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ABSTRACT This paper presents a new automatic detection and classification approach of power quality (PQ) problems using 

Kalman filter. Kalman filter is used as an estimator to calculate the fundamental frequency and harmonic components 

amplitudes of the voltage or current signals. Then the instantaneous total harmonic distortion (iTHD) and the energy are 

calculated. For each half cycle of the processed signal, five decision quantities are calculated based on iTHD and energy and 

these quantities are the three consecutive maximum values of iTHD, standard deviation and energy difference between 

distorted signal and its fundamental frequency component . Decision rules based on these decision quantities are applied to 

identify and classify the PQ events in this captured signal. The proposed approach is tested on single and combined PQ events 

that are generated using the MATLAB with the help of mathematical models that are conformity with standard IEEE-1159. 

The performance is assessed using more than 100 dataset of every PQ event and the results show that the accuracy is 100 and 

98.8 for noiseless and high-level of noise, respectively. In addition, the proposed approach performance is validated through 

comparisons with other classification. Several practical PQ events are generated by lab experiments to validate the proposed 

approach. The simulation and experimental results show that the proposed approach is efficient and robust and can be 

implemented to design PQ monitoring device. 

 

INDEX TERMS Feature Extractions, Harmonics, Kalman Filter, Power Quality  
 
I. INTRODUCTION 
Power Quality (PQ) is becoming increasingly of a concern 

due to the increase of nonlinear loads and the proliferation of 

power-electronic interfaced distributed generation [1]. Poor 

PQ causes many issues such as mal-operation of protection 

devices, overheating of equipment leading to their failure, 

etc. Standard PQ problems such as sag, swell, interruption 

and flicker get exacerbated when harmonics are considered. 

[2]. Identification and classification of PQ problems in the 

voltage and current waveforms is the first step in mitigating 

effect of these problems [3]. PQ identification and 

classification are discussed in different works [4-6]. In the 

literature, the process of PQ identification and classification 

is two consecutive stages; viz.,(a) features extraction from 

the waveform and (b) problem classification.  

Traditionally, Fourier transform (FT) and its modifications 

are the most common techniques used in PQ identification. 

Nevertheless, using FT loses the time information of the 

waveform [7-10]. This drawback is overcome by the wavelet 

transform (WT) [11-14]. Unlike FT, the WT decomposes the 

captured waveform in the time domain. WT performance 

depends on the selection of the mother wavelet and the 

number of decomposition layers [15]. The S-transform (ST) 

is also used to identify PQ events and it is an extension to 

wavelet transform [16-21].  ST decomposes the waveform in 

both time and frequency domains. However, ST is not 

practically common due to its hefty computational burden. 

Other signal processing algorithms such as Hilbert-Huang 

transform [22] and Gabor transform (GT) [23] are used in 

PQ problems identification and classification but they suffer 

from large computational and running time. 

One of the accurate signal-processing estimators is Kalman 

filter (KF). This technique applies a set of mathematical 

equations to calculate the states of a measured quantity. KF 

may result in inaccurate outputs if the state space model is 

incorrectly developed and/or if the choice of the KF 

parameters, e.g., process covariance (Q) and measurement 

covariance (R), is inaccurate [24]. In the literature, 

covariance values were chosen based on either optimal or 

heuristic based-methods.  

Many algorithms are used to identify the optimal values of 

these noise covariance matrices. For example, in [25], two 

models for Q are provided for the steady state and transient 

estimation of power system harmonics. In [26], a reverse 
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predication is used with Kalman filter to modify value of Q 

to enhance the filtering accuracy. In [27], the authors 

modified measurement covariance matrix R instead of 

process covariance Q. In [28], genetic algorithm and particle 

swarm optimization aided KF were proposed. In [29], the 

discrete wavelet transform is used to estimate the 

measurement covariance matrix. In [30], the extended 

Kalman filter is adapted using maximum likelihood. Albeit 

being the most accurate, optimal based-methods are known 

to increase the computation times and the complexity of 

implementation, and they cannot guarantee robustness with 

different noise levels [31].  

Recently, the artificial intelligence techniques are used to 

classify PQ problems. These techniques include artificial 

neural network (ANN) [32, 33], probabilistic neural network 

(PNN) [34], support vector machine (SVM) [35], extreme 

learning machine (ELM) [36], K-nearest neighbor [37], 

decision tree (DT) [38], deep convolutional network [39] and 

long short-term memory networks [40]. These techniques 

have some shortages such as disability to classify complex 

PQ events and the need to be retrained in case of appearing 

a new PQ event [41].  

 
A. RESEARCH GAP 

All aforementioned works have many shortages such as: 

 The use of two stages, feature extraction and 

classification to identify PQ problems and this 

increases the computational time. 

 Some techniques cannot analysis big data and this 

decreases the accuracy. 

 Some techniques cannot detect complicated problems 

such as sag with harmonics or swell with harmonics. 

 Some techniques require a training period for each 

new PQ event. 

For all these shortages, the need to an accurate, efficient, and 

automatic PQ problems detection technique is necessary.  

B. WORK CONTRIBUTIONS 

The main contributions of this work are: 

 Proposing the Kalman filter to automatically detect 

(in real time) and heuristically classify PQ problems. 

The proposed real-time detection approach does not 

need large memory because it stores only the previous 

state, very fast and well suited for online problems . 
 Utilizing the fact that the voltage and current 

waveforms of modern power systems are sinusoidal 

waveforms that are distorted with harmonics that may 

be exceed or within the standard limits to models 

these waveforms by Kalman filter to estimate the 

amplitudes of the fundamental frequency and other 

harmonic orders as state variables with the help of the 

measured captured voltage or current waveforms  
 Heuristic classification of PQ events (instead of using 

a computationally demanding algorithm as reported 

in the literature). From the estimated amplitudes, five 

decision quantities are calculated based on the 

instantaneous total harmonic distortion (iTHD ) and 

energy. These quantities are the three consecutive 

maximum values of iTHD, standard deviation and 

energy difference between distorted signal and its 

fundamental frequency component . 
 Implementing the proposed approach both in 

simulation and experimental setup to confirm its 

accuracy, simplicity, and robustness as a real-time 

application when subjected to wide spectrum of PQ 

events, Comparing the results of the proposed 

approach to those of other works is also conducted to 

confirm the validity of the proposed approach.  

 Proving – through simulations and measurements – 

that the proposed approach is immune against impact 

of signal noise. The impact of errors that could occur 

during any stage starting from capturing the signal to 

the decision stage is studied to assess the performance 

of the proposed approach. These errors are 

represented as noise of different values of signal to 

noise ratio (SNR). 
The rest of the paper is organized as follows. Section II 

presents the model of the generalized KF approach, together 

with the algorithm developed to implemented the new 

technique. Several PQ phenomena are simulated in Section 

III using the MATLAB platform, and the proposed 

generalized KF approach is used to detect and classify the 

PQ issues in the simulated waveforms. The new KF 

technique is used in an experimental setup to confirm the 

robustness of the tool and its practicality in Section IV. 

Conclusions are presented in Section V.  

 

II. THE PROPOSED METHODOLOGY 
At each sampling interval, the proposed generalized Kalman 

filter is used to estimate the amplitude of the fundamental 

frequency and harmonic components of the recorded 

waveform, and accordingly calculates the instantaneous total 

harmonic distortion of the signal. Moreover, for each half 

cycle, the model calculates some decision variables, viz., the 

energy of the harmonic contents, standard deviation and the 

maximum values of the calculated total harmonic distortion. 

This section introduces the principles of Kalman filter, its 

novel implementation as a generalized tool, and the details 

of the decision variables that are used to classify the power 

quality disturbances. 

  
A. PRINCIPLES OF KALMAN FILTER 

Kalman algorithm is an estimator that is used to estimate the 

values of unknown variables with the help of observed 

measurements. To apply Kalman filter, initial steps should 

be prepared [29]:  

 Modeling the state variable of the processes by 

preparing a relationship of state variables of the current 

step and the next step as follows: 𝑥𝑘+1 = ∅𝑘𝑥𝑘 + 𝑤𝑘                           (1) 

 Iterative processing of the input signal that represents 

the noisy measurement, as follows: 𝑍𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘                             (2) 
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where: 𝑥𝑘 and 𝑥𝑘+1 are state variables at the current and next 

time steps k and k+1, respectively,∅𝑘 is a relationship matrix 

between 𝑥𝑘 and 𝑥𝑘+1 and is called the transition matrix, 𝑤𝑘 

is a row vector represents the state variables error, 𝐻𝑘 is a 

matrix that represents the relationship between the noiseless 

measurements and the state variables and  𝑣𝑘 is a row vector 

represents the measurements error. KF has two operation 

steps; prediction and correction. The prediction step updates 

the state variables and the associated error covariance using 

the following equations [29]: �̂�𝑘+1− = ∅𝑘�̂�𝑘−                                        (3) 𝑃𝑘+1− = ∅𝑘𝑃𝑘∅𝑘𝑇 + 𝑄𝑘                             (4) 

where: �̂�𝑘+1−  and �̂�𝑘−  are prior estimated state variables at 

current, k, and next time step, k+1, respectively, 𝑃𝑘 and 𝑃𝑘+1−  

are the a posterior and a prior estimated covariance of the 

process at current, k, and next time step, k+1, respectively 

and 𝑄𝑘 is the covariance matrix of 𝑤𝑘. 

The correction step updates Eq. (3) and Eq. (4) with the help 

of observable measurements, where Kalman gain Kk used in 

this step is defined in Eq. (5) [25]: 𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇(𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑅𝑘)−1                    (5) 

where: 𝑅𝑘 is the covariance matrix of 𝑣𝑘.  

With this estimated Kalman gain and the measured value 𝑍𝑘, 

the state variables are updated using Eq. (6) [25]: �̂�𝑘 = �̂�𝑘− + 𝐾𝑘(𝑍𝑘 − 𝐻𝑘�̂�𝑘−)                          (6) 

 where: �̂�𝑘  and �̂�𝑘−  are posterior and prior estimated state 

variables at the time steps k. 

The process covariance is updated by [25]: 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−                          (7) 

 
B. IMPLEMENTATION OF GENERALIZED KALMAN 

FILTER  

In modern power systems, voltage and current waveforms 

are distorted sinusoidal waveforms due to harmonics 

associated with loads, non-linearities due to transformer 

saturation and inrush currents, as well as proliferation of 

power electronics. As such, voltage and current waveforms 

are expressed as sinusoidal functions with angular 

frequencies i𝜔 , where i is the harmonic order, and with 

sampling interval  ∆𝑇 and time step k as follows: 𝑍𝑘 = ∑𝐴𝑖𝑛
𝑖=1 𝑠𝑖𝑛(𝑖𝜔𝑘∆𝑇 + 𝜃𝑖)                      (8) 

where Ai is the amplitude of the ith harmonic component. 

The measured quantity at time instant k+1 is expressed as: 𝑍𝑘+1 = ∑𝐴𝑖𝑛
𝑖=1 𝑠𝑖𝑛(𝑖𝜔(𝑘 + 1)∆𝑇 + 𝜃𝑖)                      (9) 

For each harmonic component, two state variables are 

modeled, with total number of state variables equals to 2n. 

The state variables are modeled as follows: 

For fundamental harmonic order,  

 𝑥1 = 𝐴1 cos(𝜃1)      𝑥2 = 𝐴1 sin(𝜃1)            

For 2nd  order of harmonics,   

 𝑥3 = 𝐴2 cos(𝜃2)      𝑥4 = 𝐴2 sin(𝜃2)    

     ……………          …………..                      (10)                                                                  

For nth order of harmonics,  

𝑥2𝑛−1 = 𝐴𝑛 cos(𝜃𝑛)      𝑥2𝑛 = 𝐴𝑛 sin(𝜃𝑛)    

 

The relationship between state variables at the current and 

next time steps is modeled by: 

𝑥𝑘+1 = ( 
 𝑥1𝑥2..𝑥2𝑛−1𝑥2𝑛 ) 

 
𝑘+1

= [   
 1 00 1 ⋯ 0 00 0⋮ ⋱ ⋮0 00 0 ⋯ 1 00 1]   

 
( 
 𝑥1𝑥2..𝑥2𝑛−1𝑥2𝑛 ) 

 
𝑘
(11) 

 

The measurement signal can be modeled as a relationship 

between state variables and matrix H as follows: 

𝑍𝑘 = 𝐻𝑘𝑥𝑘 =
( 
  

sin(𝜔𝑘∆𝑇)cos(𝜔𝑘∆𝑇)⋮⋮sin(𝑛𝜔𝑘∆𝑇)cos(𝑛𝜔𝑘∆𝑇)) 
  

𝑇

( 
 𝑥1𝑥2⋮⋮𝑥2𝑛−1𝑥2𝑛 ) 

 
𝑘
            (12)                      
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FIGURE 1. Flow chart of the proposed PQ classification approach 
technique 
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The process noise covariance matrix 𝑄𝑘, stated in Eq. (4), is 

chosen to be equal to the identity matrix in this model to 

provide fast tracking of variations in the system [42]. The 

measurement covariance matrix  𝑅𝑘 , stated in Eq. (5), is 

chosen using an experience-based method. 

At each time instant k, the state variables are estimated for 

each harmonic order to calculate the amplitudes and the 

instantaneous total harmonic distortion (𝑖𝑇𝐻𝐷). 

The fundamental frequency amplitude is calculated by: 𝐴1,𝑘 = √𝑥1,𝑘2 + 𝑥2,𝑘2                                   (13) 

The harmonic orders amplitude is calculated by: 𝐴ℎ,𝑘 = √𝑥2ℎ−1,𝑘2 + 𝑥2ℎ,𝑘2          𝑖 = 2, 3, … . , 𝑛             (14)                                

The energy of this signal can be calculated by: 𝐸𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = ∑𝐴𝑖,𝑘2                                 (15)𝑛
𝑖=1  

The energy of harmonic distortions is the given by: 𝐷𝑖𝑓𝑓_𝐸 = 𝐸𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 − 𝐸𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙           (16) 

The instantaneous total harmonic distortion (iTHD) is 

estimated by: 

𝑖𝑇𝐻𝐷𝑘 = √𝐴ℎ,𝑘2𝐴1,𝑘                                            (17) 

For each half cycle of the measured signal, five quantities are 

calculated from the estimated 𝑖𝑇𝐻𝐷 as follows: 

For each harmonic order, the mean value (𝑀𝑒) is calculated 

by: 𝑀𝑒𝑖 = 𝑚𝑒𝑎𝑛(𝐴𝑖) 𝑖 = 1, 2, … , 𝑛                        (18) 

The standard deviation quantity is calculated by: 

 

𝑆𝑇𝐷 = 𝑆𝑇𝐷 ( 
 𝑀𝑒2/𝑀𝑒1𝑀𝑒3/𝑀𝑒1⋮𝑀𝑒𝑛−1/𝑀𝑒1𝑀𝑒𝑛/𝑀𝑒1 ) 

 
                           (19) 

 

which represents the first quantity that is used in classifying 

the PQ problems. The second quantity is M1 that represents 

first maximum value of instantaneous 𝑖𝑇𝐻𝐷 , the third 

quantity is M2 that represents second maximum value of 𝑖𝑇𝐻𝐷, the fourth quantity is M3 that is the third maximum 

value of 𝑖𝑇𝐻𝐷 and the final value is the 𝐷𝑖𝑓𝑓_𝐸 for this half 

cycle. The classification of PQ problems is conducted using 

the values of the five decision variables, as shown in Fig. 1. 

The thresholds indicted in Fig. 1 are heuristically proposed.  

 

III. SIMULATION RESULTS 
A. GENERATION OF WAVEFORMS WITH PQ ISSUES 

To illustrate the application of the proposed approach to 

detect and classify PQ problems, 16 different PQ events are 

generated using the equations depicted in Table 1 [20]. These 

events include the standard issues; sag, swell, interruption, 

flicker, transients, harmonics distortion, notch and spike, as 

well as combination of these issues MATLAB platform is 

used to generate the waveforms including the PQ issues. The 

effect of noise is taken into account by imposing noise 

signals to the main waveforms, with different signal to noise 

ratio (SNR) values of 20, 30 and 40 db. This noise represents 

the errors that could be occurred during the measurement, 

processing or classification stags. A sampling rate of 128 

samples per cycle is used in the simulation environment. 

 
B. RESULTS AND DISCUSSIONS 

The generalized KF approach discussed in Section II is 

applied to analyze the waveforms descried in Section III-A. 

Results are presented in this section, including the impact of 

noise on the accuracy of the proposed technique.  
 

1) CASE I: NORMAL, SAG AND SWELL EVENTS 

Normal sinusoidal waveforms are tested using the proposed 

approach and the required features are extracted and shown 

in Table 2. The STD feature value is less than 0.02 and this 

means that these normal signals do not contain harmonic 

distortions or the distortion is within limits. The frequency 

spectrum and the calculated iTHD are shown in Fig. 2(a). 

This figure shows that the magnitude of the fundamental 

component is 1 pu and the magnitude of the harmonic orders 

is very small and this is also depicted in Fig. 3 (b). Where the 

value of M1 is less than 3 and this means there is no any PQ 

events in this processed signal. A sample example of normal 

signal is shown in Fig. 3.  

Different case studies of the sag event are generated with 

different magnitudes; 0.2, 0.4, 0.6 and 0.8 pu. For these case 

studies, there is no harmonic contents because the STD value 

is less than 0.02 as shown in Table 2. The values of M1 and 

M2 are greater than 5 and M3 is less than 5 and this means 

that these events are interruption, sag or swell. Where the 

value of M1 is less than 125 then these events are sag or 

swell. To distinguish between sag and swell event, the value 

of last feature, Diff_E, should be checked.  

Form Table 2, the values of these magnitudes, 0.2, 0.4, 0.6 

and 0.8 are less than zero, negative values, and this means 

these case study events are sag. Fig. 4 shows an example of 

sag event with an amplitude of 1 pu.  Fig. 4 (a) shows the 

waveform of the signal containing sag event. The amplitudes 

of fundamental frequency and other harmonic orders are 

shown in Fig. 4(b). The features M1 and M2 are shown in 

Fig. 4(d) and the value of M3 does not appear because it is 

very small in comparing with M1 and M2 values. The 

frequency spectrum at the starting instant of sag event is 

shown in Fig. 2(b). From this figure, it is clear that the 

magnitude of the fundamental frequency is 0.5 pu and the 

other harmonic orders have significant values and this causes 

that the iTHD is very high and equals 36.2 % at the starting 

of this event. 

Fig. 5 shows an example of the swell event. Fig. 5 (d) shows 

that the values of M1 and M2 are high but less than 125 and 

this means that this event is sag or swell. From Table 2, it is 

found that the value of Diff_E is greater than zero and this 

means that this event is swell. In addition, the value of STD 
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is less than 0.02 and this means that this signal does not 

contain harmonic distortions. 
TABLE 1. PQ modeling equations and their parameter values [20] 

Disturbance class Modeling Equations Equations’ Parameters 

Normal ℎ(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡)𝑢(𝑡) 𝐴 = 1 𝑝𝑢, 𝑓 = 50 𝐻𝑧, 𝜔 = 2𝜋𝑓, 𝑢(𝑡) = {1,    𝑡 ≥ 00,     𝑡 < 0 

Sag h(t)=A{1-k(u(t-t1)-u(t-t2))}cos(𝜔𝑡) 0.1<k<0.9, 0.5T≤t2-t1≤9T 

Swell h(t)=A{1+k(u(t-t1)-u(t-t2))}cos(𝜔𝑡) 0.1<k<0.9, 0.5T≤t2-t1≤9T 

Interruption h(t)=A{1-k(u(t-t1)-u(t-t2))}cos(𝜔𝑡) 0.9<k<1, 0.5T≤t2-t1≤9T 

Flicker h(t) = A[1+α cos(β 𝜔𝑡)]cos(𝜔𝑡) 0.1≤α≤0.2, 0.1≤β≤0.4 

Transient h(t)=A{cos(𝜔𝑡)+k*exp[-(t-t1)/τ]cos[𝜔n(t-t1)]} 
0.1<k<0.8, 150 <1/τ<1000 𝜔n = 2πfn, 700 Hz < fn < 1600 Hz 

Harmonics h(t)=A*cos(𝜔t)+α3cos(3𝜔𝑡)+ α5cos(5𝜔𝑡)+ α7cos(7𝜔𝑡) 0.02<α3<0.1, 0.02<α5<0.1, 0.02<α7<0.1 

Notch 
h(t) = A*cos(𝜔t) – sgn(cos(𝜔t)) 

x{∑ 𝐾[𝑢(𝑡 − (𝑡1 − 0.02𝑛) − 𝑢(𝑡 − (𝑡2 − 0.02𝑛)]8𝑛=0 } 0.1≤K≤0.4 

Spike 
h(t) = A*cos(𝜔t) + sgn(cos(𝜔t)) 

x{∑ 𝐾[𝑢(𝑡 − (𝑡1 − 0.02𝑛) − 𝑢(𝑡 − (𝑡2 − 0.02𝑛)]8𝑛=0 } 0.1≤K≤0.4 

Sag with Harmonics 
h(t)=A{1-k(u(t-t1)-u(t-t2))}cos(𝜔𝑡) 

+ A p exp[-(t-t3)/τ] cos[𝜔n(t-t3)] 

0.1<k<0.9, 0.5T≤t2-t1≤9T, t1≤t3≤t2 

0.1<p<0.8, 150 <1/τ<1000 𝜔n = 2πfn, 700 Hz < fn < 1600 Hz 

Interruption with Harmonics 
h(t)=A{1-k(u(t-t1)-u(t-t2))}cos(𝜔𝑡) 

+ α3cos(3𝜔𝑡)+ α5cos(5𝜔𝑡)+ α7cos(7𝜔𝑡) 

0.9<k<1, 0.5T≤t2-t1≤9T, 0.02<α3<0.1, 0.02<α5<0.1, 

0.02<α7<0.1 

Swell with Harmonics 
h(t)=A{1+k(u(t-t1)-u(t-t2))}cos(𝜔𝑡) + α3cos(3𝜔𝑡)+ 

α5cos(5𝜔𝑡)+ α7cos(7𝜔𝑡) 

0.1<k<0.9, 0.5T≤t2-t1≤9T, 0.02<α3<0.1, 0.02<α5<0.1, 

0.02<α7<0.1 

Flicker with Harmonics 
h(t) = A[1+α cos(β 𝜔𝑡)]cos(𝜔𝑡) + α3cos(3𝜔𝑡)+ 

α5cos(5𝜔𝑡)+ α7cos(7𝜔𝑡) 

0.1≤α≤0.2, 0.1≤β≤0.4, 0.02<α3<0.1, 0.02<α5<0.1, 

0.02<α7<0.1 

Transient with harmonics 
h(t)=A{cos(𝜔𝑡)+k*exp[-(t-t1)/τ]cos[𝜔n(t-t1)]} + 

α3cos(3𝜔𝑡)+ α5cos(5𝜔𝑡)+ α7cos(7𝜔𝑡) 

0.1<k<0.8, 150 <1/τ<1000 𝜔n = 2πfn, 700 Hz < fn < 1600 Hz 

0.02<α3<0.1, 0.02<α5<0.1, 0.02<α7<0.1 

 

TABLE 2. The extracted features of Case I 

Features Sag and swell disturbances and normal event 

Sag Normal Swell 

Magnitude 0.2 0.4 0.6 0.8 0.95 1 1.05 1.2 1.4 1.6 1.8 

STD 0.0039 0.0028 0.0018 0.0008 0.0002 0.0000 0.0002 0.0008 0.0015 0.0022 0.0028 

M1 81.99 45.44 25.09 10.93 2.50 0.00 2.38 8.91 16.48 23.07 28.92 

M2 79.44 45.09 25.02 10.89 2.50 0.00 2.37 8.89 16.45 23.01 28.83 

M3 3.18 1.87 1.24 0.62 0.15 0.00 0.15 0.62 1.23 1.85 2.46 

M1-M2 2.55 0.35 0.08 0.04 0.006 0.00 0.003 0.012 0.032 0.055 0.098 

Diff_E -0.1033 -0.0891 -0.0667 -0.0368 -0.0098 0.00 0.0102 0.0429 0.0913 0.1443 0.2015 

 
Figure 2. The frequency spectrum and iTHD at the starting of Case I events (a) Normal, (b) Sag, and (c) Swell events 
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Figure 3. Case I : Normal event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 

 
Figure 4.  Case I: Sag event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 

 
Figure 5. Case I: Swell event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 

 

At the starting instant of the swell event, the calculated 

amplitudes of fundamental and harmonic orders using Eqs. 

(13) and (14) are shown in Fig. 2(c). The amplitude of the 

fundamental frequency is 1.5 pu and the other harmonic 

orders have significant values so the calculated iTHD is high 

and equals 18.3 %. 
 

2) CASE II: INTERRUPTION EVENT 
Table 3 shows different case studies of interruption events. The 

values of features M1 and M2 are greater than 5 and the value of 

M1 is greater than 125, indicating an interruption event has 

occurred. The values of STD feature are less than 0.02 and this 

means that these signals are pure sinusoidal waveforms. Fig. 6 

shows the amplitudes of fundamental frequency and harmonic 

orders of the interruption waveform at the starting of this event. 

The figure shows that amplitudes of harmonic orders have high 

values where the amplitude of second and third orders are 0.38 and 

0.2 pu, respectively, and this causes a high value of iTHD that 

reaches to 185%. Fig. 7 shows an example of interruption event 

where the values of M1 and M2 are 347.5 and 202, respectively. 

 
Figure 6. The frequency spectrum and iTHD at the starting of Case II: 
interruption event 

 

TABLE 3. The extracted features of Case II 

Features Interruption events 

Magnitude 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

STD 0.005 0.0049 0.0049 0.0048 0.0047 0.0047 0.0046 0.0046 0.0045 0.0044 

M1 347.50 293.30 251.44 215.79 185.10 159.96 146.16 139.02 132.01 125.22 

M2 202.0 174.15 152.12 141.72 135.68 129.98 124.61 119.53 115.18 111.03 

M3 8.44 7.30 6.65 11.01 8.67 7.12 6.02 5.80 5.60 5.50 

M1-M2 145.5 123.15 99.32 74.07 49.42 29.97 21.55 19.48 16.83 14.19 

Diff_E -0.109 -0.1089 -0.1088 -0.1087 -0.1085 -0.1083 -0.1081 -0.1078 -0.1076 -0.1073 
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Figure 7. Case II: Interruption event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 

3) CASE III: FLICKER EVENT 

Fig. 8(a) shows a sinusoidal waveform with a flicker in the 

amplitude i.e., a change of the waveform amplitude but 

within the acceptable limits (± 10%), which can be detected 

in the waveform envelope. The estimated amplitude of the 

waveform is shown in Fig. 8(b). The calculated maximum 

values of iTHD are shown in Fig. 8(d). From the flow chart 

of the proposed approach, the signal contains flicker if the 

value of M1 is between three and five. From Fig. 8(d), it is 

clear that the value of M1 is 3.5 and also the value of STD 

feature is less than 0.02 and this depicts that the waveform 

does not contain harmonic distortions. Fig. 9 shows the 

frequency spectrum and iTHD value for the flicker event. 

The amplitude of the fundamental frequency is 1 pu at the 

instant of calculation and the harmonic orders have very 

small amplitudes and this is shown in the value if iTHD  that 

is 3.5 %. 

 
Figure 9. The frequency spectrum and iTHD at the starting of Case III: 
flicker event 

 

 
Figure 8. Case III: Flicker event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 

 

4) CASE IV: TRANSIENT EVENT 

The transient event is a sudden increase in the waveform 

magnitude for a very small duration of time. The calculated 

amplitudes of fundamental and harmonic orders using 

Kalman filter at the starting instant of this event are shown 

in Fig. 10. It is clear in this figure that the harmonic orders 

have high values and rises the iTHD to 156 %. The generated 

signal containing transient event is shown in Fig. 11(a). The 

value of M1 is shown in Fig. 11(d) and the value of M2 is 

very small and may not be existed. The STD value reveals 

that the signal is free of harmonic contents. 

 
 

Figure 10. The frequency spectrum and iTHD at the starting of Case IV: 
transient event

 

 
Figure 11. Case IV: Transient event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 
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5) CASE V: HARMONIC DISTORTIONS EVENT 

Different case studies of this event are generated by 

superimposing the sinusoidal waveform with harmonic 

distortions of THD; 10, 15, 20, 25, 30%. These signals are 

analyzed using the generalized KF methodology and the 

results are shown in Table 4. The values of STD are greater 

than 0.02 and this means that all tested signals contain 

harmonic. The value of M1 is less than three and this mean 

that there are no other PQ problems. Fig. 12 shows an 

example of a distorted signal by 20% THD.  
 

 

 
Figure 12. Case V: Harmonic distortions event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 

 

TABLE 4. The extracted features of Case V 

Features Distorted Voltage  

THD 10 15 20 25 30 

STD 0.676 0.73 0.79 0.88 0.96 

M1 2.66 2.493 2.375 2.488 2.611 

M2 2.514 2.446 2.354 2.444 2.520 

M3 2.382 2.378 2.347 2.379 2.383 

M1-M2 0.146 0.047 0.021 0.044 0.091 

Diff_E 1.32 1.66 1.97 2.65 3.37 

 

6) CASE VI: NOTCH AND SPIKE EVENTS 

The notch is a periodic decrease in the wave for a very small 

duration of time while the spike is a periodic increase. The 

frequency spectrum of the notch and spike event is almost 

the same as shown in Fig. 13. Fig. 14(a) shows the notch 

event waveform while the spike is shown in Fig. 15(a). 

Different cases of notch and spike event are tested and their 

extracted features are shown in Table 5. The features of 

notch and spike events are the same except the Diff_E values 

where Diff_E values are negative for notch and positive for 

spikes, as shown in Table 5. Fig. 14 shows a sample example 

of the notch event and Fig. 15 depicts the waveform and 

features of spike event. 

 
Figure 13. Case VI: The frequency spectrum and iTHD at the starting of 
(a) Notch and (b) Spike events 

 
TABLE 5. The extracted features of Case IV 

Features Notch and Spike Disturbances 

Magnitude 
Notch Spike 

0.1 0.2 0.1 0.2 

STD 0.0002 0.0004 0.0002 0.0004 

M1 6.67 13.17 6.84 13.86 

M2 6.67 13.17 6.84 13.86 

M3 6.67 13.17 6.84 13.86 

M1-M2 0.00 0.00 0.00 0.00 

Diff_E  -0.002 -0.0044 0.0022 0.0044 

 
Figure 14. Case VI: Notch event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 
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Figure 15. Case VI: Spike event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 

 

7) CASE VII: SAG AND SWELL EVENTS WITH 
HARMONICS  

In this case study, the sag or the swell events occur in a 

distorted signal. The results of processing different events of 

this case study using the proposed methodology are tabulated 

in Table 6. The STD values of all sag and swell events are 

greater than 0.02 indicating that the waveforms contain 

harmonics. The values of features M1 and M2 are greater 

than 5 while the value of M3 is less than 5, i.e., sag or swell 

is detected. To distinguish between these two types of events, 

the value of Diff_E is used where positive Diff_E indicates 

a swell, and a negative Diff_E corresponds to a sag event. 

Fig. 16 shows an example of sag with harmonics event. The 

amplitudes of fundamental frequency and harmonics are 

shown in Fig. 16(b). The example of swell with harmonic 

event is shown in Fig. 17. The frequency spectrum of these 

two events at the starting instant are shown in Fig. 18. The 

amplitude of fundamental order of sag event is 0.5 pu while 

it is 1.4 pu for swell event. The iTHD values are close; 25.09 

% and 21.4 % for sag, and swell sample example events, 

respectively. So iTHD values cannot be used to distinguish 

between these two events. 
 

TABLE 6. The extracted features of Cases VII and VIII 

Features Sag Swell 

Magnitude 0.2 0.5 0.8 1.2 1.5 1.8 

STD 0.0039 0.0018 0.0008 0.0008 0.0022 0.0028 

M1 81.99 25.09 10.93 8.91 23.07 28.92 

M2 79.44 25.02 10.89 8.89 23.01 28.83 

M3 3.18 1.24 0.62 0.62 1.85 2.46 

M1-M2 2.55 0.08 0.04 0.012 0.055 0.098 

Diff_E -0.103 -0.067 -0.037 0.043 0.144 0.202 

 

 
Figure 16. Case VII: Sag with harmonics event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 

 
Figure 17. Case VII: Swell with harmonics event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD 
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Figure 18. Case VII: The frequency spectrum and iTHD at the starting of 
(a) Sag with harmonics and (b) Swell with harmonics events 

 

The other combined events, standard event with harmonics, 

are generated and tested using the proposed methodology. 

The results show that the STD values are greater than 0.02 

and each event has its feature values that are used to identify 

its class using the decision variables shown in Fig. 1.    

C. ERROR ANALYSIS 

The impact of errors that could occur during the 

measurement, recording and processing stages of captured 

signals are studied. These errors are represented by a noise 

superimposed on the captured signals.  More than 100 case 

studies are randomly generated for each PQ event, with 

different signal to noise ratios. The proposed approach is 

applied to identify the PQ issues in the case studies, and the 

results are shown in Table 7. The results show that with 

increasing the SNR, the error decreases and thus, the 

estimated value closes to the actual value. The mean values 

of percentage error for the noiseless and the noisy conditions 

of 40 dB, 30 dB, and 20 dB are 0%, 0.07%, 0.3% and 1.2%, 

respectively, and the corresponding mean accuracies are 

100%, 99.93%, 99.7%, and 98.8%, respectively. All case 

studies are running on MATLAB-2019b, Window 10, CPU; 

Intel core i7-2.7 GHz, 6 GB RAM. 
 

 

Table 7. Simulation tests of PQ events with different SNR 

PQ tested events 

Error (%) and accuracy (%) at different noise levels 

Noiseless 40 dB SNR 30 dB SNR 20 dB SNR 

Accuracy (%) Error (%) Accuracy (%) Error (%) Accuracy (%) Error (%) Accuracy (%) 

Normal 100 0.0 100 0.0 100 1.1 98.9 

Sag 100 0.0 100 0.2 99.8 1.3 98.7 

Swell 100 0.0 100 0.2 99.8 0.9 99.1 

Interruption 100 0.1 99.9 0.4 99.6 1.2 98.8 

Flicker 100 0.0 100 0.2 99.8 1.3 98.7 

Transient 100 0.0 100 0.1 99.9 1.0 99 

Harmonics 100 0.0 100 0.0 100 0.8 99.2 

Notch 100 0.1 99.9 0.3 99.7 1.0 99 

Spike 100 0.2 99.8 0.1 99.9 1.1 98.9 

Sag with Harmonics 100 0.0 100 0.3 99.7 1.1 98.9 

Swell with Harmonics 100 0.0 100 0.1 99.9 1.2 98.8 

Interruption with Harmonics 100 0.2 99.8 0.5 99.5 1.3 98.7 

Flicker with Harmonics 100 0.2 99.8 0.5 99.5 1.9 98.1 

Transient with harmonics 100 0.1 99.9 0.6 99.4 1.2 98.8 

Sag with Transients 100 0.1 99.9 0.7 99.3 1.4 98.6 

Swell with Transients 100 0.1 99.9 0.6 99.4 1.5 98.5 

Mean values 100 0.07 99.93 0.3 99.7 1.2 98.8 

 

TABLE 8. Comparison of classification accuracy with the existing methods. 

Methods 

Number 

of 

features 

Number of 

tested PQ 

events 

Mean accuracy (%) 

NS N40 N30 

KF and FES 

[29] 
2 7 - 98.71 97 

FFT and 

ANNS [8] 
- 8 - 93.95 95.65 

WT and PSO-

ELM [34] 
6 10 97.6 - - 

WPT and 

SVM [14] 
15 8 98.3 - - 

DWT and 

PNN [34] 
9 16 99.87 98.6 95.2 

ST and PNN 

[16] 
4 11 97.4 - - 

ST and 

Dynamics [43] 
5 12 - 99.27 97.91 

LSTM [40] 6 14 - 97.45 95.25 

MTW and DT 

[44] 
4 13 99.9 - - 

Proposed 

Methodology 
5 16 100 99.93 99.7 

 

The validation of the proposed approach is assessed by 

comparing its results with those of other works. The 

comparison results are tabulated in Table 8. The results show 

that the proposed approach has the ability to identify 16 

classes of PQ problems with high accuracy that equals to 

100%, 99.93% and 99.7% for noiseless, 40 dB SNR and 30 

dB SNR signals, respectively.  

 

IV. EXPERIMENTAL RESULTS 
To validate the proposed methodology in detecting and 

classifying the PQ events, an experimental model is 

established in the laboratory, as shown in Fig. 19. This model 

contains different types of loads to generate different types 

of power quality events. The loads comprise motors, linear 

and non-linear loads. Four potential transformers (PT) and 

four current transformers (CT) are used to step down the 

voltages and currents to the data acquisition device to 

convert these captured waveforms from analog to digital 

form. The detailed parameters of this experimental model are 

provided in Table 9. The data acquisition device (DAS) is 
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Circuit Monitor 2000 (CM2000) model. This DAS captures 

the voltage and current waveforms with 6.4 kHz (128 

samples/cycle at 50 Hz) sampling frequency. Different case 

studies of PQ events are investigated and processed using the 

proposed methodology. The results are explained in details 

in the following subsections. 

 

Auto 

transformers

Data acquisition 

device

DC motor

CTs

PTsRLC Load

Synchronous 

motor

DC source

 
Figure 19. The experimental setup 

 
Table 9. Detailed parameters of the experimental model 

 Parameter values 

Sources  - AC voltage source: two 3- phase auto transformers 

of 0 – 400 V 

- DC variable voltage source: 0 - 220 V 

Loads - Synchronous Motor: 4.5 kW, 380V Delta, 7A and 

220 V excitation 

- Nonlinear load represented by DC motor driven by 

3-phase full wave bridge: 3.6 kW, 220 V DC, 20 A 

- Linear load: RL series load of 2.2 kW , 0.8 power 

factor   

Current 

transformers 

Four CT of turns ratio 50/5 

Potential 

transformers 

Four PT of turns ratio 380/110  

 
A. CASE STUDY I 

The experiment is run without nonlinear loads. The 

synchronous motor and linear RLC load are fed by the 

autotransformers. For few milliseconds, the linear RLC load 

is disconnected. The voltage waveform, captured by DAS, is 

shown in Fig. 20.  

 
Figure 20. The captured Voltage waveform of Case I 
 

 
Figure 21. Case I (a) amplitudes, (b) iTHD and (c) Maximum values of iTHD 

 

This waveform is passed to the proposed approach, where 

the extracted features are shown in Fig. 21 and Table 10. The 

values of the extracted features (STD, M1, M2, and Diff_E) 

are listed in Table 10. The values of the decision variables 

illustrate that this waveform does not contain harmonics and 

comprises a swell event. 

 
B. CASE STUDY II 

In this case study, the linear load is connected to the circuit 

for few milliseconds to generate a sag event. The voltage 

waveform, shown in Fig. 22, is captured by the (DAS) and 

transmitted to the PC to be processed by the proposed 

methodology. The extracted features are shown in Fig. 23 

and Table 10. From Table 10, the STD is less than 0.02, 

corresponding to a waveform free of harmonics (no 

nonlinear loads were connected in this setup). The values of 

the other decision variables listed in Table 10 indicate that 

the captured waveform contains sag event. 

 

 
Figure 22. The captured waveform of Case I 

 

 
Figure 23. Case II (a) amplitudes, (b) iTHD and (c) Maximum values of 
iTHD 
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C. CASE STUDY III 

This case corresponds to a transient event imposed on a pure-

sinusoidal waveform. To generate the transient event in this 

experiment, the linear load is switched off and on 

instantaneously. The captured voltage waveform is shown in 

Fig. 24. The extracted features are illustrated Fig. 25. In Fig. 

25(c), M1 exceeds 125, indicating a transient event, while 

the corresponding STD in Table 10 indicates that the 

waveform does not contain harmonics. 

 

 
Figure 24. The captured voltage waveform of Case III 

 

 
Figure 25. Case III (a) amplitudes, (b) iTHD and (c) Maximum values of 
iTHD 

 

D. CASE STUDY IV 

In this case, all load types are connected to the circuit. The 

captured current waveform and extracted features are shown 

in Figs. 26 and 27, respectively. The Kalman filter computes 

the amplitudes of the fundamental frequency and harmonics 

and these values are shown in Fig. 27(a). The calculated 

features for this case are shown in Table 10. The STD value 

is 0.038 and this means this waveform contain harmonics 

and the other features depicts that this current waveform does 

not comprises any other PQ events.  

 

 
Figure 26. The captured waveform of Case IV 

 

 
Figure 27. Case IV (a) amplitudes, (b) iTHD and (c) Maximum values of 
iTHD 

 

E. CASE STUDY V 

In this case study, a complicated PQ event is generated by 

connecting all loads and disconnecting the linear load for few 

milliseconds. The captured current waveform is illustrated in 

Fig. 28. The proposed methodology processed this waveform 

and computes the amplitudes that are shown in Fig. 29(a). 

The values of M1, M2 and Diff_E in Table 10 confirm that 

this current waveform contains sag event. Considering the 

value of STD associated with this case, one can confirm that 

the waveform is polluted with harmonics.  

 

 
Figure 28. The captured voltage waveform of Case V 

 

 
Figure 29. Case V (a) amplitudes, (b) iTHD and (c) Maximum values of 
iTHD 

 

 

TABLE 10. The extracted features of experimental case studies 

Features 

Experimental case studies  

Case I Case II Case II Case IV Case V 

STD 0.0055 0.0060 0.0037 0.038 0.041 

M1 12.7819 36.0613 525.576 2.865 32.95 

M2 12.0450 30.0929 0.104 2.338 32.72 

M3 0.05 6.64 0.00 2.111 0.00 

M1-M2 0.7369 5.9684 421.667 0.527 0.23 

Diff_E 5.6134 -5.4499 5.2693 5.2112 -5.0629 

Class 

decision 
Swell  Sag  Transient Harmonics 

Sag with 

harmonics 
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V. CONCLUSIONS 
In this paper, the power quality problem identification and 

classification are presented. A generalized approach based 

on Kalman Filters is developed and tested using simulation 

and experimental environments. The new approach is based 

on calculating five decision variables in real time. Based on 

the ranges of these variables, the algorithm decides whether 

the PQ issue is a sag, swell, transient, harmonics, etc. The 

thresholds proposed for these decision variables are 

heuristic. The simulation and experimental results have 

proven that these thresholds are accurate and dependable. 

The simulation results for a wide range of cases are presented 

and analyzed. The results of the simulations – using the 

proposed approach – are compared against other reported 

techniques. The proposed approach proved its superiority to 

handle any kind of PQ events, even when noise is introduced 

to the waveforms. To confirm the practicality of the 

proposed KF method, an experimental setup was used to 

mimic different PQ events, with and without harmonics. The 

classification of the PQ events using the proposed approach 

were always correct and proved that it can be implemented 

to design PQ monitoring device. 
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