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Abstract

An algorithm is presented for transit passenger OD estimation. The algorithm, like some other existing OD estimation
techniques, generates estimates based upon passenger boarding and alighting counts at each stop along the route. The
algorithm is distinct in that it does not only estimate an OD matrix for the vehicle trip from which the boarding and alight-
ing counts were taken. Rather, it further estimates the passenger alighting probabilities at every stop on the route and these
are more apt to remain fixed across transit trips. Therefore, when coupled with projected boarding counts, the alighting
probabilities better characterize OD patterns on the route. These probabilities, moreover, are estimated in such way as
to reflect the passengers’ latent tendencies to travel to and from ‘‘major activity centers’’ where trip-making is induced.
The algorithm is therefore a more general-use method than is the estimation technique proposed by Tsygalnitsky. Since
the algorithm does not require a seed matrix, and since the number of iterations required for generating estimates is spec-
ified a priori, the algorithm is easier to apply and more computationally efficient than the balancing method of OD
estimation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Need frequently arises to estimate the origin–destination (OD) pattern of a transit route’s ridership. Large-
scale direct sampling of passenger ODs is costly, especially since such sampling would be required for each
period marked by distinct demand patterns. This kind of sampling, moreover, is prone to biases and errors
(Furth and Navick, 1992).

In contrast, accurate passenger boarding and alighting counts can generally be obtained at all stops along a
route. (Perhaps the only notable exception occurs when transit vehicles have insufficient capacity to carry
0191-2615/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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demands, such that residual passenger queues form at stops.) Hence the advantage of OD estimation methods
that require boarding and alighting counts in conjunction with only limited, and readily obtainable, added
information.

Consider the OD matrix for a transit vehicle’s trip along a route, with rows representing origin stops and
columns representing destination stops. The numeric sum of a row or a column is a stop’s boarding or alight-
ing count, respectively, measured during the vehicle’s trip. A given set of such sums can correspond to many
OD matrices. The task is to select from among these many matrices the one that is most appropriate.

A common estimation approach is the so-called balancing method (Ben-Akiva et al., 1985; Bregman, 1967;
Lamond and Stewart, 1981). As its starting point, the method relies on a seed matrix, i.e., a matrix that sup-
posedly incorporates knowledge about passenger travel patterns. It may be an old, outdated OD matrix or one
developed from an on-board survey of a small number of passengers. The objective is to pick the OD matrix
that matches the boarding and alighting counts at each stop and that provides minimum information over the
seed matrix, i.e., the objective is to pick the OD matrix with maximum likelihood.

When this objective is feasible, the balancing method is proven to converge to the optimal solution
(Lamond and Stewart, 1981). It does so by (i) multiplying each element in a matrix row by a constant, such
that the row’s sum matches the stop’s actual boarding count; (ii) repeating this for each matrix row in
sequence; (iii) repeating the previous two steps for the matrix columns so that sums match alighting counts;
and (iv) iterating in this fashion until reaching convergence.

The balancing method is subject to the so-called ‘‘problem of non-structural zeros’’ (Ben-Akiva et al.,
1985): if an element in the seed matrix is zero, that element retains a zero value in every iteration. If, moreover,
the seed matrix contains a row (column) of zeros but the boarding (alighting) count for that stop is non-zero,
then a feasible solution does not exist and the method will not converge.

Tsygalnitsky (1977) proposed a simpler, non-iterative algorithm. Furth and Navick (1992) have shown this
algorithm to be equivalent to the balancing method under a special case: namely, when the seed matrix reflects
equal probabilities for all OD combinations. Tsygalnitsky treats onboard passengers as a mixed fluid: board-
ing passengers are added to this fluid and alighting passengers are drawn from it with equal probability (Simon
and Furth, 1985). This assumption is often unrealistic, particularly for routes that include major stops that
serve activity centers, such as commuter train stations, large businesses, etc.

We propose an OD estimation algorithm that is well suited to routes that serve stops near these activity
centers (referred to here as ‘‘major’’ stops) along with stops in other zones, such as residential areas (‘‘minor’’
stops). Notably, the designation of ‘‘major’’ and ‘‘minor’’ is not a distinction that is necessarily based on the
passenger demand for a stop. Rather, the distinction is intended to differentiate stops that serve activity centers
(where travel may be induced) from stops that do not.

One can imagine, for example, that residential stops might serve high boarding counts during weekday
mornings as passengers commute to their workplaces and schools. During the evenings, these same stops
might have large alighting movements. The stops may be designated as minor ones nonetheless.

By distinguishing a stop based on the zone it serves (and not its demand), the proposed algorithm is differ-
ent from Tsygalnitsky’s method. Since both methods generate estimates from boarding and alighting counts,
both automatically distinguish stops with high demand from other stops. But only our proposed algorithm
can, for example, systematically assign different (presumably lower) likelihoods to passenger trips that both
start and end at what we call minor stops.

The example just cited (that passengers are disinclined to travel to and from minor stops) is justified in light
of certain empirical evidence, like what is shown in Table 1. It displays survey results of passengers who use
AC Transit, an agency with a fleet of more than 650 buses serving two counties in California’s San Francisco
Bay Area. Review of the table reveals that approximately 85% of passenger trips involve travelling for pur-
poses of work, school, shopping, recreation and medical appointments. As these are activities that commonly
occur in zones served by major stops, we can reasonably assume that most or all of these trips involve the use
of at least one major stop.

The remaining 15% of trips, which we will call miscellaneous trips, may include those that both start and
end at minor stops; e.g. trips whereby passengers travel from home to visit friends or family. Of course, even
some of these trips will involve use of a major stop if a residence is near such a stop or perhaps if a trip requires
a transfer.



Table 1
AC transit passenger trip purpose survey result, 1999

Trip purpose Frequency Percent (%)

Work 946 43.7
School 479 22.1
Shopping 278 12.9
Recreation/social activity 88 4.1
Personal business 141 6.5
Medical appointment 56 2.6
Other 175 8.1

Total 2163 100
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In any event, we can say that in some (perhaps many) instances, the trip purposes of passengers who board
at a route’s minor stops will be similar to the purposes of the overall population of passengers using that route.
This occurs on routes in which (i) miscellaneous trips are relatively rare, as in Table 1; and (ii) a large propor-
tion of trips originate at minor stops, as will often be the case when the route carriers commuters who travel to
work by boarding at minor stops near their homes.

It follows that for such a route with trip purposes distributed as in Table 1, no more than about 15% of the
passengers who boarded at some minor stop will alight at minor stops as well. In contrast, Tsygalnitsky’s
method can over-predict this percentage. (A hypothetical example is presented in an Appendix to this paper.)

By the same token, passenger inclination to travel both to and from major stops might be very different
from what is assumed in Tsygalnitsky. This latter inclination may depend upon certain features of the route,
as we will illustrate with real data later in the manuscript. The point is that by capturing inclinations of this
kind, our algorithm can be applied more generally than Tsygalnitsky’s method.

Compared to the balancing method, our algorithm is more computationally efficient since convergence is
not an issue, and the number of iterations required is small and specified a priori.

Very importantly, our proposed algorithm is distinct from the above two existing techniques in that it does
not only estimate an OD matrix for the transit trip from which the boarding and alighting counts were mea-
sured. It further estimates the passenger alighting probabilities at every stop. These probabilities characterize
passenger OD patterns on the route; they are likely to remain (approximately) constant across transit trips
made under similar conditions. Thus when coupled with the (distributions of the) projected boarding counts,
the alighting probabilities are better suited for predicting ODs in future transit trips.

The algorithm is described in the following section. Description of the rational metric used to quantify the
fitness of estimates is also included there, as is brief discussion on how the transit planner might distinguish a
route’s major and minor stops. We also explain how the algorithm can be calibrated so as to always furnish
estimates that are at least as good as those from Tsygalnitsky’s method, even when stops have not been suit-
ably (‘‘correctly’’) assigned designations of major or minor.

Outcomes from a real-world application of the algorithm are presented in Section 3. There we illustrate that
by capturing passenger trip-making tendencies, including passenger disinclination to make short trips, the
algorithm furnishes better-fit estimates of alighting probabilities.

Concluding remarks are offered in Section 4. In Appendix A, we present justification for a key aspect of the
algorithm’s iterative calibration process (described in due course). Finally, in Appendix B we highlight some of
the algorithm’s computational details by applying it to a simple, hypothetical example.

2. The algorithm

Consider a route and time when transit passengers tend to take trips that involve boarding or alighting at
major stops. At a moment immediately before the transit vehicle reaches stop s, take a to be a randomly-
selected onboard passenger who boarded at a major stop. The probability that this passenger alights at stop
s is denoted pas. Take b to be an onboard passenger who boarded at a minor stop. The probability that she
alights at s is pbs. At stop s,
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pas

pbs

¼ 1� a
a

; ð1Þ
where a 2 (0, 1). We will assume that a = aa for all major stops; otherwise a = ab. (Tsygalnitsky’s estimation
method is suitable for those special cases where a = 0.5 for all stops, such that distinctions between a route’s
major and minor stops do not exist.)

Passengers alighting at stop s are drawn from those onboard following the rule specified in the following
theorem.

Theorem. Suppose that immediately upstream of stop s, there are Na onboard passengers who had boarded at

major stops and Nb who had boarded at minor ones. Suppose too that among the n passengers who actually alight
at this stop, a total of na boarded at major stops. If (1) holds, the expectation of na is given by
E½na� ¼
ð1� aÞN a

ð1� aÞNa þ aNb
n: ð2Þ
Proof. We randomly select an onboard passenger immediately upstream of stop s and define the following
events:

• off: the passenger alights at s,
• a or b: the passenger boarded at a major or minor stop, respectively.

Eq. (1) means that
pðoff jaÞ
pðoff jbÞ ¼

1� a
a

: ð3Þ
Since
pðajoffÞ ¼ pðoff jaÞ � pðaÞ
pðoffÞ ; ð4Þ
and
1� pðajoffÞ ¼ pðbjoffÞ ¼ pðoff jbÞ � pðbÞ
pðoffÞ ; ð5Þ
we have
pðajoffÞ
1� pðajoffÞ ¼

1� a
a

pðaÞ
pðbÞ : ð6Þ
Thus,
pðajoffÞ ¼ ð1� aÞpðaÞ
apðbÞ þ ð1� aÞpðaÞ : ð7Þ
Since pðaÞ ¼ Na
NaþNb

, pðbÞ ¼ Nb
NaþNb

, and E[na] = np(ajoff), we have Eq. (2). h

If n � Nb 6 E[na] 6 Na, our estimate of na is given by bna ¼ E½na�. However, Eq. (2) yields E[na] > Na when
a

1�a <
n�Na

Nb
. In this latter case, we set bna ¼ N a. Similarly, when 1�a

a < n�Nb
Na

, (2) gives n � E[na] > Nb. In this case,

we set bna ¼ n� N b.
The bna for a stop is drawn proportionally from each of the major origins upstream, such that the origin

contributing most (least) to Na gives the greatest (smallest) contribution to bna . The bnb ¼ n� bna is drawn in
like fashion from all minor origins upstream.

Having just described how the algorithm draws alighting passengers for any given a, we now present the
process for choosing aa and ab to obtain the OD estimates. The boarding and alighting counts needed for
the process might be collected from multiple vehicle trips made during a certain period (e.g. the morning peak)
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on either a single day or across multiple days.1 Suppose we use data from a set of M vehicle trips to estimate
OD matrices for specified ranges of aa and ab, and data from a set of J trips to choose the aa and ab that give
the best-fit OD estimates. (The two sets of trips may be different or can even be the same.) Finally, suppose
that the route has I designated stops. The iterative procedure is as follows:

Step 1: OD Matrix estimation for initial choice of aa, ab. For each of the M vehicle trips, we obtain the OD
matrix by drawing alighting passengers at each stop from the mix onboard using the logic described
above. At each major stop, the bna (and thus the bnb ¼ n� bna ) are calculated for some initial selection
of aa. The selected value for ab is used to calculate bna and bnb at each minor stop. The OD matrices for
all M trips are then averaged (element by element) to obtain the aggregate OD matrix. The fitness of
this aggregate matrix is assessed ex post using the following steps:

Step 2: Conversion of aggregate OD matrix to alighting probabilities. An alighting probability matrix, P, is
generated by dividing each element in the aggregate OD matrix by its row total.2 For any row total
of zero in the OD matrix, one might fill the corresponding row in P with alighting probabilities esti-
mated for some neighboring stop. If the set of J trips is a subset of the M trips, one can simply fill the
corresponding row in P with zeros, since no boarding occurs at the stop during any of the J trips.

Step 3: Prediction of alighting counts for each trip. For each of the J trips, the vector of alighting counts is
predicted using the boarding counts for that trip and the matrix P. The alighting count, As, for each
stop, s, is predicted as As ¼

PI
i¼1BiP is, where Bi is the actual boarding count at stop i and Pis is the

probability that passengers boarding at i alight at s (as computed in Step 2).
Step 4: Fitness assessment of alighting probabilities. To estimate the fitness of the alighting probability matrix,

one might compute the (Euclidean) distance between the vector of predicted alighting counts and the
vector of measured alightings for each vehicle trip. Such a metric has little physical meaning, however.
Instead therefore, the algorithm assesses fitness based upon the vehicle’s average load, i.e., the average
number of passengers onboard weighted by the route distance (the transit vehicle’s revenue kilo-
meters). A vehicle trip’s average load is determined from what we call its ‘‘characteristic plot’’, an
example of which is shown in Fig. 1. The top curve in that figure displays the cumulative boarding
count vs location along the route (as measured from some ‘‘origin’’). The lower curve shows the
cumulative alightings.
The vertical separation between the curves corresponding to any point along the route is the number
of onboard passengers (the load) there. This interpretation does not require passengers to board and
alight in FIFO fashion. Thus, average load is the area between the curves divided by the route dis-
tance.
For each vehicle trip j, the fitness of the alighting probability matrix is determined by comparing the
actual average load (obtained from real boarding and alighting counts) with the estimated average
(obtained by replacing the cumulative alighting curve of the actual counts with one constructed from
the alighting counts predicted in Step 3). To measure overall fitness of the alighting probability matrix
across all J trips, we denote the observed average load for trip j as xj and the estimated average load
for that trip as xj

aa;ab
. We then use
1 Th
size, u

2 We
obtain
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

ðxj
aa;ab � xjÞ2

vuut ð8Þ

as the overall fitness measure of the OD matrix corresponding to given aa and ab.

Step 5: Iteration. The aa and ab are jointly selected through iteration to produce the alighting probability

matrix that corresponds to the lowest value for the fitness measure D.
e transit vehicle should have sufficient capacity to accommodate the passenger demands and the usual estimation issues of sample
nbiased sampling, etc. apply.
show in Appendix A that these alighting probabilities are the maximum likelihood estimates if the ‘‘true’’ OD data were (somehow

ed and) used for each of the M trips.
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Fig. 1. An example characteristic plot.
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Evidence that this reliance on the smallest D is rational is provided in the following section. There we will
use synthetic data to show that the true alighting probability matrix yields the smallest D.

As a notable aside, Steps 2–4 above can also serve to quantify the fitness of alighting probabilities when the
OD matrix for each vehicle trip is estimated via some methods other than Step 1 of our iterative process.

As regards to the practical matter of distinguishing between a route’s major and minor stops, an analyst
might designate as ‘‘major’’ only those stops that serve obvious (large) activity centers. Designations can even
be assigned through trial-and-error calibration when a small number of stops are in question.

Ultimately, the task of assigning designations to stops requires judgement and this may be viewed as a lim-
itation of the algorithm. We hasten to add, however, that the calibration process can be made to generate OD
estimates that are always at least as good as those from Tsygalnitsky’s method – even if many or all stops
along a route are assigned unsuitable designations. One need only include aa = ab = 0.5 in the calibration
so that alighting passengers are drawn from those onboard with equal probabilities and designations of
‘‘major’’ and ‘‘minor’’ thus become irrelevant.

Assigning stop designations that are generally suitable, on the other hand, adds information that can
improve OD estimates. The benefit of this added information is illustrated in the following section.

3. A case study

Here we provide a ‘‘macro’’ level illustration of the algorithm’s application. The focus is on the calibration
of aa and ab for a real bus route (served by AC Transit). The route, shown schematically in Fig. 2, is 26 km in
length and serves 58 stops in total. We designate 10 of these as major stops, since each provides easy access to
one of four activity centers, the BART (train) station, the college and two shopping malls shown in the figure.
Boarding and alighting counts used for estimating the aggregate OD matrix (‘‘Step 1’’ in the iterative process)
as well as for computing the overall fitness of the alighting probability matrix (‘‘Step 4’’) came from six bus
trips made during a 3-h-long morning peak. (Fig. 1 is actually the characteristic plot obtained from the six-trip
averages of boarding and alighting counts at each stop along this route.)

Like Tsygalnitsky’s method, our algorithm can accommodate an assumption of ‘‘intervening opportuni-
ties’’(Ben-Akiva et al., 1985): a minimum riding distance can be specified so as to reduce or eliminate short
trips that in reality are typically made by some other means, such as walking. For any specified minimum trip
length L, onboard passengers who have travelled distances greater than L have priority in alighting at a given
stop. The Na and Nb are each partitioned into two groups – those that have travelled distances greater than L

and those that have not. Passengers in the latter group alight (in FIFO fashion) only when those with priority
have all alighted pursuant to the rule established in Section 2.
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In this application, L varied from 0 to 4.8 km in increments of 0.4 km. The aa and ab each varied from 0.1 to
0.9 in increments of 0.1. As such, the calibration compares 1053 scenarios, each giving rise to an alighting
probability matrix.

The minimum value of D is 0.397 and was obtained for L = 3.2 km, aa = 0.1 and ab = 0.4 (or 0.3), as shown
in Table 2. Had aa and ab been calibrated in finer increments, D would be minimum with aa � 0 and ab � 0.35.
An ab � 0.35 indicates that at a minor stop, a passenger who had earlier boarded at a major stop is about twice
as likely to alight than one who had boarded at a minor one. An aa � 0 indicates that at major stops, near-
absolute alighting priority should be given to those who had boarded at major stops. These parameter values
suggest that, on this route, a large proportion of passengers who boarded at the upstream-most major stop
(near the BART station) alighted at major stops.

Of further interest, the choice of aa = ab = 0.5 (as per Tsygalnitsky’s method) generated a minimum value
of D = 0.464 when L = 3.2 km. This too is shown in Table 2. The reader will note that the OD matrix esti-
mated by our algorithm exhibited a better fit than did the estimates from Tsygalnitsky’s method.

To illustrate that the calibration process can produce better estimates of alighting probabilities, we simu-
lated 1000 bus trips along the route shown in Fig. 2. For each simulated trip, boarding counts were randomly
generated from the distributions inferred from the real data and passenger destinations were randomly
assigned using the alighting probability matrix that coincides with aa = 0.1 and ab = 0.4 (consistent with
the calibration summarized in Table 2). This matrix thus constituted the ‘‘true’’ alighting probabilities for
our synthetic experiment. Each trip’s resulting average passenger load was taken as an ‘‘observed’’ value.

We used the same alighting probability matrix to obtain predicted passenger loads. These loads came by
calculating alighting counts in the manner previously described in Section 2 (Step 3 of the iterative calibration
process). The resulting fitness measure, D, was 0.627.

Values of D were then recalculated for a range of predicted passenger loads. These latter loads came by
using the alighting probability matrices for the range of aa and ab previously used for the calibration summa-
rized in Table 2. All of these matrices were, of course, inferior to the ‘‘true’’ one that coincided with aa = 0.1
Table 2
Fitness measure of estimated alighting probabilities for different a’s, with L = 3.2 km

D aa = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ab= 0.1 0.413 0.417 0.418 0.419 0.431 0.450 0.453 0.457 0.461
0.2 0.405 0.408 0.409 0.411 0.427 0.447 0.451 0.455 0.460
0.3 0.397 0.401 0.400 0.405 0.425 0.447 0.452 0.458 0.465
0.4 0.397 0.401 0.403 0.413 0.438 0.462 0.470 0.479 0.488
0.5 0.407 0.412 0.419 0.435 0.464 0.490 0.500 0.511 0.523
0.6 0.423 0.434 0.446 0.468 0.499 0.527 0.539 0.553 0.566
0.7 0.451 0.469 0.485 0.512 0.543 0.571 0.586 0.601 0.617
0.8 0.492 0.513 0.535 0.563 0.592 0.618 0.634 0.650 0.665
0.9 0.539 0.563 0.589 0.615 0.641 0.665 0.682 0.700 0.718
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and ab = 0.4. And notably, all the latter D were larger than 0.627, the value calculated when predicted loads
were obtained from the ‘‘true’’ matrix. (When, for example, aa = ab = 0.5 as per Tsygalnitsky, the value of D

was 0.643.)
This exercise shows empirically that the best-fit alighting probability matrix (in this case, the ‘‘true’’ matrix)

is the one that generates the lowest prediction error in load (the smallest D). The passenger OD patterns on the
route follow from these alighting probabilities, i.e., the distribution of passenger flow between an OD pair is a
mixture of binomial distributions.
4. Conclusions

The algorithm proposed here has several advantages. First, as we have noted, it is computationally efficient.
The algorithm does not require a seed matrix; convergence is not an issue and the number of the iterations
required by the algorithm is specified a priori. Second, by considering passenger trip-making tendencies (pri-
marily through the selection of aa and ab), the algorithm is a more general-use method than the one proposed
by Tsygalnitsky.

The algorithm further generates best-fit estimates of alighting probabilities and we have noted that from
these probabilities the passenger ODs for a route can be obtained. The distribution of the passenger flow
between each OD pair on a route can be calculated from these probabilities and the projected distribution
of boarding counts at each stop. Mean values of the OD distributions can serve as the scaler elements of a
matrix (though information is obviously lost with such a transformation).

In Appendix A, we furnish justification for the algorithm’s use of OD matrices to obtain alighting proba-
bilities. In Appendix B, we present further details related to application of the algorithm.
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Appendix A

We demonstrate here that maximum-likelihood estimates of alighting probabilities can be obtained from
the ‘‘true’’ OD matrices for multiple transit trips along a route. This demonstration justifies our use of an
aggregate OD matrix to estimate alighting probabilities.

Suppose we have OD matrices for M trips along a route with I stops. We denote T m
is as the OD flow from

stop i to stop s on the mth trip. The underlying alighting probability matrix,3 (Pis), is unknown but is the same
for all M trips, and passengers’ alighting behaviors are mutually independent.

From the ðT m
isÞ we obtain boardings, Bm

i ¼
P

sT
m
is , and alightings, Am

s ¼
P

iT
m
is . Given the ðBm

i Þ and (Pis), the
relative frequency in which ðT m

isÞ arises should be
3 We
f1 ¼
YM
m¼1

YI

i¼1

Bm
i !
QI

s¼1P
T m

is
isQI

s¼1T m
is !

: ð9Þ
Because ðT m
isÞ and ðBm

i Þ are data, maximizing f1 is equivalent to maximizing
f2 ¼
YM
m¼1

YI

i¼1

YI

s¼1

P
T m

is
is ; ð10Þ
use parenthesis ( ) to denote a matrix.
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which is equivalent to maximizing
Table
Board

Stop n
Stop t

Trip 1
Trip 1

Trip 2
Trip 2
f3 ¼
XM

m¼1

XI

i¼1

XI

s¼1

T m
is ln P is: ð11Þ
The set of constraints are
XI

s¼1

P is ¼ 1 ð12Þ
for i = 1, . . . , I.
Applying the method of Lagrangian Multipliers, we obtain the maximum likelihood estimate of Pis as
P �is ¼
PM

m¼1T m
isPI

s¼1

PM
m¼1T m

is

: ð13Þ
Thus, we can obtain ðP �isÞ by dividing the elements of the aggregate OD matrix by the corresponding row total,
as per Step 2 of our iterative calibration process.

Appendix B

This appendix illustrates more of the algorithm’s details by applying it to a very simple, hypothetical transit
route.

The route in Fig. 3 has four stops. Those numbered 1 and 4 are designated as major stops (we suppose they
serve business districts). Although on some trips we will assign relatively large demands to stops 2 and 3, they
are designated as minor ones – passengers are presumably disinclined both to start and end trips at these two
stops.

The hypothetical sets of boarding and alighting counts represent those from two (hypothetical) vehicle
trips. They are presented in Table 3.

Let L = 0 so that no short trips are excluded, and ab = 0.25. (For this example, the value of aa does not
matter because all onboard passengers alight when the vehicle arrives at stop 4.) For trip 1, values of Na

and Nb are first calculated at stop 2. These are used by the algorithm along with the alighting count n, to cal-
culate bna and bnb . These alighting passengers are drawn from the upstream origin (stop 1). The process is
repeated for stops 3 and 4; alighting passengers at each are drawn from the origin stops and the numbers from
each origin that remain onboard are determined as well. Key estimates for each step are shown in Table 4. The
resulting OD matrix is shown in Table 5.
Fig. 3. A route with four stops.

3
ing and alighting at stops

umber 1 2 3 4
ype Major Minor Minor Major

boarding 2 6 0 0
alighting 0 0 2 6

boarding 6 2 0 0
alighting 0 0 6 2



Table 4
OD matrix estimation process for trip 1

Na Nb n cna cnb

Current stop: 2

ab = 0.25 2 0 0 0 0
Origin stop number 1 2 3 4
Stop type Major Minor Minor Major
Number alighting 0
Number remaining 2
New boarding count 6

Current stop: 3

ab = 0.25 2 6 2 1 1
Origin stop number 1 2 3 4
Number alighting 1 1
Number remaining 1 5
New boarding count 0

Current stop: 4

Origin stop number 1 5 6 1 5
Number alighting 1 2 3 4
Number remaining 1 5 0
New boarding count 0 0 0 0

Table 5
OD matrix for trip 1, with ab = 0.25

Stop number 1 2 3 4

1 0 0 1 1
2 0 0 1 5
3 0 0 0 0
4 0 0 0 0
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The OD matrix for trip 2 is estimated in the same fashion. The result is shown in Table 6. By averaging the
matrices for both trips, we obtain the aggregate OD matrix shown in Table 7.

The alighting probability matrix is shown in Table 8. The sums for its third and fourth row elements are
zero. This does not present any problem for the algorithm; it merely indicates that there is no boarding at
stops 3 and 4.
Table 6
OD matrix for trip 2, with ab = 0.25

Stop number 1 2 3 4

1 0 0 5.4 0.6
2 0 0 0.6 1.4
3 0 0 0 0
4 0 0 0 0

Table 7
Aggregate OD matrix, with ab = 0.25

Stop number 1 2 3 4

1 0 0 3.2 0.8
2 0 0 0.8 3.2
3 0 0 0 0
4 0 0 0 0



Table 8
Alighting probability matrix for ab = 0.25

Stop number 1 2 3 4

1 0 0 4
5

1
5

2 0 0 1
5

4
5

3 0 0 0 0
4 0 0 0 0

Table 9
Predicted alighting counts for two trips

Stop number 1 2 3 4

Trip 1 Actual boarding 2 6 0 0
Actual alighting 0 0 2 6
Predicted alighting 0 0 2.8 5.2

Trip 2 Actual boarding 6 2 0 0
Actual alighting 0 0 6 2
Predicted alighting 0 0 5.2 2.8

Table 10
Boarding and alighting at stops (alternate example)

Stop number 1 2 3 4
Stop type Major Minor Minor Major

Trip 1 Boarding 2 6 0 0
Trip 1 Alighting 0 0 6 2

Trip 2 Boarding 6 2 0 0
Trip 2 Alighting 0 0 2 6
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Alighting counts are predicted for each individual trip using that trip’s boarding counts and the alighting
probability matrix. The results for trips 1 and 2 are shown in Table 9.

The actual average load for both trips 1 and 2 is 5.33, while the predicted average loads are 5.07 and 5.60,
respectively. The fitness measure D for ab = 0.25 is computed to be 0.27.

The reader can verify that D = 0 when ab is a small value approaching zero. As such, the algorithm predicts
that virtually none of the passengers boarding at minor stop 2 also alight at minor stop 3. In sharp contrast,
Tsygalnitsky’s algorithm (with ab = 0.5) produces a D = 0.50 and predicts that for trip 2, 75% of those board-
ing at stop 2 alight at stop 3.

Admittedly, D = 0 for an ab � 0 is a consequence of the inputs used in this example; i.e., the boarding and
alighting counts for the two trips shown in Table 3. Had we used instead the inputs shown in Table 10, our
algorithm would predict ab � 1, and all passengers who boarded at minor stop 2 alight at minor stop 3. This
result indicates that the boarding and alighting counts in Table 10 cannot be reconciled with a distribution of
trip purposes similar to that in Table 1. For example, for trip 1 in Table 10, at least four passengers who alight
at stop 3 must have boarded at stop 2. Thus, we should conclude that the distribution of passenger trip pur-
poses in this new example is different from that in Table 1. Essentially, ab is a proxy for trip purposes when the
distribution of these purposes is unknown.
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