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1. Introduction
Markowitz (1952) showed that an investor who cares
only about the mean and variance of static portfo-
lio returns should hold a portfolio on the efficient
frontier. To implement these portfolios in practice,
one needs to estimate the means and covariances of
asset returns. Traditionally, the sample means and
covariances have been used for this purpose. But
due to estimation error, the portfolios that rely on
the sample estimates typically perform poorly out of
sample.1 In this paper, we provide a general frame-

1 For evidence of the poor performance of the Markowitz portfo-
lio based on sample estimates of means and covariances, see Frost
and Savarino (1986, 1988), Michaud (1989), Best and Grauer (1991),
Chopra and Ziemba (1993), Broadie (1993), and Litterman (2003).

work for determining portfolios with superior out-
of-sample performance in the presence of estimation
error. This general framework relies on solving the
traditional minimum-variance problem (based on the
sample covariance matrix) but subject to the addi-
tional constraint that the norm of the portfolio-weight
vector be smaller than a given threshold.
It is well known that it is more difficult to estimate

means than covariances of asset returns (see Merton
1980) and also that errors in estimates of means have a
larger impact on portfolio weights than errors in esti-
mates of covariances. For this reason, recent academic
research has focused on minimum-variance portfo-
lios, which rely solely on estimates of covariances
and thus are less vulnerable to estimation error than
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mean-variance portfolios.2 Indeed, extensive empirical
evidence shows that the minimum-variance portfolio
usually performs better out of sample than any other
mean-variance portfolio—even when using a perfor-
mance measure that depends on both the portfolio
mean and variance. For example, Jagannathan and Ma
(2003, pp. 1652–1653) report:3

The estimation error in the sample mean is so large
nothing much is lost in ignoring the mean altogether
when no further information about the population
mean is available. For example, the global minimum
variance portfolio has as large an out-of-sample Sharpe
ratio as other efficient portfolios when past histori-
cal average returns are used as proxies for expected
returns. In view of this we focus our attention on
global minimum variance portfolios in this study.

Just like Jagannathan and Ma (2003), we too focus
on minimum-variance portfolios, even though the
general framework we develop applies also to mean-
variance portfolios. But even the performance of
the minimum-variance portfolio depends crucially
on the quality of the estimated covariances, and
although the estimation error associated with the
sample covariances is smaller than that for sample
mean returns, it can still be substantial.
In the literature, several approaches have been pro-

posed to deal with the problem of estimating the large
number of elements in the covariance matrix. One
approach is to use higher frequency data, say, daily
instead of monthly returns (see Jagannathan and Ma
2003). A second approach is to impose some factor
structure on the estimator of the covariance matrix
(Chan et al. 1999, Green and Hollifield 1992), which
reduces the number of parameters to be estimated.
A third approach has been proposed by Ledoit and
Wolf (2003, 2004), who use as an estimator a weighted
average of the sample covariance matrix and another
estimator, such as the 1-factor covariance matrix or
the identity matrix. A fourth approach, which is often
used in practice, is to impose shortsale constraints
on the portfolio weights (see Frost and Savarino
1988, Chopra 1993). Jagannathan and Ma (2003) show
that imposing a shortsale constraint when minimiz-
ing the portfolio variance is equivalent to shrinking
the extreme elements of the covariance matrix. This
simple remedy for dealing with estimation error per-
forms very well. In fact, Jagannathan and Ma (2003)
find that “the sample covariance matrix [with short-
sale constraints] performs almost as well as those

2 Note that although expected returns cannot be forecasted reason-
ably well from historical data, if a portfolio manager has the skill
to forecast expected returns, then he or she may wish to use a
mean-variance portfolio rather than a minimum-variance portfolio.
3 For additional evidence, see Jorion (1985, 1986, 1991) and
DeMiguel et al. (2009).

[covariance matrices] constructed using factor mod-
els, shrinkage estimators or daily returns” (p. 1654).
Finally, DeMiguel et al. (2009) demonstrate that even
constraining shortsales may not mitigate completely
the error in estimating the covariance matrix, and thus
an investor may be better off (in terms of Sharpe ratio,
certainty-equivalent returns, and turnover) ignoring
data on asset returns altogether and using the naive
1/N rule to allocate an equal proportion of wealth
across each of the N assets.
In this paper, we develop a new approach for deter-

mining the optimal portfolio weights in the pres-
ence of estimation error. Following Brandt (1999) and
Britten-Jones (1999), we treat the weights rather than
the moments of asset returns as the objects of interest
to be estimated. So rather than shrinking the moments
of asset returns, we introduce the constraint that the
norm of the portfolio-weight vector be smaller than a
given threshold.
Our paper contributes to the literature on optimal

portfolio choice in the presence of estimation error
in several ways. First, we show that our framework
nests as special cases the shrinkage approaches of
Jagannathan and Ma (2003) and Ledoit and Wolf
(2003, 2004). In particular, we prove that if one solves
the minimum-variance problem subject to the con-
straint that the sum of the absolute values of the
weights (1-norm) be smaller than or equal to one, then
one retrieves the shortsale-constrained minimum-
variance portfolio considered by Jagannathan and Ma
(2003). If one constrains the sum of the squares of
the portfolio weights (2-norm) to be smaller than a
given threshold, then one recovers the class of portfo-
lios considered by Ledoit and Wolf (2004). Similarly,
imposing a particular quadratic constraint allows
one to recover the portfolios in Ledoit and Wolf
(2003). Finally, constraining the squared 2-norm of the
portfolio-weight vector to be smaller than or equal
to 1/N gives the 1/N portfolio studied in DeMiguel
et al. (2009).
Second, we use this unifying framework to develop

new portfolio strategies. For example, we show
how the shortsale-constrained portfolio considered in
Jagannathan and Ma (2003) can be generalized. In par-
ticular, we show that by imposing the constraint that
the 1-norm of the portfolio-weight vector be smaller
than a threshold that is strictly larger than one, then
one obtains a new class of shrinkage portfolios that
limit the total amount of shortselling in the portfo-
lio, rather than limit the shorting of each asset as
in the traditional shortsale-constrained portfolio. To
the best of our knowledge, this kind of portfolio has
not been analyzed before in the academic literature,
although it corresponds closely to the actual portfolio
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Table 1 List of Data Sets Considered

No. Data set Abbreviation N Time period Source

1 Ten industry portfolios representing the U.S. stock market 10Ind 10 07/1963–12/2004 K. Frencha

2 Forty-eight industry portfolios representing the U.S. stock market 48Ind 48 07/1963–12/2004 K. French
3 Six Fama and French (1992) portfolios of firms sorted by size and book-to-market 6FF 6 07/1963–12/2004 K. French
4 Twenty-five Fama and French (1992) portfolios of firms sorted by size and book-to-market 25FF 25 07/1963–12/2004 K. French
5 500 randomized stocks from CRSPb balanced monthly 500CRSP 500 04/1968–04/2005 CRSP

Notes. This table lists the various data sets of monthly asset returns analyzed, the abbreviation used to refer to each data set, the number of risky assets N in
each data set, the time period spanned by the data set, and the source of the data. The data set of CRSP returns (500CRSP) is constructed in a way that is
similar to Jagannathan and Ma (2003), with monthly rebalancing: in April of each year we randomly select 500 assets among all assets in the CRSP data set
for which there is return data for the previous 120 months as well as for the next 12 months. We then consider these randomly selected 500 assets as our
asset universe for the next 12 months.

ahttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
bCRSP, The Center for Research in Security Prices.

holdings allowed in personal margin accounts.4 We
also propose a class of portfolios that we term “partial
minimum-variance portfolios.” These portfolios are
obtained by applying the classical conjugate-gradient
method (see Nocedal and Wright 1999) to solve the
minimum-variance problem. We show that these port-
folios are related to the portfolios obtained by impos-
ing a constraint on the 2-norm of the portfolio-weight
vector.
Third, we give a Bayesian interpretation for the

norm-constrained portfolios and also for the port-
folios proposed by Jagannathan and Ma (2003) and
Ledoit and Wolf (2003, 2004) that is in terms of a
certain prior belief on portfolio weights rather than on
moments of asset returns.
Fourth, our approach to minimum-variance portfo-

lio selection is also related to a number of approaches
proposed in the statistics and chemometrics litera-
ture to reduce estimation error in regression analysis.
It is known in the literature that optimal portfo-
lio weights in an unconstrained mean- or minimum-
variance problem can be thought of as coefficients of
an ordinary least squares regression (see, for example,
Britten-Jones 1999). It then follows that, in general,
constrained weights are the outcome of similarly
specified restricted regressions. In particular, con-
straining the 1-norm of the portfolio vector to be less
than a certain threshold is analogous to the statisti-
cal technique for regression analysis known as “least
absolute shrinkage and selection operator” (lasso)
(Tibshirani 1996); constraining the 2-norm of the port-
folio vector to be less than a certain threshold corre-
sponds to the statistical technique known as “ridge
regression” (Hoerl and Kennard 1970); and comput-
ing the “partial minimum-variance portfolio” corre-
sponds to the technique developed in chemometrics
known as “partial least squares” (Wold 1975, Frank

4 These portfolios are quite popular among practitioners—see the
articles in The Economist (Buttonwood 2007) and The New York Times
(Hershey 2007) that describe “130–30” portfolios where investors
are long 130% and short 30% of their wealth.

and Friedman 1993). These regression techniques and
the distribution theory associated with them have
been used extensively in the statistics literature.
Fifth, the generalized framework allows one to cal-

ibrate the model using historical data to improve
its out-of-sample performance. We compare empir-
ically the out-of-sample performance of the norm-
constrained portfolios to 10 strategies in the literature
for five different data sets. The data sets we
consider are listed in Table 1, and the portfolios
we evaluate are listed in Table 2. In terms of out-
of-sample variance, the norm-constrained portfolios
often have a lower variance than the shortsale-
constrained minimum-variance portfolio studied in
Jagannathan and Ma (2003), the 1/N portfolio eval-
uated in DeMiguel et al. (2009), and also other
strategies proposed in the literature, including fac-
tor portfolios and the parametric portfolios in Brandt
et al. (2005); however, the variance of the norm-
constrained portfolios is similar to that of the port-
folios in Ledoit and Wolf (2003, 2004). In terms of
out-of-sample Sharpe ratio, the portfolios we propose
attain a Sharpe ratio that is higher than the shortsale-
constrained minimum-variance portfolio, the 1/N
portfolio, and the portfolios in Ledoit and Wolf (2003,
2004), although the higher Sharpe ratio is accompa-
nied by higher turnover. Finally, the Sharpe ratio and
turnover of the proposed portfolios is similar to that
of Brandt et al. (2005) but without the need to use
firm-specific characteristics.5

The remainder of this paper is organized as fol-
lows. Section 2 reviews the approaches considered in

5 Because the parametric portfolios in Brandt et al. (2005) rely on
firm-specific characteristics, they are not really comparable to the
other portfolios we evaluate; however, we decided to include them
in our empirical analysis because these portfolios achieve very high
Sharpe ratios and hence are an important benchmark. Lauprete
(2001) also considers the 1- and 2-norm-constrained portfolios; see
also Lauprete et al. (2002) and Welsch and Zhou (2007). Our addi-
tional contribution is to relate these methods to the approaches in
Jagannathan and Ma (2003) and Ledoit and Wolf (2003, 2004), pro-
pose the partial minimum-variance portfolios, and provide com-
prehensive empirical results.



DeMiguel et al.: Constraining Portfolio Norms
Management Science 55(5), pp. 798–812, © 2009 INFORMS 801

Table 2 List of Portfolios Considered

No. Model Abbreviation

Panel A: Portfolio strategies developed in this paper

1-norm-constrained minimum-variance portfolio
With � calibrated using cross-validation over portfolio variance NC1V
With � calibrated by maximizing portfolio return in previous period NC1R

2-norm-constrained minimum-variance portfolio
With � calibrated using cross-validation over portfolio variance NC2V
With � calibrated by maximizing portfolio return in previous period NC2R

��F -norm-constrained minimum-variance portfolio
With � calibrated using cross-validation over portfolio variance NCFV
With � calibrated by maximizing portfolio return in previous period NCFR

Partial minimum-variance portfolios
With k calibrated using cross-validation over portfolio variance PARV
With k calibrated by maximizing portfolio return in previous period PARR

Panel B: Portfolio strategies from the existing literature used for comparison

Simple benchmarks

1 Equally-weighted (1/N) portfolio 1/N
2 Value-weighted (market) portfolio VW

Portfolios that use mean returns with shortsales unconstrained
3 Mean-variance portfolio with risk aversion parameter � = 5 MEAN
4 Bayesian mean-variance portfolio as in Jorion (1985, 1986) with risk aversion parameter � = 5 BAYE

Minimum-variance portfolios
5 Minimum-variance portfolio with shortsales unconstrained MINU
6 Minimum-variance portfolio with shortsales constrained (Jagannathan and Ma 2003) MINC
7 Minimum-variance portfolio with the market as the single factor FAC1

Minimum-variance portfolios where covariance matrix is average of two estimators
8 Weighted average of sample covariance and identity matrix (Ledoit and Wolf 2004) LWID
9 Weighted average of sample covariance and 1-factor matrix (Ledoit and Wolf 2003) LW1F

Parametric portfolios
10 Parametric portfolio as in Brandt et al. (2005) with a risk-aversion parameter of � = 5 BSV3

using the factors size, book-to-market, and momentum

Notes. This table lists the various portfolio strategies we consider. Panel A lists the norm-constrained portfolios developed
in this paper, whereas panel B lists the portfolios from the literature. Note that � is the threshold parameter that limits the
norm of the portfolio-weight vector, whereas the order parameter k indicates which of the N −1 partial minimum-variance
portfolios to use. The last column gives the abbreviation that we use to refer to the strategy.

Jagannathan andMa (2003) and Ledoit andWolf (2003,
2004), which shrink some or all of the elements of the
sample covariance matrix. In §3, we propose our gen-
eral approach, which shrinks the portfolio-weight vec-
tor directly. In §4, we discuss the performance of the
different portfolios on empirical data. Section 5 con-
cludes. Our main results are highlighted in proposi-
tions, and proofs for all the propositions are available
in the appendix. Details of how to compute the par-
tial minimum-variance portfolios are available in the
online appendix (provided in the e-companion).6

2. Existing Approaches: Shrinking the
Sample Covariance Matrix

In the absence of shortsale constraints, the minimum-
variance portfolio is the solution to the following

6 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.

optimization problem:

min
w

w���w� (1)

s.t. w�e = 1� (2)

where w ∈ �N is the vector of portfolio weights, �� ∈
�N×N is the estimated covariance matrix, w���w is
the variance of the portfolio return, e ∈ �N is the
vector of ones, and the constraint w�e = 1 ensures that
the portfolio weights sum up to one. We denote the
solution to this shortsale-unconstrained minimum-
variance problem by wMINU.
Jagannathan and Ma (2003) study the shortsale-

constrainedminimum-varianceportfolio,wMINC,which
is the solution to problem (1)–(2) with the additional
constraint that the portfolio weights be nonnegative
(w≥ 0). They show that the solution to the shortsale-
constrained problem coincides with the solution to
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the unconstrained problem in (1)–(2) if the sample
covariance matrix in (1) is replaced by the matrix

��JM = �� − �e� − e��� (3)

where � ∈�N is the vector of Lagrange multipliers for
the shortsale constraint. Because � ≥ 0, the matrix ��JM
may be interpreted as the sample covariance matrix
after shrinkage, because if the shortsale constraint cor-
responding to the ith asset is binding (wi = 0), then
the sample covariance of this asset with any other
asset is reduced by �i, the magnitude of the Lagrange
multiplier associated with its shortsale constraint.
Ledoit and Wolf (2003, 2004) propose replacing the

sample covariance matrix with a weighted average of
the sample covariance matrix and a low-variance tar-
get estimator, ��target. Concretely, they propose solving
problem (1)–(2), where the matrix �� is replaced by

��LW = 1
1+ �

�� + �

1+ �
��target� (4)

and where � is a positive constant. Ledoit and Wolf
(2003, 2004) also show how one can estimate the value
of � that minimizes the expected Frobenius norm of
the difference between the matrix ��LW and the true
covariance matrix. They show that this method can
be interpreted as shrinking the sample covariance
matrix toward the estimator ��target. They consider sev-
eral candidates for ��target, such as the identity matrix
and the covariance matrix obtained from estimating a
1-factor model with the market as the factor.7

3. A Generalized Approach:
Constraining the Portfolio Norms

In this section, we propose a class of portfolios
that can be viewed as resulting from shrinking the
portfolio-weight vector instead of shrinking the moments
of asset returns. Specifically, we define the norm-
constrained minimum-variance portfolio as the one that
solves the traditional minimum-variance problem
(1)–(2) subject to the additional constraint that the

7 Note that Ledoit and Wolf (2004) actually consider a positive mul-
tiple of the identity matrix as their shrinkage target. Specifically,
they consider the identity matrix multiplied by the average of the
diagonal elements of the sample covariance matrix. This makes
sense in the context of their work because their objective is to find
the estimator that minimizes the Frobenius norm of the difference
with the true covariance matrix. In the context of our manuscript,
where the objective is to compute minimum-variance portfolios, it
does not matter whether one uses the identity matrix as the shrink-
age target, or a positive multiple of the identity matrix. The reason
for this is that given a shrinkage target ��target = �I , with � > 0, and
a shrinkage weight �1 > 0, the resulting minimum-variance port-
folio coincides with that obtained using the identity matrix as a
shrinkage target and a shrinkage weight �2 = ��1 > 0.

norm of the portfolio-weight vector is smaller than
a certain threshold �; that is, �w� ≤ �, where �w�
is the norm of the portfolio-weight vector. In partic-
ular, we consider the 1-norm, �w�1 = ∑N

i=1 �wi�, and
the A-norm, �w�A = �w�Aw	1/2, where A ∈�N×N is a
positive-definite matrix.
Note that the traditional shortsale-unconstrained

minimum-variance portfolio, wMINU, is the solu-
tion to the norm-constrained problem with � = 	.
Consequently, if � < �wMINU�, then the norm of the
portfolio that solves the norm-constrained minimum-
variance portfolio problem must be strictly smaller
than that of the unconstrained minimum-variance
portfolio, wMINU.8 Hence, imposing a constraint on the
norm of the portfolio-weight vector can be interpreted
as shrinking the shortsale-unconstrained sample-
based minimum-variance portfolio toward a target
portfolio. The target portfolio is the one that minimizes
the norm of the weight vector subject to the condition
that the weights add up to one.9 Shrinkage estima-
tors have been a popular method for reducing estima-
tion error ever since their introduction by James and
Stein (1961). The idea behind shrinkage estimators is
that shrinking an unbiased estimator toward a lower-
variance target has a negative and a positive effect.
The negative effect is that the shrinkage introduces
bias into the resulting estimator, whereas the positive
effect is that it reduces the variance of the estimator.

3.1. First Special Case: The 1-Norm-Constrained
Portfolios

The 1-norm-constrained portfolio, wNC1, is the solution
to the traditional minimum-variance portfolio prob-
lem (1)–(2) subject to the additional constraint that
the 1-norm of the portfolio-weight vector be smaller
than or equal to a certain threshold �; that is, �w�1 =∑N

i=1 ≤ �.
The following proposition shows that for the

case � = 1, the solution to the 1-norm-constrained
minimum-variance problem is the same as that for
the shortsale-constrained minimum-variance portfolio
analyzed in Jagannathan and Ma (2003).

Proposition 1. The solution to the 1-norm-con-
strained minimum-variance portfolio problem with � = 1
coincides with the solution to the shortsale-constrained
problem.

8 Note that the norm-constrained portfolios are not obtained by
shrinking every weight of the minimum-variance portfolio; instead,
the norm-constrained portfolios are obtained by shrinking the total
norm of the minimum-variance portfolio. This interpretation of
shrinkage is the same as in Tibshirani (1996) in the context of lasso
regression.
9 Let wM be the portfolio that minimizes the norm. To see that
this is the target portfolio in our approach, note that if we impose
the constraint that the portfolio norm is smaller than �wM�, then
the only portfolio that is feasible with respect to this constraint is
precisely wM .
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In contrast to the case where � = 1, for threshold
values of � > 1 this approach generates a class of
portfolios that generalize the shortsale-constrained
minimum-variance portfolio. Specifically, some alge-
braic manipulation can be used to show that the
1-norm constraint �w�1 ≤ � can be rewritten as

− ∑
i∈� �w	

wi ≤
� − 1
2

� (5)

where � �w	 is the set of asset indexes for which
the corresponding portfolio weight is negative,
� �w	 = 
i� wi < 0�. The left-hand side of (5) is the total
proportion of wealth that is sold short and �� − 1	/2
can be interpreted as the shortsale budget. This short-
sale budget can then be freely distributed among all
of the assets.

3.2. Second Special Case: The
A-Norm-Constrained Portfolios

The A-norm-constrained minimum-variance portfolio is
the solution to the traditional minimum-variance
problem (1)–(2) subject to the additional constraint
that the A-norm of the portfolio-weight vector be
smaller than a particular threshold, �̂. Because
the squared A-norm is easier to analyze than the
A-norm, we instead impose the equivalent constraint
w�Aw≤ �, where � = �̂2.

The following proposition shows the relation
between the A-norm-constrained portfolios and the
shrinkage portfolios proposed by Ledoit and Wolf.

Proposition 2. Provided �� is nonsingular, for each
� ≥ 0 there exists a � such that the solution to the
minimum-variance problem in (1)–(2), with the sample
covariance matrix, ��, replaced by ��LW = �1/�1+ �		�� +
�/�1+ �	A, coincides with the solution to the A-norm-
constrained minimum-variance portfolio problem, which is
the traditional minimum-variance problem subject to the
additional constraint

w�Aw≤ � (6)

In particular, if we choose the matrix A equal to
the identity matrix, I , then there is a one-to-one cor-
respondence between the A-norm-constrained portfo-
lios and the shrinkage portfolio proposed in Ledoit
and Wolf (2004). On the other hand, if A equals the
1-factor covariance matrix, ��F , then there is a one-to-
one correspondence with the shrinkage portfolio in
Ledoit and Wolf (2003).
Note that for the special case where A = I , the

A-norm is simply the 2-norm, �w�2, and therefore

we refer to these as the 2-norm-constrained minimum-
variance portfolios. To gain intuition about these port-
folios, note that the 2-norm constraint

∑N
i=1 w

2
i ≤ � can

be reformulated equivalently as follows:10

N∑
i=1

(
wi −

1
N

)2

≤
(

� − 1
N

)
 (7)

The reformulated constraint (7) demonstrates that
imposing the 2-norm constraint on the portfolio
weights is equivalent to imposing a constraint that the
2-norm of the difference between this portfolio and
the 1/N portfolio is bounded by � − 1/N . Note also
that the 1/N portfolio is a special case of the 2-norm-
constrained portfolio with � = 1/N .
For the special case where A = ��F , imposing a con-

straint on the ��F -norm of the portfolio is equivalent to
imposing a constraint on the portfolio variance under
the covariance estimator obtained from a 1-factor
model; that is, imposing the constraint that w���F w is
smaller than a certain threshold.
We now compare the 1-, 2-, and ��F -norm con-

strained portfolios. We have shown above that the
1-norm-constrained portfolios are a generalization of
the shortsale-constrained portfolios in which the total
amount of shortselling on all assets must remain
below a shortsale budget of �� − 1	/2. Therefore, we
may expect the 1-norm-constrained portfolios to have
the well-known property of shortsale-constrained
minimum-variance portfolios, which tend to assign
a weight different from zero to only a few of the
assets.11 In contrast, we have shown that the 2-norm-
constrained portfolio is the portfolio that minimizes
the sample variance subject to the constraint that the
square of the 2-norm of the difference with the 1/N
portfolio is bounded by � − 1/N . Consequently, we
would expect that the 2-norm-constrained portfolios
will, in general, remain relatively close to the 1/N
portfolio and thus will assign a positive weight to
all assets. Similarly, we should expect the ��F -norm-
constrained portfolios to remain close to the portfo-
lio that minimizes the 1-factor model variance. Thus,
investors who believe the total amount of shortselling
of the optimal portfolio should not exceed a given
budget would want to use a 1-norm constraint. On
the other hand, investors who believe that the optimal
portfolio is close to the well-diversified 1/N portfolio
would want to use a 2-norm constraint when solving

10 To understand why these two formulations are equivalent,
observe that

∑N
i=1�wi −1/N	2 =∑N

i=1 w
2
i +∑N

i=1 1/N 2 −∑N
i=1 2wi/N =∑N

i=1 w
2
i − 1/N , where the last result follows from the fact that∑N

i=1 1/N 2 = 1/N and
∑N

i=1 2wi/N = 2/N .
11 The reason for this is that the 1-norm function has a kink at port-
folios where one or more of the weights are zero, whereas this is
not the case for the 2-norm function.
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the minimum-variance problem to reduce estimation
error. Finally, investors who believe a 1-factor struc-
ture holds in the asset-return distribution would use
a ��F -norm constraint.

3.3. Third Special Case: The Partial
Minimum-Variance Portfolios

The third class of portfolios we propose are obtained
by applying the classical conjugate-gradient method
(Nocedal and Wright 1999, Chap. 5) to solve the
minimum-variance problem. The conjugate-gradient
method takes as a starting portfolio some initial guess
(in our implementation we use the 1/N portfolio) and
then generates a sequence of N −1 portfolios in which
the terminal portfolio is the shortsale-unconstrained
minimum-variance portfolio. We term each of these
N − 1 intermediate portfolios a partial minimum-
variance portfolio. In the online appendix, we pro-
vide a detailed description of how to compute these
portfolios.
Even though the partial minimum-variance port-

folios are not obtained by explicitly imposing a
constraint on the norm of the minimum-variance
portfolio, the following proposition shows that the
2-norm of the partial minimum-variance portfo-
lios is smaller than the 2-norm of the shortsale-
unconstrained minimum-variance portfolios.

Proposition 3. The 2-norm of the kth partial min-
imum-variance portfolio is smaller than or equal to the
2-norm of the shortsale-unconstrained minimum-variance
portfolio for k ≤ N − 1.

Moreover, Proposition EC.3 in the online appendix
shows that the partial minimum-variance portfolios
can be viewed as a discrete first-order approximation
to the 2-norm-constrained portfolios.

3.4. A Bayesian Interpretation of
the Norm-Constrained Portfolios

Tibshirani (1996, §5) gives a Bayesian interpreta-
tion for the regression analysis techniques of lasso
and “ridge” regressions; see also Hastie et al. (2001,
Chap. 3) and Park and Casella (2008). Here we adapt
his argument to give a Bayesian interpretation of
the 1- and A-norm-constrained minimum-variance
portfolios.
The following proposition shows that the 1-norm-

constrained portfolio is the mode of the posterior dis-
tribution of portfolio weights for an investor whose
prior belief is that the portfolio weights are indepen-
dently and identically distributed as a Double Expo-
nential distribution.

Proposition 4. Assume that asset returns are nor-
mally distributed. Moreover, assume that the investor
believes a priori that each of the shortsale-unconstrained
minimum-variance portfolio weights, wi, is independently

and identically distributed as a Double Exponential distri-
bution with probability density function

��wi	 = �

2
e−� (8)

Furthermore, assume that the investor believes a priori
that the variance of the minimum-variance portfolio return,
denoted by �2, has an independent prior distribution
���2	. Then there exists a threshold parameter � such that
the weights of the 1-norm-constrained minimum-variance
portfolio are the mode of the posterior distribution of the
minimum-variance portfolio weights.

The next proposition shows that the A-norm-
constrained portfolio is the mode of the posterior dis-
tribution of portfolio weights for an investor whose
prior belief is that the portfolio weights wi have
a multivariate Normal distribution with covariance
matrix A.

Proposition 5. Assume that asset returns are nor-
mally distributed. Moreover, assume that the investor
believes a priori that the shortsale-unconstrained minimum-
variance portfolio weights are distributed as a multivariate
Normal distribution with probability density function

��w	 = �2�	−n/2�A�1/2e− 1
2 w

�Aw (9)

Furthermore, assume that the investor believes a priori
that the variance of the minimum-variance portfolio return,
denoted by �2, has an independent prior distribution
���2	. Then there exists a threshold parameter � such that
the weights of the A-norm-constrained minimum-variance
portfolio are the mode of the posterior distribution of the
minimum-variance portfolio weights.

Note that choosing the portfolio that maximizes
the posterior distribution of the minimum-variance
portfolio weights guarantees that the investor is
choosing the portfolio with the highest probability
of being the minimum-variance portfolio given the
investor’s prior distribution on portfolio weights and
the observed asset-return data. This interpretation is
different from that in the traditional Bayesian portfo-
lio choice literature (for instance, Jorion 1986) because
in our framework the investor has a prior belief on the
portfolio weights rather than on the asset-return dis-
tribution. Consequently, while the Bayesian investor
in the traditional setting chooses the portfolio that
maximizes expected utility with respect to the pos-
terior distribution of asset returns, in our setting the
investor chooses the portfolio that maximizes the pos-
terior distribution of portfolio weights (see Tu and
Zhou 2009).
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3.5. A Moment-Shrinkage Interpretation of
the Norm-Constrained Portfolios

The 1- and A-norm-constrained minimum-variance
portfolios can also be interpreted as portfolios that
result from shrinking some of the elements of the
sample covariance matrix.

Proposition 6. Let the solution to the 1-norm-
constrained minimum-variance problem be such that
�wNC1	i 
= 0 for i = 1�    �N . Then wNC1 is also the
solution to the shortsale-unconstrained minimum-variance
problem (1)–(2) if the sample covariance matrix, ��, is
replaced by the matrix

��NC1 = �� − �ne� − �en�� (10)

where � ∈ � is the Lagrange multiplier for the 1-norm
constraint at the solution to the 1-norm-constrained
minimum-variance problem, and n ∈�N is a vector whose
ith component is one if the weight assigned by the 1-norm-
constrained portfolio to the ith asset is negative and zero
otherwise.

Proposition 6 shows that the 1-norm-constrained
portfolios can also be interpreted as those obtained
by shrinking some of the elements of the sample
covariance matrix. Concretely, Equation (10) shows
that the 1-norm-constrained portfolios can be seen
as the result of shrinking by the constant amount �
the covariances of those assets that are being sold
short with all the other assets. Note that the amount
of shrinkage � is the same for all assets that are
being sold short. This is the main difference between
the 1-norm-constrained and the shortsale-constrained
portfolios. From Equation (3) it can be observed that
for the shortsale-constrained portfolios, the amount
of shrinkage applied to the covariances of each of
the assets is equal to the Lagrange multiplier cor-
responding to its shortsale constraint �i, and these
Lagrange multipliers may take different values for
different assets.
Similarly, observe from Proposition 2 that the

A-norm-constrained portfolios can be obtained also
by shrinking all elements of the sample covariance
matrix toward the elements of matrix A.

4. Out-of-Sample Evaluation of
the Proposed Portfolios

In this section, we compare across five different data
sets (listed in Table 1) the out-of-sample empirical
performance of the norm-constrained portfolios to
10 portfolios from the existing literature using three
performance metrics: the out-of-sample portfolio vari-
ance, the out-of-sample Sharpe ratio, and turnover.

4.1. Description of the Portfolios Evaluated
The norm-constrained minimum-variance portfolios
and the partial minimum-variance portfolio that we
consider are listed in panel A of Table 2. Note that
to use the 1-, 2-, and ��F -norm-constrained minimum-
variance portfolios, one needs to choose the value of
the threshold parameter �, which bounds the maxi-
mum value that the portfolio norm may take. Simi-
larly, for the partial minimum-variance portfolios, one
needs to choose the order parameter k that indicates
which of the N − 1 partial minimum-variance port-
folios to use. The parameters � and k could be spec-
ified exogenously. But in our framework these can
also be calibrated to achieve a particular objective,
to exploit a particular feature of the returns data,
or both. We use two different criteria to calibrate
the norm-constrained portfolios: (i) minimizing the
portfolio variance and (ii) maximizing the last period
portfolio return to exploit positive autocorrelation in
portfolio returns as opposed to autocorrelation in the
return of individual securities.12

If the objective is to minimize the out-of-sample
portfolio variance, then to choose � and k we use the
nonparametric technique known as cross validation—
see Efron and Gong (1983) and Campbell et al.
(1997, §12.3.2).13 On the other hand, if the objec-
tive is to maximize the portfolio return over the
last period, we choose �∗ so that �∗ = argmax� w

�
� r� ,

in which r� is the asset-return vector for the last
period within the estimation window, and w� is the
norm-constrained or partial minimum-variance port-
folio computed using all the data over the estimation

12 Our motivation for the portfolio autocorrelation criterion is the
work by Campbell et al. (1997), who report: “Despite the fact that
individual security returns are weakly negatively autocorrelated,
portfolio returns—which are essentially averages of individual
security returns—are strongly autocorrelated. This somewhat para-
doxical result can mean only one thing: large positive cross-
autocorrelations across individual securities across time” (p. 74).
We consider the return in only the last period because this is where
the autocorrelation is highest. We have also considered the average
return in the last two to six months, but the out-of-sample perfor-
mance is worse than when using only the return in the previous
month.
13 Cross validation works as follows. Given an estimation window
composed of � sample returns, for each t ranging from 1 to � per-
form the following four steps. First, delete the tth sample return
from the estimation window and compute the sample covari-
ance matrix corresponding to the data set without the tth sample
return, ���t	. Second, compute the corresponding portfolio �w�	�t	,
where � = � for the case of the norm-constrained portfolios and � =
k (with 1≤ k ≤ N − 1) for the case of the partial minimum-variance
portfolios. Third, compute the out-of-sample return attained by
this portfolio on the tth sample asset return �r�	�t	 = ��w�	�t		

�rt .
Then the variance of the out-of-sample portfolio return is given
by the sample variance of the � out-of-sample returns, �r�	�t	; that
is, �� 2

� = ∑�
t=1��r�	�t	 − �r̄�	�t	�

2/�� − 1	, where �r̄�	�t	 = ∑�
t=1�r�	�t	/� .

Finally, choose the parameter �∗ that minimizes this out-of-sample
return variance; that is, �∗ = argmin� �� 2

� .
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window with the parameter �. That is, we choose the
parameter � = 
��k� to maximize the return in the last
period within the estimation window.
Panel B of Table 2 lists the portfolios to which

we compare the performance of the norm-constrained
portfolios. The first two comparison portfolios are
simple benchmarks that require neither estima-
tion nor optimization: the 1/N portfolio and the
value-weighted market portfolio, which we com-
pute as the portfolio that assigns a weight to
each asset equal to the market capitalization of
that asset divided by the market capitalization
of all the assets in the data set. We also con-
sider two portfolios that rely on estimates of mean
returns: the traditional shortsale-unconstrained mean-
variance portfolio and the Bayesian mean-variance
portfolio, which is selected using the approach
in Jorion (1985, 1986); both of these portfolios
are computed assuming a risk aversion of � = 5.14

The next three portfolios we consider are the
shortsale-unconstrained minimum-variance portfolio,
the shortsale-constrained minimum-variance portfo-
lio analyzed in Jagannathan and Ma (2003), and the
minimum-variance portfolio under the assumption
that returns are described by a 1-factor model with
the market as the only factor. We also consider two
minimum-variance portfolios that are formed using
a covariance matrix that is a weighted average of
two estimators. The first of these portfolios is formed
from a combination of the sample covariance matrix
and the identity matrix as in Ledoit and Wolf (2004),
whereas the second is formed from a combination of
the sample covariance matrix and the 1-factor covari-
ance matrix with the market as the factor as in Ledoit
and Wolf (2003). Finally, we consider the paramet-
ric portfolios of Brandt et al. (2005) that rely on
firm-specific characteristics; again, we assume that the
investor has a risk aversion equal to five.15

14 For the risk-aversion parameter we have considered also values
of 1, 2, and 10, but because the insights are similar we do not report
these results.
15 We do not consider several other portfolios. For instance, we do
not consider estimators of the covariance matrix based on daily
returns because Jagannathan and Ma (2003, §III) find that their per-
formance is similar to that of the shortsale-constrained minimum-
variance portfolio with monthly returns. Also, we do not consider
portfolios based on the constant correlation model of Elton and
Gruber (1973) because these are outperformed by portfolios pro-
posed in Ledoit and Wolf (2003). We report results only for the
single market-factor model because Chan et al. (1999) show that
several factor models with 1, 3, 4, 8, and 10 factors (based on
financial market variables and firm-specific characteristics) are not
better than the 1-factor market model. Finally, we consider short-
sale constraints only for the minimum-variance portfolio because
Jagannathan and Ma (2003) find that “for the factor models and
shrinkages estimators, imposing such constraints is likely to hurt”
(pp. 1653–1654).

4.2. Description of the Methodology Used to
Evaluate Performance

We compare the performance of the norm-constrained
portfolios to the portfolios in the literature using three
criteria: (i) out-of-sample portfolio variance, (ii) out-
of-sample portfolio Sharpe ratio, and (iii) portfolio
turnover (trading volume). We use the following
“rolling-horizon” procedure for the comparison. First,
we choose a window over which to perform the esti-
mation. We denote the length of the estimation win-
dow by � < T , where T is the total number of returns
in the data set. For our experiments, we use an esti-
mation window of � = 120 data points, which for
monthly data corresponds to 10 years.16 Second, using
the return data over the estimation window, � , we
compute the various portfolios. Third, we repeat this
“rolling-window” procedure for the next month by
including the data for the next month and dropping
the data for the earliest month. We continue doing this
until the end of the data set is reached. At the end of
this process, we have generated T −� portfolio-weight
vectors for each strategy; that is, wi

t for t = ��    � T −1
and for each strategy i.
Holding the portfolio wi

t for one month gives the
out-of-sample return at time t + 1: r i

t+1 =wi�
t rt+1, where

rt+1 denotes the asset returns. We use the time series
of returns and weights for each strategy to com-
pute the out-of-sample variance, Sharpe ratio, and
turnover:

���i	2 = 1
T − � − 1

T −1∑
t=�

(
wi�

t rt+1 − �̂i
)2

�

with �̂i = 1
T − �

T −1∑
t=�

wi�
t rt+1� (11)

ŜR
i = �̂i

��i

� (12)

Turnover= 1
T − � − 1

T −1∑
t=�

N∑
j=1

��wi
j� t+1 −wi

j� t+�	� (13)

where in the definition of turnover, wi
j� t denotes the

portfolio weight in asset j chosen at time t under strat-
egy i, wi

j� t+ the portfolio weight before rebalancing but
at t + 1, and wi

j� t+1 the desired portfolio weight at
time t + 1 (after rebalancing), implying that turnover
is equal to the sum of the absolute value of the rebal-
ancing trades across the N available assets and over
the T − � −1 trading dates, normalized by the total
number of trading dates.
To measure the statistical significance of the differ-

ence between the variances and Sharpe ratios of the

16 We have tried other estimation window lengths, such as � = 60
and 240, but the results are similar; thus, we report the results only
for the case � = 120.
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returns for two given portfolios, we use bootstrapping
methods, which are suitable when portfolio returns
are not independently and identically distributed as
a multivariate Normal. In particular, to compute the
p-values for the Sharpe ratios we use a bootstrapping
methodology proposed in Ledoit and Wolf (2008) that
is designed for the case in which portfolio returns have
fat tails and are of a time series nature (for instance,
returns are serially correlated or exhibit volatility clus-
tering). Specifically, to test the hypothesis that the
Sharpe ratio of the return of portfolio i is equal to that
of portfolio n, that is, H0� �i/�i − �n/�n = 0, we com-
pute a two-sided p-value using the studentized circu-
lar block bootstrap proposed in Ledoit andWolf (2008)
with B = 1�000 bootstrap resamples and a block size
equal to b = 5. We do this using the code available at
http://www.iew.uzh.ch/chairs/wolf.html. To test the
hypothesis that the variance of the returns of two port-
folios is equal, that is, H0� �2

i − �2
n = 0, we use the

(nonstudentized) stationary bootstrap of Politis and
Romano (1994) to construct a two-sided confidence
interval for the difference between the variances. We
have used B = 1�000 bootstrap resamples and an
expected block size b = 5. Then we use the methodol-
ogy suggested in Ledoit and Wolf (2008, Remark 3.2)
to generate the resulting bootstrap p-values.

4.3. Discussion of the Out-of-Sample Performance
Table 3 reports the out-of-sample variances for the dif-
ferent portfolios and the corresponding p-value that
the portfolio variance for that strategy is different
from that for the PARV portfolio. We have also
computed all other pairwise p-values, and although
we do not report them in the table, we use them
when comparing portfolio strategies in our discussion
below, and we say that the difference is significant if
this p-value is smaller than 5%.
From panel A in Table 3 we see that the out-of-

sample variance for the norm-constrained portfolios
calibrated using cross validation over the return vari-
ance (NC1V, NC2V, NCFV, PARV) is similar across
the five data sets. Also, not surprisingly, the out-of-
sample variance is lower for these portfolios than for
those that are calibrated using the criterion of max-
imizing the return of the portfolio in the previous
period (NC1R, NC2R, NCFR, PARR).
Comparing the variances of the norm-constrained

portfolios in panel A to those of the portfolios from
the literature listed in panel B of Table 3, we see that
the norm-constrained portfolios typically have lower
out-of-sample variances than the portfolios from the
literature. For instance, NC1V, NC2V, NCFV, and
PARV always achieve out-of-sample variances that
are lower than those of the 1/N , value-weighted
(VW), and mean-variance (MEAN) portfolios, and
the differences are statistically significant. Similarly,
the norm-constrained portfolios have lower variances

Table 3 Portfolio Variances

Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A: Portfolio strategies developed in this paper

NC1V 0�00134 0�00126 0�00156 0�00135 0�00074
�0�07� �0�01� �0�46� �0�65� �0�06�

NC1R 0�00138 0�00135 0�00159 0�00143 0�00080
�0�98� �0�26� �0�97� �0�10� �0�01�

NC2V 0�00134 0�00137 0�00156 0�00130 0�00066
�0�08� �0�21� �0�13� �0�43� �0�51�

NC2R 0�00149 0�00176 0�00163 0�00152 0�00087
�0�10� �0�00� �0�63� �0�02� �0�00�

NCFV 0�00135 0�00131 0�00162 0�00134 0�00052
�0�39� �0�03� �0�47� �0�82� �0�00�

NCFR 0�00144 0�00166 0�00171 0�00170 0�00068
�0�30� �0�01� �0�07� �0�00� �0�53�

PARV 0�00138 0�00141 0�00159 0�00133 0�00065
�1�00� �1�00� �1�00� �1�00� �1�00�

PARR 0�00153 0�00163 0�00161 0�00146 0�00085
�0�02� �0�01� �0�77� �0�12� �0�00�

Panel B: Portfolio strategies from existing literature

1/N 0�00179 0�00221 0�00230 0�00249 0�00169
�0�00� �0�00� �0�00� �0�00� �0�00�

VW 0�00158 0�00190 0�00191 0�00186 0�00157
�0�04� �0�00� �0�00� �0�00� �0�00�

MEAN 0�01090 0�38107 0�00353 0�00942 0�00626
�0�00� �0�00� �0�00� �0�00� �0�00�

BAYE 0�00264 0�06793 0�00221 0�00400 0�00066
�0�00� �0�00� �0�00� �0�00� �0�44�

MINU 0�00138 0�00186 0�00156 0�00143 0�00104
�0�68� �0�00� �0�25� �0�09� �0�00�

MINC 0�00134 0�00133 0�00186 0�00176 0�00087
�0�27� �0�33� �0�01� �0�00� �0�00�

FAC1 0�00145 0�00159 0�00202 0�00241 0�00075
�0�44� �0�10� �0�00� �0�00� �0�13�

LWID 0�00131 0�00143 0�00155 0�00126 0�00065
�0�00� �0�75� �0�28� �0�06� �0�75�

LW1F 0�00135 0�00140 0�00158 0�00134 0�00052
�0�04� �0�79� �0�86� �0�91� �0�00�

BSV3 0�00601 0�00392 0�00306 0�00344 0�00574
�0�00� �0�00� �0�00� �0�00� �0�00�

Notes. This table reports the monthly out-of-sample variances and the cor-
responding p-value that the portfolio variance for a strategy is different from
that for the partial minimum-variance portfolio calibrated using cross vali-
dation over portfolio variance (PARV). The p-values are computed using the
stationary bootstrap of Politis and Romano (1994) and the method in Ledoit
and Wolf (2008, Remark 3.2).

than the Bayesian portfolio (BAYE) for all data sets
except CRSP. The norm-constrained portfolios gener-
ally achieve lower out-of-sample variances than the
unconstrained minimum-variance portfolio (MINU),
and the differences are often statistically significant;
for instance, PARV achieves a statistically signifi-
cant lower variance than MINU for the 48Ind and
CRSP data sets. Also, the 1-norm-constrained port-
folios (NC1V) generally have lower variance than
the shortsale-constrained minimum-variance portfo-
lios (MINC) that NC1V nests, and the differences are
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statistically significant for the 6FF, 25FF, and CRSP
data sets. We also observe that the norm-constrained
portfolios NC1V, NC2V, NCFV, and PARV all attain
lower out-of-sample variances than the minimum-
variance portfolio based on a 1-factor market model
(FAC1), and the differences are often statistically sig-
nificant; for example, the difference between the vari-
ances of PARV and FAC1 is statistically significant for
the 6FF and 25FF data sets.
However, the out-of-sample variances of the 2- and

��F -norm-constrained portfolios (NC2V, NCFV) are
not always lower than those of the Ledoit and Wolf
(2003, 2004) portfolios (LWID, LW1F). For instance,
the LWID portfolio attains lower variances than the
NC2V portfolio for the 10Ind and 25FF data sets, with
the difference being significant for the 10Ind data set.
On the other hand, the LW1F portfolio has a higher
variance than the NCFV portfolio for the 48Ind data
set, and the difference is statistically significant.
Table 4 reports the out-of-sample Sharpe ratios for

the different portfolios and the corresponding p-value
that the Sharpe ratio for each of these strategies
is different from that for the PARR portfolio. We
have also computed all other pairwise p-values, and
when comparing portfolio strategies in our discussion
below we say that the difference is significant if this
p-value is smaller than 5%.
From panel A in Table 4 we see that the partial

minimum-variance portfolio calibrated by maximiz-
ing the portfolio return in the last period (PARR)
almost always attains higher Sharpe ratios than the
1-, 2-, and ��F -norm-constrained portfolios (NC1R,
NC2R, NCFR), although the differences are significant
only between PARR and NC1R, not between PARR
and NC2R or NCFR.
Comparing the Sharpe ratios of the norm-con-

strained portfolios in panel A to those of the portfo-
lios from the literature listed in panel B, we see that
the norm-constrained portfolios have higher Sharpe
ratios than both the equally weighted (1/N ) and the
value-weighted (VW) portfolios for all data sets, and
the difference is substantial and significant in most
cases; in fact, PARR attains a significantly higher
Sharpe ratio for all data sets except 48Ind. The dif-
ference in performance is even more striking when
the norm-constrained portfolios are compared to the
traditional mean-variance (MEAN) and the Bayesian
mean-variance strategies (BAYE).
The PARR portfolio attains a higher Sharpe ratio

than MINU, MINC, and FAC1 for all the data sets,
and the difference is often significant. Moreover,
the 1-norm-constrained portfolio calibrated by max-
imizing the return of the portfolio in the previous
period (NC1R) typically outperforms the shortsale-
constrained minimum-variance portfolio (MINC) that

Table 4 Portfolio Sharpe Ratios

Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A: Portfolio strategies developed in this paper

NC1V 0�2854 0�2886 0�3385 0�3649 0�4013
�0�06� �0�32� �0�01� �0�00� �0�11�

NC1R 0�2890 0�2831 0�3374 0�3553 0�3706
�0�05� �0�19� �0�00� �0�00� �0�04�

NC2V 0�2919 0�2855 0�3527 0�4089 0�3994
�0�08� �0�22� �0�10� �0�22� �0�07�

NC2R 0�3193 0�2891 0�3922 0�4278 0�4672
�0�40� �0�05� �0�93� �0�36� �0�55�

NCFV 0�2927 0�2808 0�3479 0�3728 0�4463
�0�21� �0�27� �0�08� �0�03� �0�48�

NCFR 0�3114 0�2723 0�3186 0�3815 0�4243
�0�56� �0�22� �0�01� �0�11� �0�32�

PARV 0�2841 0�2823 0�3478 0�4077 0�3937
�0�07� �0�29� �0�10� �0�25� �0�05�

PARR 0�3293 0�3166 0�3912 0�4403 0�4768
�1�00� �1�00� �1�00� �1�00� �1�00�

Panel B: Portfolio strategies from existing literature

1/N 0�2541 0�2508 0�2563 0�2565 0�3326
�0�02� �0�10� �0�00� �0�00� �0�00�

VW 0�2619 0�2698 0�2437 0�2558 0�2748
�0�02� �0�23� �0�00� �0�00� �0�00�

MEAN 0�0499 −0�0334 0�3214 0�2253 0�0723
�0�01� �0�01� �0�22� �0�02� �0�00�

BAYE 0�1685 −0�0121 0�3666 0�3151 0�4018
�0�04� �0�04� �0�57� �0�15� �0�08�

MINU 0�2865 0�2222 0�3640 0�4199 0�3820
�0�09� �0�01� �0�30� �0�50� �0�03�

MINC 0�2852 0�2914 0�2629 0�2720 0�3985
�0�06� �0�44� �0�00� �0�00� �0�08�

FAC1 0�3060 0�2674 0�2485 0�2486 0�4166
�0�54� �0�26� �0�00� �0�00� �0�37�

LWID 0�2962 0�2620 0�3226 0�3974 0�4086
�0�11� �0�05� �0�00� �0�10� �0�11�

LW1F 0�2902 0�2544 0�3296 0�3927 0�4500
�0�13� �0�04� �0�01� �0�09� �0�56�

BSV3 0�1157 0�3314 0�3907 0�4047 0�2674
�0�00� �0�82� �0�99� �0�62� �0�00�

Notes. This table reports the monthly out-of-sample Sharpe ratio and the
corresponding p-value that the Sharpe ratio for each of these strategies
is different from that for the partial minimum-variance portfolio calibrated
by maximizing the portfolio return in the previous period (PARR). The
p-values are computed using the studentized circular block bootstrapping
methodology in Ledoit and Wolf (2008).

it nests, and the differences are significant for the 6FF
and 25FF data sets.
The PARR portfolio attains a higher Sharpe ratio

than LWID and LW1F for all the data sets, and
the difference is statistically significant for the 48Ind
and 6FF data sets, although as we will see below,
the higher Sharpe ratio of PARR is accompanied by
higher turnover. Also, the 2-norm-constrained port-
folio (NC2R) always attains a higher out-of-sample
Sharpe ratio than the LWID portfolio, although the
difference is significant only for the 6FF data set.
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Table 5 Portfolio Turnovers

Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A: Portfolio strategies developed in this paper

NC1V 0�1494 0�2680 0�1729 0�2407 0�6141
NC1R 0�6013 0�8232 1�0064 0�9767 0�9753
NC2V 0�1448 0�3266 0�1946 0�4570 0�5808
NC2R 1�0177 2�7556 1�6594 3�6275 1�0443
NCFV 0�1052 0�2469 0�2790 0�4134 0�5729
NCFR 0�6944 2�3117 1�9952 3�3560 1�0584
PARV 0�1689 0�3838 0�2600 0�4628 0�5743
PARR 1�0414 2�4846 1�6407 3�5657 1�0984

Panel B: Portfolio strategies from existing literature

1/N 0�0232 0�0311 0�0155 0�0174 0�0595
VW 0�0382 0�0540 0�0213 0�0310 0�2316
MEAN 1�0135 105�6126 0�7987 4�2495 3�0014
BAYE 0�3565 6�6314 0�5388 2�1264 0�6191
MINU 0�1656 0�8286 0�2223 0�7953 0�7769
MINC 0�0552 0�0741 0�0461 0�0841 0�4222
FAC1 0�0935 0�2047 0�1152 0�2398 0�3650
LWID 0�1132 0�4029 0�0905 0�3144 0�5594
LW1F 0�1428 0�4034 0�1455 0�4893 0�5463
BSV3 0�4683 0�9066 0�5384 0�5564 2�1926

Notes. This table reports the monthly turnover of the various portfolios.
Turnover is the average percentage of wealth traded in each period and, as
defined in Equation (13), is equal to the sum of the absolute value of the
rebalancing trades across the N available assets and over the T − � −1 trad-
ing dates, normalized by the total number of trading dates.

However, the ��F -norm-constrained portfolio cali-
brated by maximizing the return of the portfolio in
the previous period (NCFR) fails to achieve higher
Sharpe ratios than the corresponding LW1F portfolio.
Finally, even though the PARR portfolio does not

use firm-specific characteristics, it achieves Sharpe
ratios that are at least as good as those for the para-
metric portfolios (BSV) developed in Brandt et al.
(2005), and the differences are significant for the 10Ind
and CRSP data sets.
From panel A in Table 5 we see that the turnover of

the norm-constrained portfolios calibrated using cross
validation over the portfolio variance is much lower
than that of the portfolios calibrated by maximiz-
ing the portfolio return. Panel B of this table shows,
not surprisingly, that the best portfolios in terms of
turnover are the 1/N and value-weighted portfolios.17

The turnover of these portfolios is followed by that of
the shortsale-constrained minimum-variance portfolio
(MINC). The turnovers of the 1-, 2-, and ��F -norm-
constrained portfolios and the partial minimum-
variance portfolio calibrated with cross validation

17 We compute the value-weighted portfolio for each data set as the
portfolio that assigns a weight to each asset equal to the market
capitalization of that asset divided by the market capitalization of
all the assets in the data set. Note that because the composition
of the “market portfolio” may be changing over time, the strategy
of holding the value-weighted portfolio may have a turnover that
is different from zero.

over variance, and the LWID and LW1F portfolios
proposed in Ledoit and Wolf (2003, 2004), are higher
than that of MINC. The shortsale-unconstrained
minimum-variance portfolio and the portfolios based
on factor models have higher turnover than MINC
and the norm-constrained strategies calibrated to
minimize portfolio variance. The partial minimum-
variance portfolio calibrated by maximizing the port-
folio return in the last month (PARR) and the para-
metric portfolios based on the work by Brandt et al.
(2005) have similar turnovers, which are much higher
than those of the rest of the portfolios.

5. Conclusion
We provide a general unifying framework for deter-
mining portfolios in the presence of estimation error.
This framework is based on shrinking directly the
portfolio-weight vector rather than some or all of
the elements of the sample covariance matrix. This
is accomplished by solving the traditional minimum-
variance problem (based on the sample covariance
matrix) but subject to the additional constraint that
the norm of the portfolio-weight vector be smaller
than a given threshold. We show that our gen-
eral framework nests as special cases the shrinkage
approaches of Jagannathan and Ma (2003), Ledoit
and Wolf (2003, 2004), and the 1/N portfolio stud-
ied in DeMiguel et al. (2009). We also compare
empirically the out-of-sample performance of the new
portfolios we have proposed to 10 strategies in the
literature across five data sets. We find that the norm-
constrained portfolios often have a higher Sharpe
ratio than the portfolio strategies in Jagannathan and
Ma (2003), Ledoit and Wolf (2003, 2004), the 1/N port-
folio, and other strategies in the literature, such as
factor portfolios.

6. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Appendix. Proofs of Propositions
Proof of Proposition 1. Note that the 1-norm-con-

strained minimum-variance portfolio problem with � = 1
can be obtained from the shortsale-constrained problem by
replacing the shortsale constraint w ≥ 0 with the 1-norm
constraint �w�1 ≤ 1. Straightforward algebra shows that, in
the presence of the additional constraint that the portfolio
weights add up to one, these two constraints are indeed
equivalent. �

Proof of Proposition 2. Note that the portfolio that
minimizes the A-norm subject to the constraint that
the weights add up to one can be written as wF =
A−1e/�e�A−1e	. Hence, if � ≥ 1/�e�A−1e	, then there exists
a feasible point for the A-norm-constrained minimum-
variance portfolio problem. If, in addition, �� is nonsingu-
lar, then there is a unique global minimizer to the problem,
and this unique minimizer is characterized by the first-
order optimality conditions, which imply that there exist
Lagrange multipliers � and � such that

2��w+ 2�Aw− �e = 0� (14)

w�e = 1� (15)

w�Aw≤ �� (16)

� ≥ 0 (17)

These conditions imply that the first-order optimality con-
ditions hold for the minimum-variance problem with ��LW =
�1/�1+ �		�� + ��/�1+ �		A. Moreover, because �� is nonsin-
gular and positive definite, A is positive definite, and � ≥ 0,
we know that the matrix ��LW is positive definite, and the
first-order optimality conditions for the minimum-variance
problem with ��LW are then also sufficient for optimality. �

Proof of Proposition 3. Note that the 1/N portfolio is
the portfolio with minimum 2-norm out of all portfolios
whose weights sum up to one. Moreover, we use the 1/N
portfolio as the starting point for the conjugate-gradient
method when we apply this method to solve the minimum-
variance portfolio problem. Then, it trivially follows from
the analysis in Phatak and De Hoog (2003) and Steihaug
(1983) that the 2-norm of the iterates generated by the
conjugate-gradient method is nondecreasing. �

Proof of Proposition 4. Because the prior distributions
of the portfolio weights are independent, the prior distribu-
tion for a portfolio w is

��w	 =
N∏

i=1

�

2
e−� = �N

2N
e−��w�1  (18)

Then Bayes theorem implies that the posterior distribution
of the portfolio weights conditional on the observed sample
returns is

��w��2 � 
rt�
T
t=1	

= ��w	���2	L�w��2 � 
rt�
T
t=1	∫

w��2 ��w	���2	L�w��2 � 
rt�
T
t=1	 dwd�2

� (19)

where

L�w��2 � 
rt�
T
t=1	 = 1

�N
√
2N �N

exp
(

−
∑T

t=1�w
�rt −w��̂	2

2�2

)

is the likelihood function of w and �2 given the observed
sample returns 
rt�

T
t=1.

18 Hence we have that

��w��2 � 
rt�
T
t=1	 ∝ ��w	���2	L�w��2 � 
rt�

T
t=1	� (20)

where the symbol ∝ means that the distribution is pro-
portional to the right-hand-side term. Simple algebra then
shows that

��w��2 � 
rt�
T
t=1	

∝ ���2	

�N
exp

(
−
∑T

t=1�w
�rt −w��̂	2

2�2
− ��w�1

)
 (21)

Hence for any value of � , the portfolio that maximizes the
posterior distribution of the minimum-variance portfolio
weights, subject to the condition that the portfolio weights
add up to one, is the solution to the following optimization
problem:

min
w

w���w+ ��w�1� (22)

s.t. w�e = 1� (23)

where w���w = ∑T
t=1�w

�rt − w��̂	2/�T − 1	 and � =
2�2�/�T − 1	. Moreover, it follows from optimization the-
ory (Nocedal and Wright 1999, Chap. 17) that there
exists a threshold parameter � such that the solution to
problem (22)–(23) coincides with the 1-norm-constrained
minimum-variance portfolio. Finally, because for any fixed
value of � the portfolio that maximizes the posterior distri-
bution is a 1-norm-constrained minimum-variance portfo-
lio, we know that the portfolio that maximizes the posterior
distribution must also be a 1-norm-constrained minimum-
variance portfolio. �

Proof of Proposition 5. Following the same line of rea-
soning as in the proof of Proposition 4, we have by Bayes
theorem and simple algebra that

��w��2 � 
rt�
T
t=1	

∝ ���2	

�N
exp

(
−
∑T

t=1�w
�rt −w��̂	2

2�2
− 1

2
w�Aw

)
 (24)

Hence for any value of � the portfolio that maximizes the
posterior distribution of the minimum-variance portfolio

18 Note that L�w�� 2 � 
rt�
T
t=1	 coincides with the joint density func-

tion for the distribution of the sequence of independent portfolio
returns 
w�rt�

T
t=1 conditional on the values of � and w; that is,

��
w�rt�
T
t=1 � w�� 2	. This conditional distribution is customarily

termed in Bayesian statistics as the likelihood function.
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weights subject to the condition that the portfolio weights
add up to one is the solution to the following optimization
problem:

min
w

w���w+ �w�Aw� (25)

s.t. w�e = 1� (26)

where w���w = ∑T
t=1�w

�rt − w��̂	2/�T − 1	 and � =
�2/�T − 1	. Moreover, it follows from optimization the-
ory (Fiacco and McCormick 1968, Chap. 4) that there
exists a threshold parameter � such that the solution to
problem (25)–(26) coincides with the A-norm-constrained
minimum-variance portfolio for the threshold �. Finally,
because for any fixed value of � the portfolio that maxi-
mizes the posterior distribution is an A-norm-constrained
minimum-variance portfolio, we know that the portfolio
that maximizes the posterior distribution must also be an
A-norm-constrained minimum-variance portfolio. �

Proof of Proposition 6. Straightforward algebra shows
that the 1-norm constraint can be written as

�w�1 = 1− 2
∑

i∈� �w	

wi ≤ �� (27)

where � �w	 is the set of asset indexes for which the cor-
responding portfolio weight is negative, � �w	 = 
i� wi < 0�.
Hence, the 1-norm-constrained minimum-variance prob-
lem is

min
w

w���w�

s.t. w�e = 1�

1− 2
∑

i∈� �w	

wi ≤ �

At the solution to this problem, and assuming none of the
elements of w are equal to zero, there exists a Lagrange mul-
tiplier � ≥ 0 such that the solution to this problem coincides
with the solution to

min
w

w���w− 2�
∑

i∈� �w	

wi�

s.t. w�e = 1

Moreover, because at the solution w�e = 1, the problem can
be equivalently rewritten as

min
w

w���� − �ne� − �n�e	w�

s.t. w�e = 1�

which completes the proof for the proposition. �
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