
derivations, then some symbol in the ground 
grammar derives itself. 

Proof: In any S-ranked alphabet, the ntunber 
of  terms that contain no cyclic function letters is 
finite (up to alphabetic variance). To see this, let 
C be the number of  acyclic sorts in the language. 
Then the maximum depth of  a term that contains 
no cyclic function letters is C+I.  For consider a 
term as a labeled tree, and consider any path from 
the root of  such a tree to one of its leaves. The 
path can contain at most one variable or func t ion . .  
letter of  each non-cyclic sort, plus one variable of 
a cyclic sort. Then its length is at most C+I .  
Furthermore, there is only a finite number of  
function letters, each taking a fixed number of  
arguments, so there is a finite bound on the 
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number of arguments of a function letter in any 
term. These two observations imply that the 
number of terms without cyclic function letters is 
finite (up to alphabetic variance). 

Unification never introduces a function 
letter that did not appear in the input; therefore 
performing unifications on the acyclic backbone 
will always produce terms that contain no cyclic 
function letters. Since the number of such terms 
is finite, unification on the acyclic backbone can 
produce only a finite number of distinct terms. 

Let D t be the set of lists (A,B) such that (A 

B) is a rule of G ' .  For n >  0 let Dn+ t be the set 

of lists s((Ao,...An,B)) such that (Ao,...An) ~ D n, 
(A',B) ~ D t, and s is the most general unifier of 
A n and A' (after suitable renaming of variables). 
Then the set of ground instances of lists in D n is 
the set of chain derivations of length n in the 
ground grammar for G ' .  Once again, the proof is 
from basic properties of unification. 

The lists in D a contain no cyclic function 
letters, because they were constructed by 
unification from Dr,  which contains no cyclic 
function letters. Let N be the number of distinct 
terms without cyclic function letters in G '  - or 
more exactly, the number of equivalence classes 
under alphabetic variance. Since the ground 
grammar for G '  allows arbitrarily long chain 
derivations, DN÷ t must contain at least one 
element, say (Ao,...AN+I). This list contains two 
terms that belong to the same equivalence class; 
let A i be the first one and Aj the second. Since 
these terms are alphabetic variants they can be 
unified by some substitution s. Thus the list 
s((Ao,...AN+t)) contains two identical terms, s(Ai) 
and s(Aj). Let s" be any subsitution that maps 
s((AO,...AN÷t)) to a ground expression. Then 
st(s((A0,...AN+I))) is a chain derivation in the 
ground grammar for G ' .  It contains a sub-list 
s '  (s(Ai,...Aj)), which is also a chain derivation in 
the ground grammar for G ' .  This derivation 
begins and ends with the symbol s '  (s(Ai)) --- 
s'(s(Aj)). So this symbol derives itself in the 
ground grammar for G ' ,  which is what we set out 
to prove. 

FinaU.y, we can show that the new class of 
grammars m a superset of the offline parsable 
grammars. 

Theorem 4. If G is a typed unification 
grammar and its context-free backbone is finitely 
ambiguous, then its acyclic backbone is depth- 
bounded. 

Proof: Asssume without loss of generality 
that the top-level function letters in the rules of G 
~e  acyclic. Consider a "backbone" G '  formed by 
replacing the arguments of top-level terms in G 
with new variables. If the context-free backbone 
of G is finitely ambiguous, it is depth-bounded, 
and G'  must also be depth-bounded (the intuition 
here is that replacing the arguments with new 
variables is equivalent to erasing them altogether). 
G '  is weaker than the acyclic backbone of G, so if 
G '  is depth-bounded the acyclic backbone is also 
depth-bounded. 

The author conjectures that grammars whose 
acyclic backbone is depth-bounded in fact 
generate the same languages as the offline 
parsable grammars. 

Conclusion 
The offline parsable grammars apparently 

have enough formal power to describe natural 
language syntax, but they exclude linguistically 
desirable grammars that use x-bar theory. This 
happens because in forming the backbone one 
erases too much information. Shieber's restriction 
method can solve this problem in many practical 
cases, but it offers no general solution - it is up to 
the grammar writer to decide what to erase in each 
case. We have shown that by using a simple sort 
system one can automatically choose the features 
to be erased, and this choice will allow the x-bar 
grammars. 

The sort system has independent motivation. 
For example, it allows us to assert that the feature 
"person" takes only the values 1st, 2nd and 3rd. 
This important fact is not expressed in an unsorted 
definite clause grammar. Sort-checking will then 
allow us to catch errors in a grammar - for 
example, arguments in the wrong order. Robert 
Ingria and the author have used a sort system of 
this kind in the grammar of BBN Spoken 
Language System (Boisen et al., 1988). This 
grammar now has about 700 rules and 
considerable syntactic coverage, so it represents a 
serious test of our sort system. We have found that 
the sort system is a natural way to express 
syntactic facts, and a considerable help in 
detecting errors. Thus we have solved the problem 
about offline parsable grammars using a 
mechanism that is already needed for other 
purposes. 

These ideas can be generalized to other 
forms of unification. Consider dag unification as 
in Shieber (1985b). Given a set S of sorts, assign a 
sort to each label and to each atomic dag. The 
arity of a label is a set of sorts (not a sequence of 
sorts as in term unification). A dag is well-formed 
ff whenever an arc labeled 1 leads to a node n, 
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either n is atomic and its sort is in the arity of 1, or 
n has outgoing arcs labeled Ir..l n, and the sorts of 
11...1 n are ill the arity of 1. One can go on to 
develop the theory for dags much as the present 
paper has developed it for terms. 

This work is a step toward the goal of 
formally defining the class of possible grammars 
of human languages. Here is an example of a 
plausible grammar that our definition does not 
allow. Shieber (1986) proposed to make the list of 
arguments of a verb a feature of that verb, leading 
to a grammar roughly like this: 

vp ~ v(Args) arglist(Args) 
v(cons(np,nil)) ~ [eat] 
arglist(nil) ----r e 
arglist(cons(X,L)) ~ X arglist(L) 

Such a grammar is desirable because it allows us 
to assert once that an English VP consists of a 
verb followed by a suitable list of arguments. The 
list of arguments must be a cyclic sort, so it will 
be erased in forming the acyclic backbone. This 
will lead to loops of the form 

arglist(X) ~ arglist(Y) 

Therefore a grammar of this kind will not have a 
depth-bounded acyclic backbone. This type of 
grammar is not as stroagly motivated as the x-bar 
grammars, but it suggests that the class of 
grammars proposed here is still too narrow to 
capture the generalizations of human language. 
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