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ABSTRACT— Pattern recognition has many applications in 
design automation. A generalized pattern recognition 
algorithm is presented in this paper which can efficiently 
extract similar patterns in programs. Compared to previous 
pattern-based techniques, our approach overcomes their 
limitation in handling control-flow-aware patterns, and leads 
to more opportunities for optimization. Our algorithm uses a 
feature-based filtering approach for fast pruning, and an 
elegant graph similarity metric called the generalized edit 
distance for measuring variations in CDFGs. Furthermore, 
our pattern recognition algorithm is applied to solve the area 
optimization problem in behavioral synthesis. Our 
experimental results show up to a 40% area reduction on a set 
of real-world benchmarks with a moderate 9% latency 
overhead, compared to synthesis results without pattern 
extractions; and up to a 30% area reduction, compared to the 
results using only data-flow patterns. 
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I.  INTRODUCTION 
     

Regularity plays a very important role in circuit design, 
which leads to fewer multiplexing logics, better resource 
sharing and better physical layout. We believe that 
efficiently handling regularity is one of the advantages of 
designers in manual RTL coding. However, the tight 
time-to-market requirements have made it increasingly 
difficult for designers to thoroughly analyze every design in 
a short time; therefore, pattern recognition, which helps 
designers automatically extract and utilize regularities in 
applications of design optimizations, has drawn wide 
interest at every level of circuit designs, from layout to 
behavioral synthesis.  

Among all the pattern recognition algorithms, the 
graph-matching-based approach provides the best trade-off 
between efficacy and scalability. Recently, these approaches 
have been applied to solve problems in various domains, 
such as data mining, biochemistry, and behavioral synthesis 
[4, 8, 9, 10, 11, 13]. The work in [10] generates the 
candidate templates with a clustering algorithm based on 
occurrence frequency; the work in [9] proposed a 
polynomial time algorithm with respect to the input/output 
port number; another approach in [11] constructs subgraphs 
by combining single input cones. All three are designed for 
customized instruction generation for ASIP synthesis. 
Recently, a pattern-based behavioral synthesis framework 
was proposed in [4]. It uses the concept of graph edit 
distance to capture graph similarity. However, all the work 
mentioned above are constricted to extracting patterns only 
in data flow graphs, without considering higher level control 
flow structures. In [17] both control and data flow level 
differences have been considered for program partition, but 
their method merely compares signatures between two 
partitions without accurate similarity evaluation.   

In fact, control flows, such as loops and branches, have 

big impacts on the final QoR in many cases and introduce 
more opportunities for optimizations. The challenges for 
pattern extraction in CDFGs are quite different from that in 
DFGs: first, CDFG graphs have two kinds of edges — 
control flow edges and data flow edges. Second, the 
matching between two collections of graphs needed in the 
related control-flow-aware pattern recognition process can 
not be directly solved by known pattern matching techniques 
which are applicable to only two graphs.  

In this paper we develop a generalized control data flow 
pattern recognition algorithm to identify regularity in the 
behavioral specification and help users to reduce the 
resource usage of a certain design. To our best knowledge, 
this is the first automated approach to considering 
control-flow patterns for behavioral synthesis. In particular, 
the contributions of our approach include:  
(1) A general hierarchical approach which automatically 

recognizes control data flow patterns from programs.  
(2) A graph similarity evaluation metric to estimate general 

edit distance between CDFG patterns. 
(3) A two-level feature-based filtering scheme to reduce the 

amount of expensive similarity evaluations effectively. 
(4) An efficient and accurate pattern selection strategy 

which helps to select optimal pattern combinations 
from discovered patterns.  
The remainder of the paper is organized as follows. 

Section II discusses preliminaries knowledge; Section III 
presents our CDFG pattern recognition algorithm and 
related techniques; pattern selection strategy is discussed in 
Section IV; Section V shows the experimental results, and 
Section VI is the conclusion part. 

 
II.   PRELIMINARIES  

DEFINITION 1. A control data flow graph (CDFG) is a 
directed graph G(VG,EG) where VG = Vbb�Vop and EG = 
Ec�Ed. Vbb is a set of basic blocks. Vop is the entire set of 
operation nodes in G. Data edges in Ed denote the data 
dependencies between operation nodes. Control edges in Ec 
represent control dependencies between basic blocks.  

In the control-flow-aware pattern mining problem, a 
CDFG basic block normally consists of multiple data flow 
graphs, as shown in Figure 1, therefore the original edit 
distance [1] which measures the similarity between two 
connected graphs is no longer applicable. To solve this 
problem we introduce a new concept called generalized 
edit distance: 
 
DEFINITION 2. The generalized edit distance (GED) 
between two sets of labeled graphs GS1 and GS2 is the 
minimal number of edit operations (insert/delete/relabel a 
node/edge) to transform GS1 to GS2. 

In our approach, the concept of generalized edit 
distance is exploited to describe the similarity degree of 
CDFGs. For example, the generalized edit distance 
between CDFGs in Figure 1(a) and 1(b) is three, since 



relabeling the node “+” with “*” at three places in 1(a) can 
transform it to the graph in 1(b). GED provides an effective 
metric to capture the similarity of CDFG subgraphs with 
more than one data flow graphs inside, and also gives the 
minimum number of edit operations needed to share 
common structures among similar subgraphs. 
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Figure 1: Two sample CDFG subgraphs.  

With the concept of generalized edit distance, CDFG 
pattern and pattern instances are defined as follow:  
DEFINITION 3. Given a set of CDFGs {Gi| i = 1, 2…N}, a 
threshold ldist as an upper bound for the generalized edit 
distance, and a significance threshold lsig, a labeled graph 
P is called a CDFG pattern if there exists set S(P) = { SGj } 
which satisfies: (1) for all SGj∈ S, GED(SGj, P) ≤ ldist; (2) 
for any SGj∈S, there exists Gi such that SGj is a subgraph 
of Gi; (3) |S(P)|*|P| ≥ lsig. In this case, each subgraph in set 
S is called a CDFG pattern instance of the pattern P, and 
correspondingly set S is called a CDFG pattern group. 
 

III.   PATTERN RECOGNITION 
 

This section introduces our generalized pattern 
recognition algorithm, which is used to discover patterns 
with similar control flow, as well as data flow structures. 
The similarity between two CDFG patterns is measured in 
terms of generalized edit distance, and a feature-based 
filtering technique is applied to reduce total number of 
GED computations.  

A.  CDFG Subgraph Labeling 
In our approach each pattern is represented by a labeled 

graph. Notice that a DFG node can be labeled by the 
operation it represents, while each supernode in CFG is a 
basic block and it is not straightforward to find a label. Thus 
further similarity evaluation technique discussed in Section 
III(C) is used to decide whether two supernodes in CFG can 
be assigned the same label or not. Once the label of a basic 
block has been obtained, we will append it to the original 
DFG label of the nodes it contains. Therefore the label of a 
node in a given CDFG graph is a combination of its own 
DFG label and the label for the supernode (basic block) it 
belongs to. And distinct labels are assigned to data 
dependence edges according to their commutability.  
B.  Two-level Feature-based Filter 

The computation of generalized edit distance is expensive, 
considering currently there is no polynomial-time algorithm 
for solving the graph isomorphism problem. Therefore 
filtering techniques have been adopted in the pattern 
recognition algorithm to reduce the number of GED 
calculations. In our approach, a signature called two-level 
feature vector is introduced for each CDFG subgraph, based 
on the work in [4]. However, the features discussed in [4] 
are constricted to data flow graph. In our control-flow-aware 
approach the feature information needs to be collected at 

both levels.  
 
DEFINITION 4: In a CDFG graph G = (VG,EG), a 
DFG-feature is a subgraph S = {u, l ,r | u, l ,r∈ Vop}, such 
that (l, u) and (r, u)∈Ed; a CFG-feature is a subgraph S = 
{u, l1, ..., lm | u, li∈ Vbb}, such that (u, li) ∈Ec ( m equals the 
number of outputs for supernode u). For a given universe of 
distinct features U = {F1, F2,…, F|τ|}, the feature vector is a 
vector (f1, f2,…f|τ|) with each element fi representing the 
number of occurrences of the ith feature in U. Fi could either 
appear in the DFG or CFG graph, and the corresponding 
feature vector is called DFV and CFV respectively. 

Figure 2 shows the features for a DFG graph and a CFG 
graph, along with their feature vectors. The symbol ε 
denotes an empty node if the input or output of a node is not 
in this graph. As discussed in [4], DFG nodes with multiple 
outputs will also be counted as ε node. Notice that we 
assume supernode 1 and 2 are similar, therefore the number 
of the second feature in (c) is two instead of one. 
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Figure 2: (a) A DFG. (b) Data flow features and the DFV of the 
given DFG. (c) A CFG. (d) Control flow features and the CFV of 
the given CFG, assuming bb1 and bb2 are similar supernodes.  
  

The combination of DFV and CFV is used in our 
approach to capture structural properties of the original 
CDFG graph. The L1 distance of two feature vectors, which 
is easy to compute, serves as an indicator of the similarity 
degree between the corresponding two graphs.  
 
Theorem 1 [4]. Let d(G1; G2) be the edit distance between 
two data flow graphs G1 and G2, and DFV(Gi) be the data 
flow feature vector of Gi, ||DFV(G1)-DFV(G2) ||1 ≤ 4 * d(G1; 
G2).   

Theorem 1 from [4] tells us that given an edit distance 
limit ldist, the maximal number of possible DFG feature 
misses between two CDFG subgraphs is 4 *ldist. However, 
this reveals no information for the similarity degree in their 
control flow graphs.  
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Figure 3: (a) a sample feature map matrix (b) a sample CFG feature 
F1 (c) three sample DFG features 
 



In order to develop an upper bound for the number of 
possible CFG feature misses, we propose a data structure 
called feature map matrix. Each row of the feature map 
matrix corresponds to a DFG feature, while each column 
corresponds to a CFG feature. Each entry records whether a 
DFG feature appears in a target CFG feature. Figure 3 
shows the feature map matrix built for the CDFG in Figure 
2(c), with its CFG/DFG features. Fi in Figure 3(a) 
corresponds to the ith CFG feature in Figure 2(d) and all the 
occurrences of a CFG feature will be recorded in the matrix. 
For instance, columns 3 and 4 are two occurrences of F2 in 
the original CDFG. In Figure 3(b) and 3(c), we can observe 
that DFG features f1 and f3 appear once in CFG feature F1, 
therefore the corresponding entries are set to one. 

Now, with the newly built feature map matrix M and the 
maximal number of allowed DFG feature misses 4*ldist, we 
can find out the upper bound for possible CFG feature 
misses lmissUb. If a DFG feature fi is missing, all the CFG 
features containing fi in their inside data flow structures 
will be destroyed correspondingly, namely any column j 
satisfying M(i,j) = 1 needs to be removed from the matrix. 
Since the total number of missing DFG features is no more 
than 4*ldist, any set of missing CFG features can not cover 
more than 4*ldist rows. Therefore lmissUb equals the maximal 
number of columns hit by 4*ldist rows in M — here 
“column j is hit by row i” means M(i,j) equals one.  
 
Theorem 2. Let ldist be the given edit distance limit, and 
CFV(Gi) be the CFG feature vector of Gi. If the generalized 
edit distance between G1 and G2 does not exceed ldist, we 
have: ||CFV(G1)-CFV(G2) ||1 ≤ lmissUb  
Proof: Assume the generalized edit distance between G1 
and G2 is less than ldist, Theorem 1 tells us that the DFV 
distance between G1 and G2 is no more than 4*ldist, 
therefore their CFV distance ||CFV(G1)-CFV(G2) ||1 can not 
exceed lmissUb, which is the maximal CFG feature misses 
brought by 4*ldist DFG feature misses. 
 

To find the maximal number of columns hit by k rows is 
a classic max-cover problem, which has been proved to be 
NP-complete[18]. For the runtime trade-off, we can 
approximate the optimal solution by using a greedy 
algorithm. The greedy algorithm first selects a row that hits 
the largest number of columns, then removes this row and 
the columns covering it. This operation will continue until 
4*ldist rows have been selected. lmissGreed equals the number 
of columns removed by this algorithm.  
 
Theorem 3. [14] Let lmissGreed and lmissUB be the greedy and 
optimal solution for the max-cover problem, we have: 
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  Theorem 3 from [14] shows the optimal solution is 
approximated by the greedy solution within a ratio of 
e/(e-1), therefore 1.59* lmissGreed can be used as an 
estimation of lmissUb. If the actual CFG feature misses 
between two graph candidates are greater than lmissUb, we 
can safely assert that the difference in their control flow 
structure will result in a generalized edit distance larger 
than ldist, which means that further GED computation is not 
necessary. Experimental results show that on average only 
about 3 to 7 GED calculations are needed with hundreds of 
pattern candidates, which brings dramatic runtime speedup. 
C.  Similarity Evaluation 

Given two CDFG subgraphs G1 and G2 which have 
passed the two-level feature-based filter, similarity 
evaluation will first be performed between their control flow 
structures, in which each basic block is treated as a 
supernode. After that, we will look into the data flow graphs 
inside to do further comparison. 
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Figure 4: Four subgraph fragments in CDFG of BH  
Figure 4 shows the data flow structure inside a 

supernode in one of our test cases – BH. We can observe 
that the data flow structure inside each supernode is not 
connected and consists of several separate subgraphs which 
we call subgraph fragments, marked with dashed rectangle 
in Figure 4. This situation is very common. Here we do not 
allow edge insertion between two separate subgraph 
fragments, since it will introduce data dependency between 
two originally parallel data flow graphs, and make it hard to 
measure the latency of a pattern. Under this constraint we 
can approximate generalized edit distance as below: 
 
Given two sets of subgraph fragments SF1 and SF2, in 
which SF1 = { fg11, fg12, … fg1N} and SF2 = { fg21, fg22, …, 
fg2N }, and fgij is the jth subgraph fragment in set i. If the 
edit distance between fg1a and fg2b is dist(fg1a , fg2b ), the 
generalized edit distance (GED) between SF1 and SF2, 
denoted by DIST(SF1 , SF2), is approximated as: 

 
1 21

min  { ( , ) }
i

N
i pi

dist fg fg
=∑  

where ( p1,p2,..,pN ) is a permutation of (1,2, .., N). 
 

If the numbers of subgraph fragments of the two sets are 
different, we can introduce dummy graphs with 0 nodes 
and 0 edges to make it equal. To calculate GED between 
two sets of subgraph fragments, we construct a fragment- 
edit-distance matrix as follow:  

 
DIST fg21 fg22 … fg2n 

fg11 9 7 … ∞ 

fg12 2 10 … 5 

… … … … … 

fg1n 7 ∞  1 
 
Figure 5: Fragment-Edit-Distance Matrix M 
 

Entry M(i,j) in Figure 5 records the edit distance between 
the ith subgraph fragment in set 1 and the jth fragment in set 
2. When we build M, the feature vector distance constraint 
||DFV(fg1i ) - DFV(fg2j ) ||1 ≤ 4*ldist must be satisfied, 
otherwise, an infinite value will be assigned to the 



corresponding entry. In our experiments, we find that for 
most cases, the number of fragments with more than ten 
nodes is less than five; therefore, even though we need to 
compute edit distance between every two fragments, the 
cost is still acceptable. 

With the fragment edit-distance matrix, our problem is to 
find an optimal index permutation (p1,p2,…,pN) of 
(1,2,…,N), so that the sum of edit distance between the ith 
fragment in the first set and pi

th fragment in the second set 
is minimal, for i = 1 to N. This problem is similar to the 
assignment problem, and can be formulated as below:  
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In the optimal solution, if the mth subgraph fragment in 
the first set is matched to the nth fragment in the second set, 
Xmn will be set to 1, otherwise 0. Hopfield network has been 
developed to solve this problem efficiently in polynomial 
time [2]. 
D.  Pattern Recognition Algorithm 

With all the important techniques discussed, our pattern 
recognition algorithm is presented in this section. The 
algorithm does pattern extraction in both data flow graphs 
and control flow graphs, and the two-level recognition 
process is performed in an interweaving way.  

Our CDFG pattern recognition process discovers 
patterns in a breadth-first order. All the subgraphs of size k 
in a given CDFG are enumerated, among which the 
non-similar subgraphs will be directly removed by our 
proposed two-level feature-based filter. Then the remaining 
subgraph pairs will perform GED calculation to measure 
their similarity accurately. The pseudo code of the 
algorithm is shown in Algorithm 1. 

Our algorithm iteratively finds patterns of size k starting 
from k = 1. At step k + 1, all the size k CDFG pattern 
instances are extended by one supernode using the 
subgraph enumeration techniques discussed in Section 
III(A). If a subgraph sk is not a pattern instance of a certain 
pattern P at step k, it is impossible to be a subgraph of 
another pattern instance larger than k, which means we 
don’t need to further extend it. 

Lines 15 to 25 show the pruning process in Algorithm 1. 
After a new subgraph sk+1 is generated, it will be compared 
to the existing patterns by calculating the CFG level edit 
distance between itself and existing patterns. First, the CFV 
of a subgraph is calculated and used as a signature to find 
the patterns which have similar control flow structures. 
After getting the list of possible pattern candidates, the 
generalized edit distances are calculated by the techniques 
discussed in Section III(C). If sk+1 matches a pattern P, it 
will be added to the pattern instance list of P, otherwise a 
new pattern will be generated based on sk+1. When all size k 
+ 1 subgraphs are processed, each newly generated pattern 
will be examined to see whether it satisfies the significance 
limit, which is measured by the pattern size times the 
number of its instances. If not, the pattern itself and its 
instances will be removed together.  

 
Algorithm 1 CDFG Pattern Recognition 
1: P      → set of discovered patterns 
2: Sk     → set of size k CDFG subgraphs 
3: INST(P) → instances of a pattern P 
4: ldist    → generalized edit distance limit 
5:lmissUb  → estimated upper bound for CFG feature misses 
6: lsig    → significance limit 
7: lmin   → minimal DFG edit distance increase by one 

CFG edit operation. 
8: 
9: Travel all supernodes, add size 1 CFG patterns and 

instances to P and S1 
10: Compute all DFG and CFG features, create feature map  

matrix, and compute lmissUb 
11: for k = 1 to N-1 do 
12:   for all sk∈SK do 
13:       Add a neighbor expand sk to sk+1; 
14:       Calculate CFV(sk+1); 
15:       Get a list of patterns {Pi} which satisfies 

||CFV(Pi)-CFV(sk+1)|| ≤ lmissUb; 
16:       Calculate CFG-level edit distance led of sk+1 

with each Pi; 
17:       if lmin * led ≤ ldist then 
18:           Build fragment ed. matrix Mfg; 
19:           Compute the generalized edit distance 

dist(Pi,sk+1) from Mfg; 
20:           if dist(Pi,sk+1) < ldist then 
21:               Add sk+1 to INST(Pi); 
22:       if sk+1 matches no current patterns 
23:           Create a new pattern based on sk+1, add to 

P; 
24:            Add sk+1 to Sk+1; 
25: for all new pattern Pi∈P do 
26:    if |INST(Pi)|*|Pi| < lsig  then 
27:        Remove Pi from P; 
28:        Remove INST(Pi) from Sk+1; 
 

IV.   PATTERN SELECTION 
 

Given a set of patterns discovered by the pattern 
recognition process, pattern selection algorithms attempt to 
find an appropriate set of patterns with the largest gain.  

| |( ) ( )*(# ( ) 1)
( )overhead

Pgain P area P inst P area
latency P

α= − − + ⋅   

#inst(P) is the number of instances of P and areaoverhead is 
the area overhead brought by newly introduced multiplexors 
when resources are shared among similar patterns. The 
second term measures the “flatness” of P — “flat” means 
the critical path of P is small compared to the number of 
nodes in P. The variable α  is a user-given parameter to 
trade off between resource reduction and latency overhead. 
Now, with a given set of pattern candidates, the problem is 
how to find a subset of non-conflicting patterns to maximize 
total gain. Here “non-conflicting” means non-overlapping, 
and no loop will be in control flow graph formed after 
selecting a certain set of patterns.  

For example, given a CDFG graph G which consists of 
seven supernodes, indexed from 0 to 6, assume our pattern 
recognition algorithm finds three patterns P0, P1 and P2 in G. 
The corresponding pattern groups are denoted by { P0 | 1 ; 
2 }, { P1 | 0 1 ; 1 3 ; 4 5 } and { P2 | 3 4 ; 5 6 }. That is, 
pattern P0 has two 1-node instances, and the node index for 



each instance is 1 and 2; P1 has three 2-node instances, and 
the node indices for each instance is 0 and 1, 1 and 3, 4 and 
5; P2 has two 2-node instances with node indices 3,4 and 
5,6.  

Assume no data flow loops exist among the three patterns. 
To exclude the overlapping case, each pattern group first 
will be partitioned to eliminate intrinsic instance 
overlapping. In the example above, the first and second 
instance of pattern P1 have a common node 1, thus the 
corresponding pattern group needs to be partitioned. After 
that we get four new pattern groups: { P0 | 1 ; 2 }, { P1 | 0 1 ; 
4 5 }, { P2 | 1 3 ; 4 5 }, { P3 | 3 4 ; 5 6 }. . 

A CNF representation F(p0 , … , p3) is used in our 
approach to describe the non-overlapping constraint among 
pattern group candidates. If p0 is set to 1, the corresponding 
pattern P0 will be selected; therefore those pattern groups 
having instances overlapping with the instances of P0 will be 
invalidated. For example, pattern group 0 has two one-node 
instances; these nodes also appear in pattern group 1 and 2, 
then its non-overlapping constraint can be represented by 
setting f0 = (¬p0 + ¬ p1) • (¬ p0 + ¬ p2) to 1. Similarly, for 
pattern group 1, f1 = (¬p1 + ¬ p2) • (¬p1 + ¬ p3) = 1, etc. 

Based on the discussion above, the final CNF constraint 
is F(p0, p1, p2, p3) = f0 • f1• f2 • f3 = 1, and our objective is to 
maximize total area reduction. With this formulation, our 
problem can be reduced to a Binate Covering problem, and 
the bounding technique in [16] can be used to compute the 
optimal solution. 

V. EXPERIMENTAL RESULTS 
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igure 6: Pattern-based behavioral synthesis flow 

The pattern recognition framework can be applied to 
many practical problems, including ASIP custom 
instruction set selection, and resource sharing in high-level 
synthesis, etc. Here, we evaluate the performance of our 
approach in one of its applications – FPGA area reduction 
in high level synthesis. 
A.  Experimental Setup 

The pattern-based synthesis flow is implemented in our 
behavioral synthesis system [5]. The whole design flow is 
shown in Figure 6. Our synthesis tool takes high-level 
languages and parses them into control data flow graphs. 
The GMT toolkit [3] is used for graph edit distance 
calculation. The synthesis engine will perform the 

pattern-based synthesis flow to reduce resource usage with 
certain design constraints. Xilinx Virtex-4 FPGA and ISE 
9.1 tool [15] are used in our experiments. 

Our test cases include a set of real-life programs: IDCT, 
SYNFLIT, BH, BLKSORT, HEAP, and LEXTREE. All test 
cases contain common control flows, and the last three 
cases are from the SPEC2006 benchmark. 
B.  Pattern Recognition Results 

In this section we discuss the pattern recognition results. 
Figure 7 shows the two selected pattern instances in one of 
our test cases IDCT. There are two similar for loops in 
IDCT, and the corresponding pattern instances include 
basic blocks 1,2 and basic blocks 3,4 respectively. 
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Figure 7: Two selected pattern instances of IDCT 
 

The effectiveness of our proposed pruning techniques using 
FV is shown in Table I and we can observe a substantial 
decrease in the number of average GED computations. In 
Table I, #Line is the size of each test case, #Pattern and 
#Inst is the number of patterns and total instances 
respectively, #Avg. Calc is the average number of GED 
calculations needed before a subgraph matches with a 
certain pattern, and #MAX is the maximal size of patterns 
in terms of DFG nodes. 

TABLE I.  PATTERN RECOGNITION RESULTS 

 #Line #Pattern #Inst #Avg.Calc #MAX 

IDCT 215 5 10 1.02 64 

SYNFILT 1051 3 7 0.94 24 

BH 301 6 14 1.33 37 

BLKSORT 289 3 6 0.82 15 

HEAP 217 11 23 1.49 10 

LEXTREE 696 6 12 1.31 24 

C.  Resource Reduction Results  
This section shows the pattern-based FPGA resource 

reduction results on the test cases mentioned before. Our 
work is compared to a traditional behavioral synthesis flow 
[6, 7], and the DFG pattern-based synthesis result in [4]. 

Table II shows the QoR of our proposed pattern-based 
synthesis algorithm compared to the other two approaches. 
In Table II, the second, third and fifth columns are the 
synthesis results for the number of registers used without 
pattern-based technique [6, 7], with a DFG pattern-based 



technique [4], and with CDFG pattern-based technique, 
respectively. Similarly, columns 7 to 11 list the amount and 
comparison of logic elements usage. 

Overall, our pattern-based synthesis flow can achieve a 
24% resource reduction on average over the traditional 
behavioral synthesis flow. For most test cases, CDFG 
pattern extraction outperforms work in [4], which can not 
efficiently deal with sharing at the basic block level. The 
performance improvement is especially substantial in test 
cases BLKSORT, where similar patterns are distributed in 
separate basic blocks instead of the same one. The average 
runtime overhead is less than one minute. 

We also use a heuristic method to balance latency 
trade-off. If the latency increases beyond a user-given limit 
with the current pattern selection result, we will recursively 
“relax” the area reduction by partially recovering shared 
resources until the latency falls into the acceptable region. 
However, in our experiments, latency doesn’t show drastic 
changes after our pattern algorithm is applied. There is 
about 9% latency overhead and 3.5% clock period increase 
on average. 
 

VI.   CONCLUSIONS 
In this paper we present a generalized control-flow 

aware pattern recognition algorithm which can efficiently 
extract patterns from behavioral specifications. To our 
knowledge, this is the first published work that can identify 
approximate patterns in control data flow graphs. 
Furthermore, the pattern recognition framework is evaluated 
in resource reduction problem and shows a 24% 
improvement on average in our experiments. 
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TABLE II.  RESOURCE REDUCTION ON ALL TEST CASES
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average   -9.34%  -20.37%   -14.76%  -24.73%  


