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ABSTRACT 

In a previous paper ("A Multlvarlate Exponential Distribution," 

Boeing Scientific Research laboratories Document 01-82-0505)   the authors 

have derived a multlvarlate exponential distribution from points of 

view designed to indicate the applicability of the distribution.    Two 

of these derivations are based on "shock models" and one is based on 

the requirement  that residual life is Independent of age. 

The practical importance of the unlvarlate exponential distribution 

is partially due to the fact that It governs waiting times in a Polsson 

process.    In this paper, the distribution of Joint waiting times in a 

blvarlate Polsson process is investigated.     There are several ways to 

define "joint waiting time."    Some of  these Jead to  the blvarlate 

exponential  distribution previously obtained by the authors,  but others 

lead to a generalization of it.    This  generalized blvarlate exponential 

distribution is also derived from shock models.    The moment  generating 

function and other properties  of the distribution are investigated. 



1.       Introduction. 

It Is  common In applications  to encounter random vectors with 

elements that are clearly dependent.    In such cases,  the marginal 

distributions are often known, but these alone do not determine the 

joint distribution;  to the  contrary.  It is well known that  the Joint 

distribution can take many different forms.    However,  It may be that 

the joint distribution can be  obtained through a study of the 

mechanism causing dependence.    In the case of exponential marginals, 

we have In a previous paper (Marshall and Olkln,  1966)  presented such 

derivations  of  the blvarlate distribution given by 

(1.1) P{X > x, Y > y]  = Fixty) - e-M^^-A^maxOr,^ for ^ > 0> 

If    X    and    Y    are life  lengths of devices subjected to shocks,  this 

distribution arises when the occurrence of shocks is  governed by one 

or more Poisson processes.    In addition,   (1.1)  is the unique blvarlate 

distribution  (with exponential marginals) which satisfies  the require- 

ment that residual life given survival to a common age    t    has a dis- 

tribution independent of    t. 

The viewpoint of this paper is suggested by the fact that the 

unlvariate exponential distribution governs waiting times in a Poisson 

process.     More precisely,  if    {Z(t;),  t I 0]    is  a Poisson process 

with parameter    A    and    s    is a fixed point,  then the waiting time    X 

from   s    to the next event  (jump)  of the process has an exponential 
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dlstrlbutlon with parameter    A.       Likewise, If    s    Is  replaced by a 

random variable   5,    the occurrence time of the i      event,  then the 

st 
waiting time    X    from   5    to the    t+1        event Is again exponentially 

distributed with parameter    A.       More generally,    5    can be any stop- 

ping time.  I.e.,  any non-negative  random variable  for which one can 

check whether    S < 8    by observing    X(t)    only for    t  < 8.       To 

avoid ambiguities and problems  of separability, we assume  throughout 

this paper that sample functions of Poisson processes  are  right con- 

tinuous with probability one. 

Following Dwass and Telcher  (1957), we define (in§2.1) a blvarlate 

Poisson process     {z(£)  -  (Z:(t),Z2(t)),  t 1 0}    where    Zi(t)     and 

Z2(t)    are correlated Poisson processes.    There are several ways to 

define a "joint waiting time"  for this process: 

(t)      We may choose a fixed  time    s,    and consider the 

waiting time    X    to  the next event in  the     Z^     process 

together with  the  time    Y     to the next event in  the 

Z2    process. 

(ii)     In place of a fixed time    s    as in (t),    we may      gin 

waiting at a random time    S    that  is  a stopping  time. 

(Hi)  We may consider the  waiting time    X    from a fixed point 

s    to    ne next event in  the    Zj    process  together with 

the waiting time    Y    from the fixed point    8+6     to 

the next event  in  the    Z2    process.    Alternatively,  it 
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may be that replaced by a stopping time. 

iiv)    F nation is obtained If In  (Hi), both 

s    and   s+6    are stopping times. 

It Is not difficult to show that In cases  (t)  and  (ii),  the joint 

distribution of    X    and    Y    Is  given by  (1.1).     On the other hand, 

(Hi)  leads co the generalization 

(1.2) P{X > x, Y > y}  = Hx,y;6)  - 

■ e-A1x-A22y-A12max[x,2y+mln(x,6)]    6  >Q 

[e-M^A2*rM2max[x,2/-Hnln(:c,-6)]^  6  < 0f x      > 0g 

The parameter    6    might be called a "shift" parameter,  though It Is 

not simply a location parameter.     Of course when    6 * 0,  (1.2) 

reduces  to  (1.1). 

Case iiv) above results In a still more general family of dis- 

tributions. These can be obtained from (1.2) by first conditioning 

on 6,    so that the result Is a mixture of such distributions: 

00 

(1.3) P|A- > x, Y > y} - j   nx,y;6)dG(6). 
—00 

Because  of this representation, we confine ourselves  In this paper 

almost exclusively to a discussion of the distribution given by  (1.2). 

In addition to governing the waiting times in the blvariate 

Poisson process,  (1.2)  can be derived from shock models  (§2.3). 

These derivations shed light on the applicability of  (1.2), particularly 
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In reliability problems. 

For convenience, we say that    X   and    Y    are blvarlate exponential, 

BVE(A1,A2,A12;6),    If (1.2)  holds,  and refer to the distribution of 

(1.2)  as  the BVE(Ai,A2,A^ö)    distribution.    When    6    is the only 

significant parameter,  it is convenient to abbreviate    BVE(Ai,A2,Ai2;<5) 

by writing    BVE(6).    We refer to    F{x,y',6)   = P{X > x, y > y} as the 

survival probability;  this has a much simpler form than the distribution 

function    Fix,y',6)  = P{x < x, Y 5. y}. 

The survival probability    F(xty't6)    is  clearly    decreasing in 

6^0    and increasing in    6  f 0.     Since    Fixty't6)    has marginal survival 

probabilities 

P{X > x} - FOr.Ojö)  = e-(Xl+Xn)* 

P{Y > y]  = F(0,^;6)  » e"^^)^ 

that are independent of    6, 

FOe,*/;^)  - F(x,i/;62)  = Fix,yi6i)  - F(xty;&2)' 

Thus,    F(xtyt&)    is also decreasing (increasing)   in    6  > 0    (ö f 0). 

If    f(x,z/;6)    is the survival probability of a pair of  items,  it 

follows  that  the probability both items survive  and the probability 

neither item survives both reach  a maximum when    6 =» 0  (the case of 

(1.1)),  and a minimum when    6 > i» (the case of  Independence). 

Various properties of the distribution    F(x,y;6)     are discussed 

in §3,  generalizations are obtained In §4, and a brief discussion of 
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the multivarlate case Is  given In §5. 

2.       Derivations. 

2.1.        The blvarlate Polsson process. 

The unlvarlate Polsson distribution can,  of course, be obtained 

as a limit from the binomial distribution, which In turn arises via 

convolutions from the Bernoulli distribution.     This derivation can 

be repeated in the blvarlate case to obtain a blvarlate Polsson dis- 

tribution, because  there is  a unique blvarlate distribution with 

Bernoulli marginals.    Thet distribution places mass only at (0,0), 

(0,1),   (1,0)  and (1,1).       By convolving this  distribution and taking 

limits, Telcher (1954)  obtained the blvarlate Polsson distribution 

(7   "H      PlZ,   m T     7.*   m  ul   r.   p   A^P00+Pl0+P0W       V1  (2.1)    PiZj      x,  Z2      y\      e ^ a!(x-a)!(:/-«) I 

Earlier,  this distribution was  obtained by McKendrick  (1926), who 

obtained  (2.1)  as  the solution to a difference-differential equation. 

Starting with the blvarlate Bernoulli distribution,  Campbell  (1934)  obtained 

(2.1)  via generating functions. 

Dwass and Telcher  (1957)  have shown that  this distribution is  the 

only blvarlate distribution with Polsson marginals  that is infinitely 

divisible.    Now if    (Z^t),   t I 0]    and    (Z2(t),   t I O]    are Polsson 

processes and if    {(Zi(t),  Z2(t)),  t > 0}    has stationary and Independent 

Increments,  then the Increments must have an infinitely divisible dis- 

tribution, hence  the distribution given by  (2.1).    Because of this 

uniqueness, we call the process  the blvarlate Polsson process. 
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Dwass and Telcher have derived the Mvarlate Polsson process 

i(2i(t)l  Z2it)),  t t O]    directly from a one-dimensional Polsson process 

{Z*(t)t t > 0)    as follows:    If    Z*(t)    Jumps at time    T,    then 

Z(t) - (Zi(t)t  Zzit)) jumps at    T    from    Z(T-)    to   Z(T-) + (itj)    where 

Pl(i.j) - (0,0)} - pn, P{iiJ) - (0.1)} - pio. P{(iJ) - (1,0)} - poi, 

and   P|(t,j) ■ (1,1)} ■ Poo«    The Increments    (i,j)    at each jump are 

Independent and    |z*(t)t  t > 0}    has parameter    X,    so that 

^0 a!(x-a)!(i/-a)! 

Directly from the model, It Is easily seen that 

-At(poo"*pOl) ~. 
PiZ^t)  - x] -^ ^   [At(poo4poi)]X. 

In their derivation, Dwass and Telcher take   p11 > 0,    but  this 

results In no loss of generality. 

One can also obtain the blvarlate Polsson process from three Inde- 

pendent one-dlmenslonal Polsson processes    {Z^t), t > o] t   {Z*(t) $  t > 0} 

and    {2* (t),  ^ ^ 0}    with respective parameters    Aj,  A2    and    A^«    In 

fact,    ((Z*(t) + Z^2(t)t  Z5(t) + Z*2(t))t  t > 0]    is a blvarlate Polsson 

process.    This observation Is utilized In §2.3. 

2.2.        The .joint waiting time. 

Choose   81    and   82*    an^ consider the time   X   from   8^    to 
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the next event In the process    {zl(t)t t 1 0}    together with the time 

Y    from   82    to the next event in the process    {Z2it),  t t 0}•      To 

find the joint survival probability    P{X > x, Y > y},    it is convenient 

to assume first that    6 m 82 - 81 - 0,      Let    ti - Sj m x    and 

^2 ~ 82 u y-      Th* three cases    (i) x < 6,    (it) 6 ^ x < 1/ + 6, 

and    (Hi) y + 6 Z x    (indicated in Figure 1)  must be treated separately. 

x < 6 

z/ + 6  < a: 

x 

Fig.   1 

Case (i):    x < 6  (ei S ti S 62 $ t2). 

P{X > x, Y > y} - 

. 2,-x (*i-«i)—i-L-^^^v*^-8*'—TI (PU^PO^ 
t.J 

il j! 

rx(Poo-4?oi)a?-x(Poo-,Pio)2/ 
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Case (U)'.    6  < x < y + 6  («i ^ «2 f *1 - *2)« 

p{Ar > x, y > W -   2 e  il (Pn+Pio) • 
itjtk 

Xi       CPn^oi) 

, e-
APoo6-APoia7-A(Poo-4?io)j/# 

Case (tit);   y + 6 < x (ej < 82 5 ta - *l)• 

P|^ > x, y > i/} -     N   e H82 sl; — i\ •(Pn+Pio) • 

. -A(*2-a2)ii^W .    -A(^-^)tMti-t2)]fe 

J! 
Tue ^i (Pn^io) 

-x(Po0+Poi)z-tyloy 

Letting    Xj ■ Apoi>  ^2 " ^PlO»    an^    ^12 " ^Poo»    we obtain from these 

three cases the survival probability for    6 i: 0.      If    6 i 0,    the 

result is then obtained by Interchanging    A}    and    X2,    x   and   y, 

6    and    -6.      Together,  this yields 

'    -X1x-A2t/-A12(x+iy) 

(2.2)    P{X > x, Y > y} -    < 

>-A1x-A2i/-A12(x-ö) 

rxix~x2y-*i2y » 

-A1X-A2l/-A12X 

6 <-y 

-y * & * mln(x-2y,0) 

min(x-i/,0)  i 6 < 0 

0 ^ 6 < max(x-i/,0) 

e-A1x-A2t/-A12(j/+6)> nax(^t0)   < 6   < ,. 

e-A1x-A2i/-A12(xft/)j 6  > x^ 

which can be rewritten as  (1.2). 
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2.3.      A shock model derivation. 

We have previously us      both fatal and non-fatal shock models 

to derive the BVE(A1>A2,X12;0)  (Marshall & Olkln,  1966).    Such models 

can be modified to yield the BVECXi,A2,X12;6)    for any    6;    only the 

fatal shock case Is considered here. 

Suppose that a device Is placed In an environment where It Is 

subject to fatal shocks from two sources,  governed by Polsson processes 

Zl(£)*  Zi2(t)    with parameters    Aj,  A12.    After a time    5,    a second 

device Is placed In a similar environment where fatal shocks are 

governed by the processes    Z2(t),  Z^t)    with parameters    A2,  X12* 

Suppose, In addition,  that the three processes are Independent. 

Let X (7)    be the age,  or length of service,   of the first (second) 

device at the time of death.    To obtain the Joint survival probability 

P{X > x, Y > y]$    we again consider the cases represented by the three 

regions In Figure 1. 

Case  (t);    x f 6. 

P{X >x9 Y>y} - e-(^i2)^(A2+Ai2)i/ 

Case  (ii):    6  < x * y + 6. 

p{x >xt y>y} - e-*i*-*2y-h2(y+6) 

Case (Hi);    1/ + 6 i x. 

P^ > xt Y > y] - e-Xia:"A2^Al2X. 

Thus    (X,y)    has the Joint distribution given by (1.2). 
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3.      Properties of the distribution   F(xty;6). 

3.1.      The distribution function. 

The BVE distribution    (6-0)    has both an absolutely continuous 

and a singular part, with positive mass on the line    x m y.      From 

the shock model of §2.3, we see that If    (XtY)    Is BVE(6),    then In 

case an event In the process    Zi2(£)    causes both devices to fall, 

X * Y + &.      Thus the BVE(6)    distribution has a singular part, with 

positive mass on the line    x " y + 6. 

Theorem 3.1.        If   F(x,y)    Is    BVECA! .Aa.A^;«),  6  > 0,    and 

A»Ai+A2+Ai2»    then 

F(xty) -   aF (x,y) +  aF Cxty)t 

where 

.       Al2    -(A1+A12)6       -       . a - 1 r— e      1 .     a ■ 1 - a, 

aF (x u) - e"Ala;"A22/-^12max[a?»i/+inin(a;»lS)] Ü eA2<S-Amax(a;,^+6) 

Is absolutely continuous,  and 

F ix,y)  - e-Umax(x^+6)-ö] 

Is a singular distribution. 

Proof. Let    öi ■ Aj + A12.   02 "  A2 + A^.      Since 

F(u,v) 

e-eiir-e2v> u < 6 

e-Al2r-e2trA126>     6   , u < 6 + ^ 

e-e1u-A2i;> &+v<Ut 
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lt follows by differentiation that 

afa(u,v) - 

e1e2e-eiM-02v, u < 6 

X^ze^1"-02^126.    6 < M < 6 + t; 

eiAze-91""^. 6 + v < u. 

00 00 

By computing    aF (x,y)  ■ jdu jdv af (w,y) ,    we can obtain    a    from 

the condition F (0,0) ■ 1.       aF (x,y)    is obtained by subtraction: 
d 6 

aF(x,y)  - F(xty)  - aF(xty). 
8 d 

In order to carry out this program, we begin by computing three 

integrals which can be combined to give aF (xty). These integrals 

again correspond to the regions shown in Figure 1. 

Case (t); x 1 6, 

Let   A(xty)    be the integral of    of      over the region 

{(M,y): x < u < 6, v > y}.      Then 

A(xty) 'Jdu Jdv    afa(utv) - e"e22/[e'eia:-e"ei6J 

x     y 

Case jii);    6 £ x < z/ + 6. 

Ut   B(x,y)    be the integral of    af     over the region 

{(utv): x < u $ V + 6, V > y}.    Then 

B{x,y) 'Jdv J    du afaiu,v) ' e    1      lz      ^ --^ e ' 
y       x 
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When x * y + St 

B(y+S,y)   =~e-el6-^; 

when x - 6, 

B(6>y) - e"6!6"^ .Hl-eis-xy 
A 

Case (Hi):    x > y + 6. 

Let C(x,y)    be the integral of c^ over the region 

{iutv): u > xt y < v < u- 6jt      ^^ 

C(x,y) '      duf dv af (utv)  « e"A2#-el* _ J. 0A26-Ax 
J       J o. i e     • 
z 

When « - i/ + ö. 

By combining the various Integrals, we obtain aF ■ 
a' 

Case_lij :    ar < 6. 

A    e 

^ase  (H);     6  < x < zy + 6. 

A     - 

CM£_£iÜi:    a: > w + 6. 

^C«^)  - B(x,x-6) + C{x%y) ~ e"A2^~elx _ — e-Aa>fA2ö 
A 
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This completes the derivation of   F . 
a 

Note that 

a - aFJO.O)  - 1 - -^ e"ai+Al2)0. 
W A 

It is now easy to obtain 

(l-cO^Oc.z/) - Hx.y)  - (xFa(a:,i/) - -^- e"
X ***<<x>y+V  + ^«^ 

so that 

?(*.*/) - e-A[,nax(^+6)-6l. 11 

3.2.  The moment generating function. 

As In the case of the BVE distribution (6-0), direct 
oo    oo 

computation of an integral of the form   /   /   G(xty)dF(xty)     requires 

separate consideration of the absolutely continuous and singular parts 

of   F.    However,  this can be avoided by choosing a kernel    G    such 

that    G(Oty)   = 0 = G(xt0)    where    G    is of bounded variation on finite 

Intervals.     It  then follows from integration by parts  (Young,  1917) 

that 
00 00 00        00 

f f G(x,y)dF(x,y) -// F(xty)dG(xty). 
0     0 0     0 

The kernel    G{xty)  ■ (1-e      )(l-e    a)    has the required property and 

in addition,  the integral   \ JGdF   is a moment generating function.    Thus 

we compute  (again,  take    6  > 0) 

00    00 
00     00 

<K8,t;6)   =  JQ^(l-e'8X)a-e''ty)dFixty;6) - etff Hx^e'^^axdy 

by breaking up the integral into three parts. 
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6    o" 
.6    SP 

Jo   Jo Jo   Jo 

1 _ e-(Ai-fXi2+a)6 

(X1+X12+s)(A2+A12+t)   * 

■y+&    _ I/+6 
/■^f    dxHx.yU8*-* - f   dyf      ^ e'

X^X2y-^2(^)-BX^ty 

0      Jt Jo       J& 

-iXl+X12+8)& 

(X2+A12+t)(A1+A2+A12+S+t)   * 

00 CO 00 00 

f dyf       dx Fix.y)*'8*-^ -   f dyf ^ e-AiX-A2i/-A12X-8X-tt/ 

4-(A1+A12+e)6 

(A1+A12+8)(A1+A2+A12+S+t)   * 

Summing these three Integrals yields,  for    6  > 0, 

y      ' st (A1+A12+s)(A2+A12+t;) 
1 + 

Xl2      -(A1+A12+e)6 
A+s+t 

Interchange of 8 and t,    Xi    and A2f 6 and -6 yields (j)(s,t)/8t 

for 6 < 0. 

To obtain the moments of the BVE(6), we note first that since the 

marginal distributions do not depend on 6, 

EX -r-TT—,   Vor X ' 77—T—ry 
M+A12 IA1+A12) 

CT " h^Ti- Var y' (A2+>12)
2
 • 
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We also have, for 6-0, 

-(A1+A12)6 
i A12e 

EXY 

\l2e 
(3.2) Cov{XJ) 

lim   iiSjil .  I  
8,t-K       at (A1+X12)(A2+A12)   '   (Ai+A^) (Aa+A^) A  * 

-(A1+A12)6 

A(A1+A12)(A2+A12) 

and the correlation 

(3.3)        CorriXJ)  = p(X,Y) - -^ e'(Al+Xl2)6. 

Note that    0 1 p(XtY) f 1,    and that    jf   and   Y    are independent 

when    p(X>Y)  - 0. 

3.3.        Representation in terms of independent random variables. 

Theorem 3.2. For    6  > 0,     (X,Y)     is BVE^,^ .Ai2;6)     if and only 

if there exist independent exponential random variables    U\»U2%Ui    and 

Ui)    with respective parameters    A1,A2,Ai2»Ai2    such that 

X » min(^1,i/3), 

min(i/2,i/3-(5),    if    ^ > 6» 
y - 

min(i/2.^). If    #3 < 6. 

This theorem can be obtained directly from the shock model of  §2.3,  or 

it can be verified formally from the relation 

P{X > xt Y > y] ' P{Ui   > xt   U2  > i/}[p(i/3 > ^   ^3 > 2/ + «1^3 > «W^3 > «1 

+ P|^  > i/}p{i/3  > x|^3  < 6}p{i/3  < 6}]. 

This characterization may be of some interest for    Ö  > 0,    even 

though the simplicity of the case    6 « 0    is lost. 
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In case 6-0 the representation X " mln(i/i,i/3), 7 ■ mln(i/2»^3) 

Immediately yields the f-^ct that inln(jf,y) • inln(i/lti/2»^3) 
is exponentially 

distributed. However, If (X%Y)    Is BVE(6)  and 6 > 0, then n. {XJ) 

Is not exponentially distributed, but 

P{mlnU,y) > w]  - e-^-M2'nin(w.ö)> 

where    X"X1+A2+X12«      This distribution Is plecewlse exponential, 

and has a decreasing hazard rate. 

4.      More general blvarlate exponential distributions. 

In §2.2 we considered the Joint distribution    Fix,y\(>)    of 

waiting times  X (7)     from ej   (S2)    to the next event In the    Zi  (Z2) 

process.     As mentioned In the Introduction,    81     and    82    can ^e 

replaced by random variables  (stopping times)    Si    and   52,    so long 

as    ^2 - 5i ■ 6    Is retained as a fixed number.    That the resulting 

waiting time distribution Is unchanged can be seen In a variety of 

ways, e.g.  by observing that    F(a;,z/;6)    depends on    6}    and    82    only 

through    5. 

If,  on the other hand,    5    Is replaced by a random variable    A, 

then the joint waiting time distribution Is a mixture over    6    of dis- 

tributions    F(x,2/;6)     (mixed according to the distribution of    L).     Of 

course,  such a distribution has  exponential marginals, because the 

marginals  of    F(x,2/;5)     are Independent of    6.     If    A » S2 " ^1    ^as 

the right continuous distribution    G   and X (Y)     Is  the waiting time 

to the next event after    S\  (82)    In the    Zj   (Z2)    process,    then 

we obtain from (2.2)   that 
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e-X1X-A2l/ J,,    e-AiX-A2Z/ 

+ e"Xl2^[G(0) - G(inin(x-2/,0))] + e"Al2a:[C(inax(^z/,0)) - G(0) ] 

max(x~y,0) 

An Interesting special case of (4.1) Is obtained with 5} (52) 

the tine of first event In the Zi (Z2) process. These are natural 

tines to Initiate waiting periods, and one night hope that for this 

case (4.1) would take a relatively simple forn. Unfortunately, this 

Is not the case. To see this, we note first that (51,52) have the 

joint distribution F(xtyi0).    Thus A - $2 " ^1 ha8 the distribution 

G   which with 61 ■ Xj + X12» 62 ■ X2 + X^, X - Xj + X2 + X^  Is given by 

P{S2  - 5! > 6) -  rxie"925^8^! - Xie'^/X. 6 > 0, 

P{S2-Si  < 6]  - P{S1 - 52 > -6} - X2eei6/X, 6 < 0. 

P{52 - Sl ' 0} '  X12/^. 

It follows from this and from (4.1) that If X  (Y)  Is the waiting tine 

between the first and second events In the Z^ (Z2) process, then 

for x 1 y. 
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PiX > x. Y > u) r e -^nh e2(A+X12) XiAi 
;    Hü e-(e2+A12)x 

62+XJ2 92+X12 

.   A2Al2 e-ei(^) [ _ e-(ei+Ai2)^ 
Bl+\l2 

5.      Multlvarlate exponential distributions. 

The extension of  the BVE(6)  distribution to higher dimensions 

Is best understood by reference  to the shock model derivation of 

§2.3.    Suppose  that device    i    Is placed In service at time    6..     For 

each non-empty subset of the variables,   there Is a Polsson process 

governing shocks  to members of the subset. 

Let    S =  {e «  (e^ s )   :  s. = 0 or 1,  but    s ^  (0,...,0)}. 

For each    s e  S»     let    Z      be a Polsson process with parameter    A   , 

and suppose that an event In this process  corresponds  to a fatal shock 

to component    i    If and only If    s. = 1.       Suppose that  the processes 

Z      are mutually Independent.    Let    X.    represent the life of the 
6 u- 

i      component,   and let    J.    be the Interval     [6.,x. + 6.].     Then If 
Is is is U* 

\i    Is Lebesgue measure, 

(5.1)        PiXy  > xl,...,Xn > *nl » e 
-EV^a.-u1;1 
seS 

One can also write  (5.1)  expli     tly,  giving Its form for various 

regions defined by Inequalities on  the    6.     and    x..      Assuming 

61=0<6?<-,<6,     there are 3«5'7 •  •       • (2n.-l)    such regions. 
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80 this Is prohibitive even In three dimensions.  (5.1) can also be 

written using maxima and minima, but this also Is unattractive even In 

three dimensions. On the other hand (5.1) In Its present form Is 

both compact and easily evaluated for any given 6. and x.. 
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