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Abstract  
Based on the generalized compatibility condition under constant and linear stress field, 

a quadrilateral generalized conforming isoparametric element. G C -  Q6, for plane stress 

analysis, is developed. The element G C - Q 6  can be regarded as an improved form of  

Wilson's non-conforming isoparametric element Q6. G C -  Q6 can pass the patch test for 

arbitrary irregular mesh while Q6 can not. G C - Q 6  degenerates to Q6 when it is a 

paralleiogrilm. Numerical examples s~ow that the G C -  Q6 element gives more accurate 

stress solution than the existing non-conforming elements and is less sensitive to geometric 

distortion. 

I. Introduct ion 

For the two-dimensional four-node isoparametric element (theQ,4 element), the interpolation 
functions fordisplacements u and ~ are given by 

�9 6 

u =  ~-~,N,ui, v =  ~_~N,v, (1 .1)  
| m l  t ' 1  

where u,and v~(i= 1,2,3,4) are the nodal displacements, N, the shape functions which are bilinear 
functions of natural coordinates ~,r/ : 

N , = l ( l + ~ d ) ' ( l + r h T 1 )  (i----1,2,3,4) (1.2) 

The Q4 element is very popular. However. for bending problems it gives results with low accuracy. 
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Fig. 1 

In order to improve the bendimg behavior of the Q4 element, Wilsonl~l proposed a non- 
conforming element Q6, in which the displacements are split into compatible and incompatible 
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The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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parts: 

where {Uq} 
given by 

{u} = {Uq} + {u~} (1.3) 

is the compatible part given by Eqs. (1. I) and (1.2), and ~u~} is the incompatible part 

(u~) vl--~2 1--0 2 0 0 ;t: (1.4) 
= ' v x ' = ' -  0 0 1--~ z 1--r/Z ] 21 

Some excellent numerical results are obtained by the Q6 element, however, it can not pass the patch 

test for irregular mesh. 
In references [2] and [3], some treatments were proposed to make the element pass the patch 

test, then the so called QM6 and QP6 elements were developed. 
In reference [4], two kinds of the quadrilateral isoparametric quasi-conforming elements QC5 

and QC6 have been derived by the Quasi-conforming Method. 

According to a strong form of the low order patch test, reference [5] presented a general 

formulation of incompatible shape function and then the NQ6 element was obtained. 
In this paper, to derive the generalized conforming displacement mode, a general procedure 

will be presented based on the generalized compatibility condition under constant and linear stress 
field and a generalized conforming isoparametric element G C - Q 6  is developed. 

II. Generalized Compatibility Condition under Constant and Linear Stress Field 

For conforming element, the displacement field {u} of the element must satisfy the 
compatibility condition along the element boundary #.,4, : 

{u}- -{~}={0} (onOAe.) (2 .1)  

where { ~ J. denote the boundary displacements of the element. 

For generMized conforming element, the compatibility condition (2:1) is relaxed and replaced 
by the following compatibility condition in the limit of mesh refinement (the stress field of each 
element tends to be constant): 

~A, {T*}T({u} - {  ~ } ) d s =  0 (9.. 2) 

where{To} denote the boundary tractions of the constant stress field. 
In Ref. [6], during the generalization of the generalized conforming element, the following 

compatibility condition of the average displacements on each side S i of the element is used: 

I s~ ({u}-{~})ds={O} (2 .3)  

Obviously, condition (2.3) is a strong form of condition (2.2). 
In this paper, a new kind of generalized conlbrming element is established by using another 

,trong tbrm of condition (2.2)i.e. 

(~aA, {T}2"({u}--{ ~ D d s = O  (2.4)  
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where {T} denote the boundary tractions of both the constant and linear stress fields. 

Substituting Eq. (1.3) into Eq. (2.4),and applying the following condition satisfied by the 

conforming displacement {u~} 

{uq}--{~}= {0} (onOA,) 

we have 

• aA, {T} f {uA}ds= 0 

Considering the stress field given below: 

cr.=p,+#,~, ~,=p,+#,&. r.,=#. 

we obtain 

T ,  = l fl, + mils + lrlfl, , T ,  = raft2 + t fl.~ + m~fl, 

where I and m denote the directional cosines of outward normal to the boundary. 

Substituting Eq. (2.7) into Eq. (2.5), we have 

(2.5) 

(2.6) 

(2.7) 

[fl~lux + flzmvx + fla(mux + lva) + fl~hlux + fl6m~vx ]ds=O (2.8) 

Since the five parameters fl, are arbitraries, five conditions can be obtained from Eq. (2.8): 

luxds=O, ~.A. mv~ds=O. ~A (mux+tv~)ds=O } 
aA, 

~aAh/Uxds=O, ~aAm~vx ds=O 

Eq. (2.9) is the generalized compatibility condition under constant and linear stress field. 

(2.9) 

III. Formulation of Generalized Conforming Displacements { Ux } 

Firstly, the generalized conforming displacements up and vx 

quadratic polynomial form: 

up = 2, + 2=_~ + ;t3r/+ 2,.~ 2 + 3,o~er/+ 3.erl ~ } 
r e 2 v~=~.l +;t'~+it3~7+2,~ +21~rt+21rl" 

are expressed in a complete 

(3.].) 

Let the translations and the rotation at the centroidC(~=0,r/=0)of the element be u,,v, and 
coo, then 

1 (as,~z--a,,~s+bs,U--b,2') (3.2) uo=,Z,, v o = ~ . l ,  coo= 2111~-g- 

where the following notation~ are used: 

1 (xl--x2+xs--x,),  a , = l  (--x,+x~+x3-x,),  a~=-T. 

1 b 1 bt=~'(--Vl+Vz+Vs-VD, ~=~'(th--Vt+Ys--VD, 

I I I o = atbs-- asbt 4= 0 

a 3 = - T (  -x , -x=  +x8 + x,) 

1 (3.3) 
bs=~4-~.--y,--yz+ys+y4) 
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Scc,,ndly. substltuting Eq. (3.1) into Eq. (2.9), we obtain 

3bz).2 -- 3bi23"1- 2b~. ( ).l-- 2e) = O. "1 

3as).[ -- 3at). [ + 2a2(A[ --) . ' )  = 0  

[ 3a3).2 --  3at).3 + 2a2 (Jl, - ).o) ] + [ 3bsA~ - -  3b,). ' + s ().~ - ).' ) ] = O 

3bi).i + 2b2).3 +.bi).i-b3)., +.3b~).* =0  . 

3a~21 + 2az).~ + 3a~).' --at).$ +as)." = 0  

From Eqs. (3.4) and (3.2), eight parameters ;tt ,) . , ,As,). , ,) . '~,).l ,2; and 
expresscd in terms of another four parameters 
uc ,vc and r 

If we let 

(3.4) 

).~ can be 
).4,).e,).[,A[ , and  three centroid displacements 

_ _  # P uc=--).,--Xe, v c - - - - A , - - ) . o ,  ~o=O 

then from Eq.(3.1) we obtain 

(3.5) 

u~ . , -~2--1+Ft  r lZ-- l+F~ Fs  

{ v, } = L  F: --F: ~--I+F,' 

- - F s  ~6 

r /2_l  + F ; ]  2,' 

t , t l )  

(3.6) 

in whi,A~ 

1 . { _ (2a,b2--a2bt)~-- (2a3b2--azbs)q + [ (3atbt --t- 2a2bO---~3 (3b21 + 4b] ) Ft= 31Jlc 

-b--' II Ic]~.} 
b3 

4a~ 1 9  ~ ~ ~ 

*(3.7) 

F , = - - F , - -  2? t ~ri, F ; = - - F I  
ua at 

Fs=."~d_~_c [btb~+bzb37?+2b]~?] , 1 
, F , = 3 " ~ o [ a l a a ~ + a z a 3 ~ + 2 a l ~ r l ]  

Eq. (3.6). involving four internal displacement parameters ).,,).6,).~ and ).~ , represents 
the required generalized conforming displacement mode which satisfies condition (2.9). 

If thc element is a parallelogram, Eq. (3.6) degenerates to Eq. (1.4). 

IV. The  S t i f fness  Mat r ix  of  t he  Genera l i zed  C o n f o r m i n g  E l e m e n t  GC--Q6 

As soon as the generalized conforming displacement mode (3.6) is determined, the'stiffness 
matrix may be derived by the conventional procedure. 

Substituting Eqs. (I.l) and (3.6) into Eq. (I.3), element displacement may be written as: 

{u} ---- {u,} + {u~} = [ N ] {q}" + [ N, ]. {).} (4.1) 
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Element strain may be expressed as 

{e} = [ B ] . { q } "  + [ B ~ ]  {~.I" 
Element strain energy 

t 

= l  {q}'rE K~q]lq}" + l {tl. "[ K~]{A} + .{2}a"[K~].{q}" 

in which 

[K,,]=tJ[, J[, 

[ K~x]=tJ[, j[, 

[K,~]=tJ[,j[, 

[B]'[D] [B] I,r I d~drl 

[B~]~'[D][B~,] I.Z Id~a~ 

[B~]mED][B] IJ  IdSdr~ 

(4.2) 

(4.3) 

(4.4) 

and [J] is the determinant of the Jacobian matrix. [D] is the matrix of elasticity coefficients. 

From / 9 U / # { 2 } =  {0} �9 we obtain 

�9 {2} = - -  [K,~x ] -z [ K x q ]  .{q}" (4 .5 )  

and f inal ly thc element stiffness matr ix  

[ K ]  = [Kq~] - [ K ~ ] a ' E K ~  ] -IEK~q] (4.6) 

V. E x a m p l e s  

E x a m p l e  1 Analysis of a tension plate using irregular mesh (Fig.2). Two loading cases arc 
considered" uniform tension under load 1 (an 
experiment problem for patch test) and pure ",-]" ;~ 
bending under load 2. Owing to symmetry of ~ 
the plate, only one-quarter of the plate is J l  
modelled. Irregular mesh as shown in Fig. 2 is ~ ~: 
used. 

Results of seven different types ofelements t~ I 
I 

are listed in table 1. 

/ 
3 

P , = I . 5  P~=3.0  

C =  1.0 
v=0.25  

P~=I.5 

Fig. 2 

Table I Comparison of results for example I 

Element 

Q4 (isoparametnc) 

Q6 (Wilson III) 

QM 6(Taylor 121) 

QP6(Wachspress [31) 

QC6 (Quasi-conf {41) 
NQ6(Pian 151) 

G C - Q 6  (This paper) 

Exact 

I~,,i 

Load I (umform tension) 

6.00 
6.?0 
6.00 
6.00 
6.00 
6.00 
6.00 
6.00 

Patch test 

can pass 

can't pass 

c a n  pass  

can pass 

cap pa~s 

can pass 

can pass 

Load 2 (bendmg) 

-1%00 
-19.66 
-17.61 
-17.81 
-1"/.61 
-17.61 
-17.62 
-18.00 
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The results in table 1 show conclusively the failure of the Q6 element to pass th.e path test, while 

the other six elements satisfy the test. 

Example 2 Analysis of  a cantilever beam using irregular mesh (Fig.3). Two loading cases are 

considered: pure bending under load I and transverse bending under load 2. 

P:t= 150 E=150o.v=o.25 

I I 

I I " " ' 

P~ = 150 

4 

P,  = I000 

A P , = I 0 0 0  

i 
3 

P ~ =  150 

Fig. 3 

Table 2 Comparison of results for example 2 

Load I (pure bending) Load 2 (transverse bending) 
Element 

UA GxB I),4 UXB 

Q4 (isoparametric) 

Q6 (Wilson Ill) 

QC6(quasi.-.con f141 ) 

NQ6(Pian 151) 

G C -  Q6 (This paper) 

Analytic solution 

46.7 
98.4 

.96.1 
96.1 
95.0 

100 

--1T6I 
--2428 
--2439 
--2439 
--3036* 
--3000 

50.T 
100.4 
98.1 
98.0 
96.1 

102.6 

--2448 
-3354 
-3339 
--3294 
--4182" 
--4060 

*Stress at B is computed by extrapolation from the stresses at the 2 x 2 Gauss quadrature points. 

From table 2 we realize that for bending problems the accuracy of  conforming element Q4 is 

very poor, but the non-conforming elements Q6 and NQ6, the quasi-conforming element QC6 and 

the generalized conforming element GC - Q6 can provide good accuracy even for an irregular mesh, 

especially the G C -  Q6 element which gives the most accurate stress solution. 

Example 3 Analysis of  a tapered and,swept panel with unit load Uniformly distributed along 

right edge (Fig.4). 

"~16 l 
~l 4R ~ T 

/ I  / / I /  ~-tsoo 

N=4 x 

-Fig. 4 
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Table 3 Comparison of results for example 3 
(a) Displacement V. 

Element N =2 N =4 N = 8  I N=16 I 
H L(Cook 171) 
04 (lsoparameteric) 
Q6 (Wilson III ) 
QM6 (Taylor [21) 
GC- Q6 (This paper) 

18.17 
11.85 
22.94 
21.05 
2T.61 

22.03 
18.30 
23.48 
23.02 
24.31 

23.39 
22.08 

23.99 

23.81 

(b) Stress OBtain 

Element N = 2  [ N---4 I N =  8 N = t 8  
I 

HL(Cook [71) 
Q4 (Isoparameteric) 
06 t'Wilson Ill )* 
QM6 (Taylorl21) * 
GC-Q6 (This paper)* 

--0.1335 
-0.0916 
--0.1734 
--0.1580 
--0.1888 

--0.1700 --0.1931 
--0.1510 --0.1866 
--0.1915 
-0.1858 
--0.1930 I -0.1965 

-0.2005 

(c) Stress O'amix 

Element N----2 N--4 N = 8  N = I 6  

HL(Cook 171) 
Q4 (Isoparameteric) 
Q6 (Wilsonlll) * 
QM6 (Taylorl21) * 
GC- Q6 (This paper)* 

0.158~ 
0.1281 
0.2029 
0.1928 
0.2538 

0.1980 
0.1905 
0.2258 
0.2243 
0.2349 

0.2205 
0.2201 

0.2318 

0.2294 

* Nodal stresess are computed by extrapolation from the stresses at 2 x 2 Gauss quadrature points and nodal" 

stresses of neigllboring element are averaged. 

This example  was used by CooklTI for  testing the sensitivities o f  finite elements  to geometr ic  

distortions.  I f  the solution obta ined by element H L  using a 16 x 16 meshIV] is used as a reference, it is 

seen the present  element gives more  accurate  results than the H L  element  for  coarser  meshes. 

V I .  C o n c l u s i o n s  

The  present  e lement  G C - Q 6  shows a super ior  pe r fo rmance  o f  a generalized confo rming  

element.  By satisfying the generalized compat ib i l i ty  condi t ion under  cons tan t  stress field, it can 

always pass the path  test. By satisfying the generalized compat ib i l i ty  condi t ion under  linear stress 

field, it provides accurate  results for  bo th  displacements  and stresses, and is insensitive' to geometr ic  

distortions. Moreover ,  being a d isp lacement-based element,  it can be derived and  implemented  in a 
rout ine manner .  
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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