
A GENERALIZATION OF THE OFFLINE PARSABLE GRAMMARS

Andrew Haas

BBN Systems and Technologies, 10 Moulton St., Cambridge MA. 02138

A B S T R A C T

The offline parsable grammars apparently
have enough formal power to describe human
language, yet the parsing problem for these
grammars is solvable. Unfortunately they exclude
grammars that use x-bar theory - and these
grammars have strong linguistic justification. We
define a more general class of unification
grammars, which admits x-bar grammars while
preserving the desirable properties of offline
parsable grammars.

Consider a unification grammar based on term
unification. A typical rule has the form

t o - - ~ t 1 . . . t n

where t o is a term of first order logic, and tt...t n
are either terms or terminal symbols. Those t i
which are terms are called the top-level terms of
the rule. Suppose that no top-level term is a
variable. Then erasing the arguments of the top-
level terms gives a new rule

C 0 ---,¢. Cl....C n

where each c i is either a function letter or a
terminal symbol. Erasing all the arguments of
each top-level term in a unification grammar G
produces a context-free grammar called the
comext-free backbone of G. If the context-free
backbone is finitely ambiguous then G is offline
parsable (Pereira and Warren, 1983; Kaplan and
Bresnan, 1982). The .parsing problem for offline
parsable grammars ts solvable. Yet these
grammars apparently have enough formal power
to describe natural language - at least, they can
describe the crossed-serial dependencies of Dutch
and Swiss German, which are presently the most
widely accepted example of a construction that
goes beyond context-free grammar (Shieber
1985a).

Suppose that the variable M ranges over
integers, and the function letter "s" denotes the
successor function. Consider the rule

1 p(M) ---) p(s(M))

A grammar containing this rule cannot be offline

parsable, because erasing the arguments of the
top-level terms in the rule gives

2 p ---~ p

which immediately leads to infinite ambiguity.
One's intuition is that rule (1) could not occur in a
natural language, because it allows arbitrarily long
derivations that end with a single symbol:

p(s(0)) ~ p(0)
p(s(s(0))) ~ p(s(0)) ~ p(0)
p(s(s(s(0)))) ~ p(s(s(0))) ~ p(s(0)) --> p(0)
, , ° .

Derivations ending in a single symbol can occur
in natural language, but their length is apparently
restricted to at most a few steps. In this case the
offline parsable grammars exclude a rule that
seems to have no place in natural language.

Unfortunately the offline parsable grammars
also exclude rules that do have a place in natural
language. The excluded rules use x-bar theory.
In x-bar theory the major categories (noun phrase,
verb phrase, noun, verb, etc.) are not primitive.
The theory analyzes them in terms of two
features: the phrase types noun, verb, adjective,
preposition, and the bar levels 1,2 and 3. Thus a
noun phrase is maJor-cat(n,2) and a noun is major-
cat(n,1). This is a very simplified account, but it is
enough for the present purpose. See (Gazdar,
Klein, Pullum, and Sag 1985) for more detail.

Since a noun phrase often consists of a
single noun we need the rule

3 major-.cat(n,2) ~ major-.cat(n,l)

Erasing the arguments of the category symbols
gives

4 major-cat ~ major-cat

and any grammar that contains this rule is
infinitely ambiguous. Thus the offline parsable
grammars exclude rule (3), which has strong
linguistic justification.

One would like a class of grammars that
excludes the bad rule

p(s(Y)) -., p(Y)

and allows the useful rule

237

major-cat(n,2) --~ major-cat(n,1)

Offline parsable grammars exclude the second
rule because in forming the context-free backbone
they erase too much information - they erase the
bar levels and phrase types, which are needed to
guarantee finite ambiguity. To include x-bar
grammars in the class of offline parsable
grammars we must find a different way to form
the backbone - one that does not require us to
erase the bar levels and phrase types.

One approach is to let the grammar writer
choose a finite set of features that will appear in
the backbone, and erase everything else. This
resembles Shieber's method of restriction
(Shieber 1985b).Or following Sato et.al. (1984)
we could allow the grammar writer to choose a
maximum depth for the terms in the backbone,
and erase every symbol beyond that depth. Either
method might be satisfactory in practice, but for
theoretical purposes one cannot just rely on the
ingenuity of grammar writers. One would like a
theory that decides for every grammar what
information is to appear in the backbone.

Our solution is very close to the ideas of Xu
and Warren (1988). We add a simple sort system
to the grammar. It is then easy to distinguish
those sorts S that are recursive, in the sense that a
term of sort S can contain a proper subterm of sort
S. For example, the sort "list" is recursive because
every non-empty list contains at least one sublist,
while the sorts "bar level" and "phrase type" are
not recursive. We form the acyclic backbone by
erasing every term whose sort is recursive. This
preserves the information about bar levels and
phrase types by using a general criterion, without
requiring the grammar writer to mark these
features as special. We then use the acyclic
backbone to define a class of grammars for which
the parsing problem is solvable, and this class
includes x-bar grammars.

Let us review the offline parsable grammars.
Let G be a unification grammar with a set of rules
R, a set of terminals T, and a start symbol S. S
must be a ground term. The ground grammar for
G is the four-tuple (L,T,R' ,S), where L is the set
of ground terms of G and R" is the set of ground
instances of rules in R. If the ground grammar is
finite it is simply a context-free grammar. Even i f
the ground grammar is in.f'mite, we can define the
set of derivation trees and the language that it
generates just as we do for a context-free
grammar. The language and the derivation trees
generated by a unification grammar are the ones
generated by its ground grammar. Thus one can
consider a unification grammar as an abbreviation
for a ground grammar. The present paper excludes

grammars with rules whose right side is empty;
one can remove this restriction by a
straightforward extension.

A ground grammar is depth-bounded if for
every L > 0 there is a D > 0 such that every parse
tree for a string of length L has a depth < D. In
other words, the depth of a p.arse tree is bounded
by the length of the stnng it derives. By
definition, a unification grammar is depth-
bounded iff its ground grammar is depth-bounded.
One can prove that a context-free grammar is
depth-bounded iff it is finitely ambiguous (the
grammar has a f'mite set of symbols, so there is
only a finite number of strings of given length L,
and it has a finite number of rules, so there is only
a finite number of possible parse trees of given
depth D).

Depth-bounded grammars are important
because the parsing problem is solvable for any
depth-bounded unification grammar. Consider a
bottom-up chart parser that generates partial parse
trees in order of depth. If the input (~ is of length
L, there is a depth D such that all parse trees for
any substring of a have depth less than D. The
parser will eventually reach depth D; at this depth
there are no parse trees, and then the parser will
halt.

The essential properties of offline parable
grammars are these:

Theorem 1. It is decidable whether a given
unification grammar is offline parsable.

Proof: It is straightforward to construct the
context-free backbone. To decide whether the
backbone is finitely ambiguous, we need only
decide whether it is depth-bounded. We present an
algorithm for this problem.

Let C a be the set of pairs [A,B] such that A

B by a tree of depth n. Clearly C t is the set of
pairs [A,B] such that (A ----) B) is a rule of G. Also,
Cn+ 1 is the set of pairs [A,C] such that for some
B, [A,B] ~ C a and [B,C] ¢ C t. Then if G is
depth-bounded, C a is empty for some n > 0. If G
is not depth-bounded, then for some non-terminal
A, A =~ A.

The following algorithm decides whether a
cfg is depth-bounded or not by generating C n for
successive values of n until either C a is empty,
proving that the grammar is depth-bounded, or C a
contains a pair of the form [A, A], proving that the
grammar is not depth-bounded. The algorithm
always halts, because the grammar is either depth-
bounded or it is not; in the first case C n -- ~ for
some n, and in the second case [A,A] e C a for
some n.

238

Algorithm 1.
n : = 1;
C I := {[A,BI I (A ~ B) is a rule o f G }
while true do
[if C n = ~ then return true;

if (3 A . [A,A] ~ Ca) then return false;

Cn, I := {[A,C] 1(3 B . [A,B] ~ C n

^ [B,C] ~ Ct)};
n := n+t;

]
Theorem 2. If a unification grammar G is

offline parsable, it is depth-bounded.

Proof: The context-free backbone of G is
depth-bounded because it is finitely ambiguous.
Suppose that the unification grammar G is not
depth-bounded; then there is a string a of symbols
in G such that cx has arbitrarily deep parse trees in
G. If t is a parse tree for a in G, let t ' be formed
by replacing each non-terminal f(xt...xn) in t with
the symbol f. t ' is a parse tree for ct in the
context-free backbone, and it has the same depth
as t. Therefore a has arbitrarily deep parse trees in
the context-free backbone, so the context-free
backbone is not depth-bounded. This
contradiction shows that the unification grammar
must be depth-bounded.

Theorem 2 at once implies that the parsing
problem is solvable for offline parsable grammars.

We define a new kind of backbone for a
unification grammar, called the acyclic backbone,
The acyclic backbone is like the context-free
backbone in two ways: there is an algorithrn to
decide whether the acyclic backbone is depth-
bounded, and ff the acyclic backbone is depth-
bounded then the original grammar is depth-
bounded. The key difference between the acyclic
backbone and the context-free backbone is that in
forming the acyclic backbone for an x-bar
grammar, we do not erase the phrase type and bar
level features. We consider the class of unification
grammars whose acyclic backbone is depth-
bounded. This class has the desirable properties of
offline parsable grammars, and it includes x-bar
grammars that are not offline parsable.

For this purpose we augment our grammar
formalism with a sort system, as defined in
(GaUier 1986). Let S be a finite, non-empty set of
sorts. An S-ranked alphabet is a pair (Y~,r)
consisting of a set ~ together with a function r :Y~
-+ S* X S assigning a rank (u,s) to each symbol f
in I:. The string u in S* is the arity o f f and s is the
sort off . Terms are defined in the usual way, and
we require that every sort includes at least one
ground term.

As an illustration, let S = { phrase, person,
number I. Let the function letters of 57 be { np, vp,
s, 1st, 2nd, 3rd, singular, plural }. Let ranks be
assigned to the function letters as follows,
omitting the variables.

r(np) = ([person, n umber],phrase)
r(vp) = ([person, number],phrase)
r(s) = (e,phrase)
r(lst) = (e,number)
r(2nd) = (e,number)
r(3rd) = (e,number)
r(singular) = (e,person)
r(plural) = (e,person)

We have used the notation [a,b,c] for the string of
a, b and c, and e for the empty string. Typical
terms of this ranked alphabet are np(lst,singular)
and vp(2nd, plural).

A sort s is cyclic if there exists a term of sort
s containing a proper subterm of sort s. If not, s is
called acyclic. A function letter, variable, or term
is called cyclic if its sort is cyclic, and acyclic if
its sort is acyclic. In the previous example, the
sorts "person","number", and "phrase" are acyclic.
Here is an example of a cyclic sort. Let S =
{list,atom} and let the function letters of E be {
cons, nil, a, b, c }. Let

r(a) = (e,atom)
r(b) = (e,atom)
r(c) = (e,atom)
r(nil) = (e,list)
r(cons) = ([atom,list],list)

The term cons(a,nil) is of sort "list", and it
contains the proper subterm nil, also of sort "list".
Therefore "list" is a cyclic sort. The sort "list"
includes an infinite number of terms, and it is easy
to see that every cyclic sort includes an infinite
number of ground terms.

If G is a unification grammar, we form the
acyclic backbone of G by replacing all cyclic
terms in the rules of G with distinct new variables.
More exactly, we apply the following recursive
transformation to each top-level term in the rules
of G.

transform(f(t t...tn)) --
if the sort of f is cyclic
then new-variable0
else f(transform(t 1)...transform(tn))

where "new-variable" is a function that returns a
new variable each time it is called (this new
variable must be of the same sort as the function
letter t'). Obviously the rules of the acyclic
backbone subsume the original rules, and they
contain no cyclic function letters. Since the

239

acyclic backbone allows all the rules that the
original grammar allowed, if it is depth-bounded,
certainly the original grammar must be depth-
bounded.

Applying this transformation to rule (1)
gives

p(X) --~ p(Y)

because the sort that contains the integers must be
cyclic. Applying the transformation to rule (3)
leaves the rule unchanged, because the sorts
"phrase type" and "bar level" are acyclic. In any
x-bar grammar, the sorts "phrase type" and "bar
level" will each contain a finite set of terms;
therefore they are not cyclic sorts, and in forming
the acyclic backbone we will preserve the phrase
types and bar levels. In order to get this we result
we need not make any special provision for x-bar
grammars - it follows from the general principle
that if any sort s contains a finite number of
ground terms, then each term of sort s will appear
unchanged in the acyclic backbone.

We must show that it is decidable whether a
given unification grammar has a depth-bounded
acyclic backbone. We will generalize algorithm 1
so that given the acyclic backbone G ' of a
unification grammar G, it decides whether G ' is
depth-bounded. The idea of the generalization is
to use a set S of pairs of terms with variables as a
representation for the set of ground instances of
pairs in S. Given this representation, one can use
unification to compute the functions and
predicates that the algorithm requires. First one
must build a representation for the set of pairs of
ground terms [A,B] such that (A --> B) is a rule in
the ground grammar of G ' . C l e a r l y this
representation is just the set of pairs of terms
[C,D] such that (C ~ D) is a ru le o f G ' .

Next there is the function that takes sets S t
and S 2 and finds the set link(Si,S 2) of all pairs

[A,C] such that for some B, [A,B] e S t and [B,C]

S 2. Let T t be a representation for S t and T 2 a
representation for S 2, and assume that T t and T 2
share no variables. Then the following set of
terms is a representation for link(St,S2):

{ s([A,C]) I
(3 B ,B ' . [A,B] ~ T 1 A [B' ,C] E T 2

A S is the most general unifier
of B and B ')

I
One can prove this from the basic properties of
unification.

It is easy to check whether a set of pairs of

terms represents the empty set or not - since every
sort includes at least one ground term. a set of
pairs represents the empty set iff it is empty. It is
also easy to decide whether a set T of pairs with
variables represents a set S of ground pairs that
includes a pair of the form [A,A] - merely check
whether A unifies with B for some pair [A,B] in
T. In this case there is no need for renaming, and
once again the reader can show that the test is
correct using the basic properties of unification.

Thus we can "lift" the algorithm for
checking depth-boundedness from a context-tree
grammar to a unification grammar. Of course the
new algorithm enters an infinite loop for some
unification grammars - for example, a grammar
containing only the rule

1 p(M) -+ p(s(M))

In the context-free case the algorithm halts
because if there are arbitrarily long chains, some
symbol derives itself - and the algorithm will
eventually detect this. In a grammar with rules
like (1), there are arbitrarily long chains and yet
no symbol ever derives itself. This is possible
because a ground grammar can have infinitely
many non-terminals.

Yet we can show that if the unification
grammar G contains no cyclic function letters, the
result that holds for cfgs will still hold: if there are
arbitrarily long chain derivations, some symbol
derives itself. This means that when operating on
an acyclic backbone, the algorithm is guaranteed
to halt. Thus we can decide for any unification
grammar whether its acyclic backbone is depth-
bounded or not.

The following is the central result of this
paper:

Theorem 3. Let G ' be a unfication grammar
without cyclic function letters. If the ground
grammar of G ' allows arbitrarily long chain
derivations, then some symbol in the ground
grammar derives itself.

Proof: In any S-ranked alphabet, the ntunber
of terms that contain no cyclic function letters is
finite (up to alphabetic variance). To see this, let
C be the number of acyclic sorts in the language.
Then the maximum depth of a term that contains
no cyclic function letters is C+I. For consider a
term as a labeled tree, and consider any path from
the root of such a tree to one of its leaves. The
path can contain at most one variable or func t ion . .
letter of each non-cyclic sort, plus one variable of
a cyclic sort. Then its length is at most C+I .
Furthermore, there is only a finite number of
function letters, each taking a fixed number of
arguments, so there is a finite bound on the

240

number of arguments of a function letter in any
term. These two observations imply that the
number of terms without cyclic function letters is
finite (up to alphabetic variance).

Unification never introduces a function
letter that did not appear in the input; therefore
performing unifications on the acyclic backbone
will always produce terms that contain no cyclic
function letters. Since the number of such terms
is finite, unification on the acyclic backbone can
produce only a finite number of distinct terms.

Let D t be the set of lists (A,B) such that (A

B) is a rule of G ' . For n > 0 let Dn+ t be the set

of lists s((Ao,...An,B)) such that (Ao,...An) ~ D n,
(A',B) ~ D t, and s is the most general unifier of
A n and A' (after suitable renaming of variables).
Then the set of ground instances of lists in D n is
the set of chain derivations of length n in the
ground grammar for G ' . Once again, the proof is
from basic properties of unification.

The lists in D a contain no cyclic function
letters, because they were constructed by
unification from Dr, which contains no cyclic
function letters. Let N be the number of distinct
terms without cyclic function letters in G ' - or
more exactly, the number of equivalence classes
under alphabetic variance. Since the ground
grammar for G ' allows arbitrarily long chain
derivations, DN÷ t must contain at least one
element, say (Ao,...AN+I). This list contains two
terms that belong to the same equivalence class;
let A i be the first one and Aj the second. Since
these terms are alphabetic variants they can be
unified by some substitution s. Thus the list
s((Ao,...AN+t)) contains two identical terms, s(Ai)
and s(Aj). Let s" be any subsitution that maps
s((AO,...AN÷t)) to a ground expression. Then
st(s((A0,...AN+I))) is a chain derivation in the
ground grammar for G ' . It contains a sub-list
s ' (s(Ai,...Aj)), which is also a chain derivation in
the ground grammar for G ' . This derivation
begins and ends with the symbol s ' (s(Ai)) ---
s'(s(Aj)). So this symbol derives itself in the
ground grammar for G ' , which is what we set out
to prove.

FinaU.y, we can show that the new class of
grammars m a superset of the offline parsable
grammars.

Theorem 4. If G is a typed unification
grammar and its context-free backbone is finitely
ambiguous, then its acyclic backbone is depth-
bounded.

Proof: Asssume without loss of generality
that the top-level function letters in the rules of G
~e acyclic. Consider a "backbone" G ' formed by
replacing the arguments of top-level terms in G
with new variables. If the context-free backbone
of G is finitely ambiguous, it is depth-bounded,
and G' must also be depth-bounded (the intuition
here is that replacing the arguments with new
variables is equivalent to erasing them altogether).
G ' is weaker than the acyclic backbone of G, so if
G ' is depth-bounded the acyclic backbone is also
depth-bounded.

The author conjectures that grammars whose
acyclic backbone is depth-bounded in fact
generate the same languages as the offline
parsable grammars.

Conclusion
The offline parsable grammars apparently

have enough formal power to describe natural
language syntax, but they exclude linguistically
desirable grammars that use x-bar theory. This
happens because in forming the backbone one
erases too much information. Shieber's restriction
method can solve this problem in many practical
cases, but it offers no general solution - it is up to
the grammar writer to decide what to erase in each
case. We have shown that by using a simple sort
system one can automatically choose the features
to be erased, and this choice will allow the x-bar
grammars.

The sort system has independent motivation.
For example, it allows us to assert that the feature
"person" takes only the values 1st, 2nd and 3rd.
This important fact is not expressed in an unsorted
definite clause grammar. Sort-checking will then
allow us to catch errors in a grammar - for
example, arguments in the wrong order. Robert
Ingria and the author have used a sort system of
this kind in the grammar of BBN Spoken
Language System (Boisen et al., 1988). This
grammar now has about 700 rules and
considerable syntactic coverage, so it represents a
serious test of our sort system. We have found that
the sort system is a natural way to express
syntactic facts, and a considerable help in
detecting errors. Thus we have solved the problem
about offline parsable grammars using a
mechanism that is already needed for other
purposes.

These ideas can be generalized to other
forms of unification. Consider dag unification as
in Shieber (1985b). Given a set S of sorts, assign a
sort to each label and to each atomic dag. The
arity of a label is a set of sorts (not a sequence of
sorts as in term unification). A dag is well-formed
ff whenever an arc labeled 1 leads to a node n,

241

either n is atomic and its sort is in the arity of 1, or
n has outgoing arcs labeled Ir..l n, and the sorts of
11...1 n are ill the arity of 1. One can go on to
develop the theory for dags much as the present
paper has developed it for terms.

This work is a step toward the goal of
formally defining the class of possible grammars
of human languages. Here is an example of a
plausible grammar that our definition does not
allow. Shieber (1986) proposed to make the list of
arguments of a verb a feature of that verb, leading
to a grammar roughly like this:

vp ~ v(Args) arglist(Args)
v(cons(np,nil)) ~ [eat]
arglist(nil) ----r e
arglist(cons(X,L)) ~ X arglist(L)

Such a grammar is desirable because it allows us
to assert once that an English VP consists of a
verb followed by a suitable list of arguments. The
list of arguments must be a cyclic sort, so it will
be erased in forming the acyclic backbone. This
will lead to loops of the form

arglist(X) ~ arglist(Y)

Therefore a grammar of this kind will not have a
depth-bounded acyclic backbone. This type of
grammar is not as stroagly motivated as the x-bar
grammars, but it suggests that the class of
grammars proposed here is still too narrow to
capture the generalizations of human language.

Geoffrey; and Sag, Ivan. (1985) Generalized
Phrase Structure Grammar. Oxford: Basil
Blackwell.

Pereira, Fernando, and Warren, David
H. D. (1983) Parsing as Deduction. In
Proceedings of the 21st Annual Meeting of the
Association for Computational Linguistics,
Cambridge, Massachusetts.

Sato, Taisuke, and Tamaki, Hisao. (1984)
Enumeration of Success Patterns in Logic
Programs. Theoretical Computer Science 34,
227 -240.

Shieber, Stuart. (1985a) Evidence against
the Context-freeness of Natural Language.
Linguistics and Philosophy 8(3), 333-343.

Shieber, Stuart. (1985b). Using Restriction
to Extend Parsing Algorithms for Complex-
Feature-Based Formalisms. In Proceedings of the
23rd Annual Meeting of the Association for
Computational Linguistics, 145-152. University of
Chicago, Chicago, Illinois.

Shieber, Stuart. (1986) An Introduction to
Unification-Based Approaches to Grammar.
Center for the Study of Language and
Information.

Xu, Jiyang, and Warren, David S. (1988) A
Type System for Prolog. In Logic Programming:
Proceedings of the Fifth International Conference
and Symposium, 604-619. MIT Press.

A C K N O W L E D G E M E N T S

The author wishes to acknowledge the
support of the Office of Naval Research under
contract number N00014-85-C-0279.

REFERENCES

Boisen, Sean; Chow, Yen-lu; Haas, Andrew;
lngria, Robert; Roucos, Salim; StaUard, David;
and Vilain, Marc. (1989) Integration of Speech
and Natural Language Final Report. Report No.
6991, BBN Systems and Technologies
Corporation. Cambridge, Massachusetts.

Bresnan, Joan, and Kaplan, Ronald. (1982)
LFG: A Formal System for Grammatical
Representation. in The Mental Representation of
Grammatical Relations. M1T Press.

Gallier, Jean H. (1986) Logic for Computer
Science. Harper and Row, New York, New York.

Gazdar, Gerald; Klein, Ewan; Pullum,

242

