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Abstract

Background: Viral infection involves a large number of protein-protein interactions (PPIs) between virus and its host.

These interactions range from the initial binding of viral coat proteins to host membrane receptor to the hijacking the

host transcription machinery by viral proteins. Therefore, identifying PPIs between virus and its host helps understand

the mechanism of viral infections and design antiviral drugs. Many computational methods have been developed to

predict PPIs, but most of them are intended for PPIs within a species rather than PPIs across different species such as

PPIs between virus and host.

Results: In this study, we developed a prediction model of virus-host PPIs, which is applicable to new viruses and

hosts. We tested the prediction model on independent datasets of virus-host PPIs, which were not used in training

the model. Despite a low sequence similarity between proteins in training datasets and target proteins in test

datasets, the prediction model showed a high performance comparable to the best performance of other methods

for single virus-host PPIs.

Conclusions: Our method will be particularly useful to find PPIs between host and new viruses for which little

information is available. The program and support data are available at http://bclab.inha.ac.kr/VirusHostPPI.
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Background

There are many types of viruses that cause a wide vari-

ety of viral infections or viral diseases. For example, more

than 11,000 deaths were reported in Africa during the out-

break of Ebola virus disease in 2014 and 2015 [1]. More

recently, an outbreak ofMiddle East respiratory syndrome

coronavirus (MERS-CoV) [2], which began with a patient

in an emergency room, occurred in South Korea. So far,

there is no specific vaccine or effective treatment for Ebola

virus andMERS-CoV [1, 2]. Viral infection involves a large

number of protein-protein interactions (PPIs) between

virus and its host. These interactions range from the initial

binding of viral coat proteins to host membrane receptor
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to the hijacking the host transcription machinery by viral

proteins. Therefore, identifying PPIs between virus and its

host helps understand the mechanism of viral infections

and design antiviral drugs.

Many computational methods have been developed to

predict PPIs, but most of them are intended for PPIs

within a same species rather than for PPIs across differ-

ent species. Methods for predicting intra-species PPIs do

not distinguish interactions between proteins of the same

species from those of different species, and thus are not

appropriate for predicting inter-species PPIs. Motivated

by a recent increase in data of virus-host PPIs, a few com-

putational methods have been developed to predict virus-

host PPIs using machine learning methods. For instance,

a homology-based method [3] and domain-based method

[4] were proposed to predict PPIs between H. sapiens and

M. tuberculosis H37Rv. Cui et al. [5] developed a support
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vector machine (SVM) model to predict PPIs between

human and two types of viruses (hepatitis C virus and

human papillomavirus). However, these prediction meth-

ods cannot be applied to new viruses or new hosts that

have no known PPIs to the methods. Inter-species PPIs

predicted by these methods are for PPIs between virus

of a single type and host of a single type. A recent SVM

model called DeNovo is perhaps the only one that can pre-

dict PPIs of new viruses with a shared host [6]. Amino

acid sequence similarity between different types of viruses

or hosts is relatively low, so sequence-based prediction of

virus-host PPIs for new viruses or hosts is quite challeng-

ing. In this study, we developed a new prediction method

of virus-host PPIs which is applicable to new viruses or

hosts. The rest of this paper discusses the details of the

method and its experimental results.

Methods

Data of virus-host PPIs

We obtained all known PPIs between virus and host using

the PSICQUIC web service (http://www.ebi.ac.uk/Tools/

webservices/psicquic/view/main.xhtml). We extracted

virus-host PPIs from four databases, APID, IntAct, Men-

tha and UniProt, which use same protein identifiers. The

sequences of the proteins involved in any of the PPIs were

obtained from the UniProt database (http://www.uniprot.

org). As of December 2016, there are a total of 12,157

PPIs between 29 hosts and 332 viruses (Table 1). The

reason that human is listed as a separate category from

other animals (i.e., non-human animals) in the classifica-

tion of hosts is because human has a much larger number

of known PPIs with viruses than other animals. Detailed

information on the viruses involved in the virus-host PPIs

is available at http://bclab.inha.ac.kr/VirusHostPPI.

Learning-based prediction of PPIs requires both posi-

tive and negative PPI data, but negative data are not read-

ily available in databases. For negative data, we obtained

protein sequences of major hosts (human, non-human

animal, plant, and bacteria) from UniProt, and removed

those with a sequence similarity higher than 80% to any

positive data using CD-HIT-2D [7].

Datasets

We constructed several datasets to examine the applica-

bility of our prediction method to new viruses or hosts.

The datasets are classified into two types:

1. Training (TR) and test (TS) sets for assessing the

applicability to new viruses

TR1: PPIs between human and any virus except

H1N1

TR2: PPIs between human and any virus except

Ebola virus

TR3: PPIs between any host and any virus except

H1N1

TR4: PPIs between any host and any virus except

Ebola virus

TS1: PPIs between human and H1N1 virus

Table 1 The number of known host–virus PPIs and viruses interacting with a host

Host Major hosts #Host-virus #Interacting

classification (taxonomy ID) PPIs virus taxanomy IDs

Human Homo sapiens (9606) 11,491 246

Mus musculus (10090) 191 89

Bos taurus (9913) 125 32

Rattus norvegicus (10116) 86 19

Non-human Sus scrofa (9823) 57 10

animal Gallus gallus (9031) 15 9

Equus caballus (9796) 7 6

Drosophila melanogaster (7227) 4 3

Canis lupus familiaris (9615) 3 1

Plant Arabidopsis thaliana (3702) 17 11

Escherichia coli K-12 (83333) 78 9

Bacteria Streptococcus pneumonia (170187) 49 2

Pseudomonas aeruginosa (208963) 13 4

Escherichia coli (562) 3 1

Others 15 hosts 18 15

Total 29 12,157 332∗

332*: the total number of non-redundant viruses in terms of taxonomy IDs

http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml
http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml
http://www.uniprot.org
http://www.uniprot.org
http://bclab.inha.ac.kr/VirusHostPPI
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TS2: PPIs between human and Ebola virus

2. Training (TR) and test (TS) sets for assessing the

applicability to new hosts

TR5: PPIs between human and any virus

TS5.1: PPIs between non-human animal and any

virus

TS5.2: PPIs between plant and any virus

TS5.3: PPIs between bacteria and any virus

TS5.4: PPIs between any non-human host and any

virus

To examine the applicability of the prediction method

to new viruses, we constructed a training dataset with

10,955 PPIs between human and any virus except H1N1

virus (hereafter called TR1). The prediction method was

later tested on a test dataset with 381 PPIs between human

and H1N1 virus (called TS1), which were not used in

training the method. We constructed another training

dataset TR2 with 11,341 PPIs between human and any

virus except Ebola virus. The prediction method trained

with TR2 was tested on a test dataset TS2, which con-

tains 150 PPIs between human and Ebola virus (Fig. 1a).

Additional training datasets for studying the applicabil-

ity to new viruses are TR3 and TR4. TR3 contains 11,617

virus-host PPIs except PPIs of H1N1 virus. TR4 consists of

12,007 virus-host PPIs except PPIs of Ebola virus. The pre-

diction model trained with TR3 and TR4 was later tested

on TS1 and TS2, respectively (see Fig. 1b for details).

The reason for selecting the viruses for the SVM model

is as follows: (1) For training the SVM model, we tried

to select as many virus proteins as possible which have

known interactions with host proteins. (2) For testing

the SVM method on new viruses, we selected H1N1 and

Ebola virus because the viruses caused a large number

of deaths recently but no specific vaccine or effective

treatment is available yet.

The applicability of the prediction method to new hosts

was evaluated using training dataset TR5 and test datasets

TS5.1–TS5.4. TR5 contains 11,491 PPIs between human

and any virus. The prediction method trained with TR5

was tested on PPIs of non-human hosts with virus, which

were not used in training the method. The test datasets

include TS5.1 (PPIs of non-human animal with virus),

TS5.2 (PPIs of plant with virus), TS5.3 (PPIs of bacteria

with virus) and TS5.4 (PPIs of any non-human host with

virus) (Fig. 2).

To assess the independence of the test data from

the training data, we analyzed the sequence similarity

between the training datasets and test datasets using

EMBOSS Needle tool [8]. As shown in Table 2, target

proteins in the test datasets showed a very low sequence

similarity with proteins in the training datasets (see the

supporting data at http://bclab.inha.ac.kr/VirusHostPPI

for the similarity of every sequence pair between the

training datasets and test datasets).

Features and representation

Feature selection and representation are critical to the

success of prediction of PPIs. In particular, one of the chal-

lenges in sequence-based prediction of virus-host PPIs

is to represent two types of proteins of variable lengths

into a feature vector of a fixed length. Several encoding

schemes have been used to represent protein sequences

for predicting PPIs. For instance, Shen et al. [9] clus-

tered 20 amino acids into seven groups, and represented

the relative frequency of three consecutive amino acids

(referred to ’amino acid triplet’) in a protein sequence

using the classification. In our previous work [5], we

redefined the relative frequency of an amino acid triplet

using six groups of amino acids. However, both Shen’s

representation and ours generate a feature vector with

many zero-valued elements, which lower the prediction

performance.

Fig. 1 a Training dataset 1 (TR1): 10,955 PPIs between human and any virus except H1N1. Test dataset 1 (TS1): 381 PPIs between human and H1N1

virus. Training dataset 2 (TR2): 11,341 PPIs between human and any virus except Ebola virus. Test dataset 2 (TS2): 150 PPIs between human and

Ebola virus. b Training dataset 3 (TR3): 11,617 PPIs between any host and any virus except H1N1. Test dataset 1 (TS1): 381 PPIs between human and

H1N1 virus. Training dataset 4 (TR4): 12,007 PPIs between any host and any virus except Ebola virus. Test dataset 2 (TS2): 150 PPIs between human

and Ebola virus

http://bclab.inha.ac.kr/VirusHostPPI
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Fig. 2 Training dataset 5 (TR5): 11,491 PPIs between human and any

virus. Test dataset 5.1 (TS5.1): 488 PPIs between non-human animal

and any virus. Test dataset 5.2 (TS5.2): 17 PPIs between plant and any

virus. Test dataset 5.3 (TS5.3): 143 PPIs between bacteria and any virus.

Test dataset 5.4 (TS5.4): 666 PPIs between non-human host and any

virus (combined set of test datasets 5.1, 5.2, 5.3 and 18 PPIs with 15

other hosts)

In this study, we represent six different features of a

protein sequence in a feature vector. For representation,

we fist clustered twenty amino acids into seven groups,

{AGV}, {C}, {FILP}, {MSTY}, {HNQW}, {DE}, and {KR}

based on the dipoles and volumes of the side chains of

amino acids. The classification of amino acids is the same

as that of Shen et al. [9] and others [10]. In this classifica-

tion of amino acids, there are 7 × 7 × 7 = 343 possible

amino acid triplets.

For each pair of host and virus proteins, we represent

the relative frequency of amino acid triplets (RFAT) as a

feature vector with 686 elements (343 for a host protein

and 343 for a virus protein). The RFAT of the i-th amino

acid triplet is defined by Eq. 1. In the equation, fi, avgF, and

maxF denote the frequency of the i-th amino acid triplet,

the average, and the maximum frequency of amino acid

triplets in the protein sequence, respectively.

RFATi = e(fi−avgF) / (maxF−avgF) (1)

where avgF = avg
{

f1, f2, . . . , f343
}

maxF = max
{

f1, f2, . . . , f343
}

Another feature is the frequency difference of amino

acid triplets (FDAT) between virus and host proteins,

which is defined by Eq. 2. In Eq. 2, fhi is the frequency

of the i-th amino acid triplet in the host protein of the

host-virus pair, and fvi is the frequency of the i-th amino

acid triplet in the virus protein of the same host-virus pair.

avgFD and maxFD denote the average and the maximum

frequency difference of amino acid triplets in a host-virus

pair, respectively.

FDATi = e(|fhi−fvi|−avgFD) / (maxFD−avgFD) (2)

where avgFD = avg
{

|fh1 − fv1|, . . . , |fh343 − fv343|
}

maxFD = max
{

|fh1 − fv1|, . . . , |fh343 − fv343|
}

We also represent amino acid composition (AC) in each

pair of host and virus proteins (Eq. 3). ACi is the frequency

of the i-th amino acid present in a host-virus pair divided

by the maximum frequency of an amino acid in the

pair.

ACi =
fi

max
{

f1, f2, . . . , f20
} (3)

The above three features, RFAT, FDAT and AC were

developed in our previous study for inter-species PPIs

of a single type [11]. However, the previous study used

a different classification of amino acids and computed

the average and the maximum frequency from all pro-

teins in a dataset instead of a single protein being

encoded.

As additional features, we used composition, transition

and distribution of amino acid groups [10]. Composition

represents the normalized frequency of each amino acid

group in the protein sequence. Transition represents the

normalized frequency of transition between each amino

acid group in the protein sequence. Distribution is the

normalized position of the first, 25%, 50%, 75% and 100%-

th amino acid of each amino acid group in the protein

Table 2 The average sequence similarity between proteins in training datasets and those in test datasets

Average

Proteins in training datasets Target proteins in test datasets sequence

similarity

766 virus proteins in TR1,TR3 11 H1N1 virus proteins in TS1 9.6%

774 virus proteins in TR2,TR4 3 Ebola virus proteins in TS2 10.9%

3,924 human proteins in TR5 368 non-human animal proteins in TS5.1 10.7%

3,924 human proteins in TR5 13 plant proteins in TS5.2 10.6%

3,924 human proteins in TR5 106 bacteria proteins in TS5.3 10.4%
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sequence. A pair of host and virus proteins is represented

by a feature vector with 1,175 elements (686 for RFAT, 343

for FDAT, 20 for AC, 14 for compositions, 42 for transi-

tions, and 70 for distributions). Figure 3 shows an example

of a feature vector for a pair of host and virus proteins.

Results and discussion

Prediction models of virus-host PPIs

We built several support vector machine (SVM) models

using LIBSVM [12] to predict the interactions between

virus and host proteins. The radial basis function (RBF)

was used as a kernel function for training the SVM mod-

els, and the best values of parameters C and γ were

found by running the grid search of LIBSVM on train-

ing datasets. Unless specified otherwise, the results shown

in this paper were obtained with C= 32, γ = 0.03125.

The SVM models take a pair of virus and host protein

sequences as input. As output, the SVM models clas-

sify whether or not the virus protein interacts with the

host protein. The SVM models and supporting data are

available at http://bclab.inha.ac.kr/VirusHostPPI.

Performance measures

The performance of the prediction models were evalu-

ated by several measures: sensitivity, specificity, accuracy,

positive predictive value (PPV), negative predictive value

(NPV), Matthews correlation coefficient (MCC) and the

area under the ROC curve (AUC), which are defined as

follows

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

Fig. 3 An example of a feature vector for a pair of host and virus proteins. RFAT: relative frequency of amino acid triplets. FDAT: frequency difference

of amino acid triplets between virus and host proteins. AC: amino acid composition. A pair of host and virus proteins is represented by a feature

vector with 1175 elements

http://bclab.inha.ac.kr/VirusHostPPI
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Accuracy =
TP + TN

TP + FP + TN + FN
(6)

PPV =
TP

TP + FP
(7)

NPV =
TN

TN + FN
(8)

MCC =
(TP × TN) − (FP × FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(9)

In Eqs. 4–9 true positives (TP) are host proteins that

are correctly predicted as interacting with a virus protein.

True negatives (TN) are non-interacting host proteins that

are correctly predicted as non-interacting with a virus

protein. False positives (FP) are non-interacting host pro-

teins that are incorrectly predicted as interacting with a

virus protein. False negatives (FN) are interacting host

proteins that are incorrectly predicted as non-interacting

with a virus protein.

Results of cross validation

We performed 10-fold cross validation of the SVMmodel

with several datasets which contain different ratios of

positive to negative data (1:1, 1:2 and 1:3). Due to the ran-

domness of selecting negative data, we constructed three

different datasets for each ratio of positive to negative

data. Table 3 shows the results of the cross validation.

The best performance of the SVMmodel was observed in

the balanced dataset with 1:1 ratio of positive to negative

data. As expected, running the SVMmodel on unbalanced

datasets resulted in lower performances than running

it on the balanced dataset with 1:1 ratio of positive to

negative data. Datasets are available at http://bclab.inha.

ac.kr/VirusHostPPI.

We also examined the contribution of features to the

prediction performance of our SVM model. Table 4 com-

pares different combinations of features in 10-fold cross

validation of the SVM model with the 1:1 dataset of

Table 3. Among the single features, RFAT was better than

the others (i.e., FDAT, AC, composition, transition, and

distribution) in all performance measures. With RFAT

alone, the SVM model achieved an accuracy above 83%

and an MCC above 0.668, which indicates that RFAT

is a very powerful feature in predicting virus-host PPIs.

Although RFAT is a powerful feature, performance gain

was obtained with it was used with combination of other

features. For example, using three features of RFAT, FDAT

and AC showed a better performance than using RFAT

alone. The best performance of the SVM model was

observed when all six features were used.

Applying the prediction model to new viruses

Table 5 shows the results of testing the prediction model

on 2 independent datasets of PPIs of H1N1 and Ebola

virus, which were not used in training the models. As dis-

cussed earlier, proteins of H1N1 virus have a sequence

similarity of 9.6% to those of other viruses, and proteins

of Ebola virus have a sequence similarity of 10.9% to other

viruses on average. Despite such a low sequence similarity

of proteins in test datasets to those in training datasets, all

prediction models trained with TR1–TR4 showed a rel-

atively high performance in independent testing. Predic-

tion models trained with host-virus PPIs (TR2 and TR4)

showed a slightly better performance than those trained

with human-virus PPIs (TR1 and TR3) in both H1N1 and

Ebola viruses. The models showed a higher sensitivity for

Table 3 Results of 10–fold cross validation of SVM model on 12,157 PPIs between any host-virus PPIs with different ratios of positive to

negative instances

P:N Dataset SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC

1 84.93 86.03 85.48 85.87 85.09 0.709 0.926

1:1 2 84.92 86.06 85.49 85.89 85.09 0.701 0.926

3 85.36 85.92 85.64 85.84 85.44 0.712 0.925

mean± SD 85.07± 0.3 86.00± 0.1 85.54± 0.1 85.87± 0.0 85.21± 0.2 0.71± 0.0 0.93± 0.0

1 78.91 91.17 87.08 81.72 89.64 0.707 0.923

1:2 2 78.29 91.03 86.78 81.36 89.34 0.700 0.921

3 78.22 91.18 86.86 81.59 89.33 0.701 0.920

mean± SD 78.47± 0.4 91.13± 0.1 86.91± 0.2 81.56± 0.2 89.44± 0.2 0.70± 0.0 0.92± 0.0

1 74.55 93.32 88.63 78.82 91.66 0.691 0.920

1:3 2 74.61 93.56 88.82 79.43 91.70 0.696 0.919

3 74.62 93.41 88.72 79.07 91.69 0.693 0.920

mean± SD 74.59± 0.0 93.43± 0.1 88.72± 0.1 79.11± 0.3 91.68± 0.0 0.69± 0.0 0.92± 0.0

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the area under the ROC

http://bclab.inha.ac.kr/VirusHostPPI
http://bclab.inha.ac.kr/VirusHostPPI
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Table 4 Results of 10-fold cross validation with datasets of virus-host PPIs using different combinations of features

Features SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC

RFAT 82.85 84.04 83.45 83.84 83.05 0.668 0.903

FDAT 68.34 57.84 63.11 61.86 64.65 0.264 0.689

AC 59.85 68.11 63.98 65.24 62.92 0.281 0.698

Composition 71.79 55.79 63.79 61.89 66.42 0.279 0.685

Transition 74.05 55.72 64.88 62.58 68.23 0.302 0.713

Distribution 71.79 31.55 51.67 51.19 52.80 0.036 0.515

RFAT+FDAT+AC 84.73 85.62 85.18 85.49 84.86 0.703 0.920

Composition+Transition +Distribution 76.51 61.72 69.12 66.65 72.43 0.386 0.787

All 6 features 85.36 85.92 85.64 85.84 85.44 0.712 0.925

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: area under the ROC

Ebola virus than for H1N1 virus. Detailed information is

available at http://bclab.inha.ac.kr/VirusHostPPI.

Applying the prediction model to new hosts

In order to examine the applicability of our prediction

model to new hosts, we tested it on PPIs of viruses with

new hosts, which were not used in training the model.

As described earlier, the model trained with human-virus

PPIs was tested on PPIs of viruses with non-human (i.e.,

non-human animal, plant and bacteria). As shown earlier

in Table 2, the average sequence similarity of human pro-

teins to non-human animal, plant, and bacteria is 10.7%,

10.6%, and 10.4%, respectively. Despite the low sequence

similarity, tests of the model on new hosts showed a

reasonable good performance (Table 6), but its perfor-

mance for new hosts was slightly lower than that for new

viruses.

The difference seems ascribed to the difference in the

number of target proteins in test datasets and to the dif-

ference in the number of partner proteins of the target

proteins, which are shared by training and test datasets.

Test datasets TS1 and TS2 have 381 interactions of 11

H1N1 virus proteins and 150 interactions of 3 Ebola virus

proteins with human proteins, respectively (Fig. 1 and

Table 2). Test datasets TS5.1, TS5.2 and TS5.3 have 488

interactions of 368 non-human animal proteins, 17 inter-

actions of 13 plant proteins and 143 interactions of 106

bacteria proteins with virus proteins, respectively (Fig. 2

and Table 2).

On average, a test dataset for new viruses has (381 +
150)/2 = 266 PPIs and a test dataset for new hosts has

(488 + 17 + 143)/3 = 216 PPIs. Thus, the difference

in the average number of PPIs of the two types of test

datasets is not large. However, there is a big difference

in the number of target proteins in the test datasets and

in the number of proteins common to training and test

datasets. The average number of virus proteins in a test

dataset for new viruses is only (11+3)/2 = 7, whereas the

average number of host proteins in the test datasets for

new hosts is (368 + 13 + 106)/3 = 162. Thus, virus-host

PPIs in the test datasets for new viruses share many host

proteins in the training datasets (248 host proteins com-

mon to TR1 and TS1, 129 host proteins common to TR2

and TS2, 248 host proteins common to TR3 and TS1, and

129 host proteins common to TR4 and TS2) even though

no virus proteins are shared by the test and the training

datasets. In contrast, virus-host PPIs in the test datasets

for new hosts share a much smaller number of virus pro-

teins in the training datasets (85 virus proteins common

to TR5 and TS5.1, 0 common to TR5 and TS5.2, 2 virus

Table 5 Results of testing the prediction model on PPIs of new viruses

Dataset SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC

TR1–TS1 89.76 66.14 77.95 72.61 86.60 0.575 0.886

TR2–TS2 90.67 65.33 78.00 72.34 87.50 0.579 0.867

TR3–TS1 88.98 65.88 77.43 72.28 85.67 0.564 0.884

TR4–TS2 94.67 68.67 81.67 75.13 92.79 0.656 0.890

TR1: training dataset of PPIs between human and any virus except H1N1. TS1: test dataset of PPIs between human and H1N1 virus. TR2: training dataset of PPIs between

human and any virus except Ebola virus. TS2: test dataset of PPIs between human and Ebola virus. TR3: training dataset of PPIs between any host and any virus except H1N1.

TR4: training dataset of PPIs between any host and any virus except Ebola virus. SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative

predictive value, MCC: Matthews correlation coefficient, AUC: area under the ROC

http://bclab.inha.ac.kr/VirusHostPPI


Zhou et al. BMC Genomics 2018, 19(Suppl 6):568 Page 76 of 97

Table 6 Results of testing the prediction models trained with human-virus PPIs (TR5) on PPIs of new hosts

Dataset SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC

TR5–TS5.1 66.39 65.98 66.19 66.12 66.26 0.324 0.733

TR5–TS5.2 76.47 58.82 67.65 65.00 71.43 0.359 0.761

TR5–TS5.3 59.44 74.83 67.13 70.25 64.85 0.347 0.736

TR5–TS5.4 64.87 67.87 66.37 66.87 65.89 0.327 0.731

TS5.1: test dataset of PPIs between non-human animal and any virus. TS5.2: test dataset of PPIs between plant and any virus. TS5.3: test dataset of PPIs between bacteria and

any virus. TS5.4: test dataset of PPIs between any non-human host (non-human animal, plant, bacteria and 15 other hosts) and any virus. SN: sensitivity, SP: specificity, ACC:

accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the area under the ROC

proteins common to TR5 and TS5.3, and 87 virus proteins

common to TR5 and TS5.4).

This is a known problem with pair-input methods,

which was first reported by Park and Marcotte [13],

but not widely known to researchers. According to their

study [13], prediction methods that operate on pairs of

objects such as PPIs perform much better for test pairs

that share components with a training set than for those

that do not. Thus, our prediction model showed a bet-

ter performance in testing for new viruses which share

more partner proteins (i.e., host proteins) with train-

ing datasets than in testing for new hosts which share

fewer partner proteins (i.e., virus proteins) with training

datasets.

Comparison to other methods

We compared our method with two other methods, DeN-

ovo [6] and Barman’s method [14], using their datasets.

For comparison with DeNovo’s SVM model, we tested

our SVM model on DeNovo’s SLiM testing set, which

contains 425 positive and 425 negative PPIs (Supple-

mentary file S12 used in DeNovo’s study ST6). While

DeNovo’s SVM model showed an accuracy of 81.90%,

sensitivity of 80.71%, specificity of 83.06%, our SVM

model achieved an accuracy of 84.47%, sensitivity of

80.00%, and specificity of 88.94% (Table 7). Our model

showed a slightly lower sensitivity, but showed a higher

specificity and accuracy. The dataset used for compar-

ison of our SVM model with DeNovo is available at

http://bclab.inha.ac.kr/VirusHostPPI.

In Barman’s study [14] three machine learning meth-

ods (SVM, Naïve Bayes, and Random Forest) were used

to predict virus–host PPIs using several features such as

domain–domain association in interacting protein pairs

and composition of methionine, serine, and valine in

viral proteins. In a 5-fold cross validation with virus–host

PPIs from VirusMINT [15], their SVM showed higher

sensitivity and F1 score than Naïve Bayes and Random

Forest. Thus, we tested our SVM model on the same

dataset used in Barman’s study, which contains 1035 pos-

itive and 1,035 negative interactions between 160 virus

proteins of 65 types and 667 human proteins. As shown

in Table 8, our SVM model outperformed Barman’s SVM

model in all performance measures. The dataset used for

comparison of our SVMmodel with Barman’s SVMmodel

is available at http://bclab.inha.ac.kr/VirusHostPPI.

Conclusion

Most computational methods of predicting PPIs are

intended for interactions within a species rather than for

interactions across different species such as interactions

between virus and host cell proteins. A small number of

computational methods which were recently developed

for predicting PPIs between virus and host are limited to

interactions of single virus or single host, and therefore a

separate prediction model is required to predict PPIs of

new viruses or hosts. However, proteins of new viruses or

hosts often exhibit quite a low sequence similarity to pro-

teins of known viruses or hosts, and little information is

available for new viruses or hosts.

In this study, we developed a prediction model of virus-

host PPIs, which is applicable to new viruses and hosts.

We tested the prediction model on independent datasets

of virus-host PPIs, which were not used in training the

model and have a very low sequence similarity to any

protein in training datasets of the model. Despite a low

sequence similarity between proteins in training datasets

and target proteins in test datasets, the prediction model

showed a high performance comparable to the best per-

formance of other methods for single virus-host PPIs. Our

Table 7 Results of testing our SVM and DeNovo’s SVM [6] on DeNovo’s dataset of 425 positive and 425 negative PPIs

SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC

Our SVM 80.00 88.94 84.47 87.86 81.64 0.692 0.897

DeNovo’s SVM 80.71 83.06 81.90 – – – –

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the area under the

ROC, “–”: not available

http://bclab.inha.ac.kr/VirusHostPPI
http://bclab.inha.ac.kr/VirusHostPPI
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Table 8 Results of 5-fold cross validation of our SVM and Barman’s SVM [14] with Barman’s dataset of 1035 positive and 1035 negative

PPIs

SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC F1(%)

Our SVM 76.14 83.77 79.95 82.46 77.80 0.601 0.858 79.17

Barman’s SVM 67.00 74.00 71.00 72.00 – 0.440 0.730 69.41

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the area under the

ROC, F1 = 2x(SNxPPV)/(SN+PPV), “–”: not available

predictionmodel will be useful in finding potential PPIs of

new viruses with new hosts, for which little information is

known.
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