
A Generalized Control-Flow-Aware Pattern Recognition
 Algorithm for Behavioral Synthesis

Jason Cong, Hui Huang and Wei Jiang
Department of Computer Science, University of California

Los Angeles, USA
Email: {cong, huihuang, wjang}@cs.ucla.edu

ABSTRACT— Pattern recognition has many applications in
design automation. A generalized pattern recognition
algorithm is presented in this paper which can efficiently
extract similar patterns in programs. Compared to previous
pattern-based techniques, our approach overcomes their
limitation in handling control-flow-aware patterns, and leads
to more opportunities for optimization. Our algorithm uses a
feature-based filtering approach for fast pruning, and an
elegant graph similarity metric called the generalized edit
distance for measuring variations in CDFGs. Furthermore,
our pattern recognition algorithm is applied to solve the area
optimization problem in behavioral synthesis. Our
experimental results show up to a 40% area reduction on a set
of real-world benchmarks with a moderate 9% latency
overhead, compared to synthesis results without pattern
extractions; and up to a 30% area reduction, compared to the
results using only data-flow patterns.

Keywords: Behavioral Synthesis, control flow, pattern, feature

I. INTRODUCTION

Regularity plays a very important role in circuit design,
which leads to fewer multiplexing logics, better resource
sharing and better physical layout. We believe that
efficiently handling regularity is one of the advantages of
designers in manual RTL coding. However, the tight
time-to-market requirements have made it increasingly
difficult for designers to thoroughly analyze every design in
a short time; therefore, pattern recognition, which helps
designers automatically extract and utilize regularities in
applications of design optimizations, has drawn wide
interest at every level of circuit designs, from layout to
behavioral synthesis.

Among all the pattern recognition algorithms, the
graph-matching-based approach provides the best trade-off
between efficacy and scalability. Recently, these approaches
have been applied to solve problems in various domains,
such as data mining, biochemistry, and behavioral synthesis
[4, 8, 9, 10, 11, 13]. The work in [10] generates the
candidate templates with a clustering algorithm based on
occurrence frequency; the work in [9] proposed a
polynomial time algorithm with respect to the input/output
port number; another approach in [11] constructs subgraphs
by combining single input cones. All three are designed for
customized instruction generation for ASIP synthesis.
Recently, a pattern-based behavioral synthesis framework
was proposed in [4]. It uses the concept of graph edit
distance to capture graph similarity. However, all the work
mentioned above are constricted to extracting patterns only
in data flow graphs, without considering higher level control
flow structures. In [17] both control and data flow level
differences have been considered for program partition, but
their method merely compares signatures between two
partitions without accurate similarity evaluation.

In fact, control flows, such as loops and branches, have

big impacts on the final QoR in many cases and introduce
more opportunities for optimizations. The challenges for
pattern extraction in CDFGs are quite different from that in
DFGs: first, CDFG graphs have two kinds of edges —
control flow edges and data flow edges. Second, the
matching between two collections of graphs needed in the
related control-flow-aware pattern recognition process can
not be directly solved by known pattern matching techniques
which are applicable to only two graphs.

In this paper we develop a generalized control data flow
pattern recognition algorithm to identify regularity in the
behavioral specification and help users to reduce the
resource usage of a certain design. To our best knowledge,
this is the first automated approach to considering
control-flow patterns for behavioral synthesis. In particular,
the contributions of our approach include:
(1) A general hierarchical approach which automatically

recognizes control data flow patterns from programs.
(2) A graph similarity evaluation metric to estimate general

edit distance between CDFG patterns.
(3) A two-level feature-based filtering scheme to reduce the

amount of expensive similarity evaluations effectively.
(4) An efficient and accurate pattern selection strategy

which helps to select optimal pattern combinations
from discovered patterns.
The remainder of the paper is organized as follows.

Section II discusses preliminaries knowledge; Section III
presents our CDFG pattern recognition algorithm and
related techniques; pattern selection strategy is discussed in
Section IV; Section V shows the experimental results, and
Section VI is the conclusion part.

II. PRELIMINARIES

DEFINITION 1. A control data flow graph (CDFG) is a
directed graph G(VG,EG) where VG = Vbb�Vop and EG =
Ec�Ed. Vbb is a set of basic blocks. Vop is the entire set of
operation nodes in G. Data edges in Ed denote the data
dependencies between operation nodes. Control edges in Ec
represent control dependencies between basic blocks.

In the control-flow-aware pattern mining problem, a
CDFG basic block normally consists of multiple data flow
graphs, as shown in Figure 1, therefore the original edit
distance [1] which measures the similarity between two
connected graphs is no longer applicable. To solve this
problem we introduce a new concept called generalized
edit distance:

DEFINITION 2. The generalized edit distance (GED)
between two sets of labeled graphs GS1 and GS2 is the
minimal number of edit operations (insert/delete/relabel a
node/edge) to transform GS1 to GS2.

In our approach, the concept of generalized edit
distance is exploited to describe the similarity degree of
CDFGs. For example, the generalized edit distance
between CDFGs in Figure 1(a) and 1(b) is three, since

relabeling the node “+” with “*” at three places in 1(a) can
transform it to the graph in 1(b). GED provides an effective
metric to capture the similarity of CDFG subgraphs with
more than one data flow graphs inside, and also gives the
minimum number of edit operations needed to share
common structures among similar subgraphs.

+ +

+
>

br

+ -
+

+ +

+ -

+ +

*
>

br

+ -
+

* +

* -
(a) (b)

bb0

bb1 bb2

bb0

bb1 bb2

+ +

+
>

br

+ -
+

+ +

+ -

+ +

+
>

br

+ -
+

+ +

+ -

+ +

*
>

br

+ -
+

* +

* -
(a) (b)

bb0

bb1 bb2

bb0

bb1 bb2

Figure 1: Two sample CDFG subgraphs.

With the concept of generalized edit distance, CDFG
pattern and pattern instances are defined as follow:
DEFINITION 3. Given a set of CDFGs {Gi| i = 1, 2…N}, a
threshold ldist as an upper bound for the generalized edit
distance, and a significance threshold lsig, a labeled graph
P is called a CDFG pattern if there exists set S(P) = { SGj }
which satisfies: (1) for all SGj∈ S, GED(SGj, P) ≤ ldist; (2)
for any SGj∈S, there exists Gi such that SGj is a subgraph
of Gi; (3) |S(P)|*|P| ≥ lsig. In this case, each subgraph in set
S is called a CDFG pattern instance of the pattern P, and
correspondingly set S is called a CDFG pattern group.

III. PATTERN RECOGNITION

This section introduces our generalized pattern
recognition algorithm, which is used to discover patterns
with similar control flow, as well as data flow structures.
The similarity between two CDFG patterns is measured in
terms of generalized edit distance, and a feature-based
filtering technique is applied to reduce total number of
GED computations.

A. CDFG Subgraph Labeling
In our approach each pattern is represented by a labeled

graph. Notice that a DFG node can be labeled by the
operation it represents, while each supernode in CFG is a
basic block and it is not straightforward to find a label. Thus
further similarity evaluation technique discussed in Section
III(C) is used to decide whether two supernodes in CFG can
be assigned the same label or not. Once the label of a basic
block has been obtained, we will append it to the original
DFG label of the nodes it contains. Therefore the label of a
node in a given CDFG graph is a combination of its own
DFG label and the label for the supernode (basic block) it
belongs to. And distinct labels are assigned to data
dependence edges according to their commutability.
B. Two-level Feature-based Filter

The computation of generalized edit distance is expensive,
considering currently there is no polynomial-time algorithm
for solving the graph isomorphism problem. Therefore
filtering techniques have been adopted in the pattern
recognition algorithm to reduce the number of GED
calculations. In our approach, a signature called two-level
feature vector is introduced for each CDFG subgraph, based
on the work in [4]. However, the features discussed in [4]
are constricted to data flow graph. In our control-flow-aware
approach the feature information needs to be collected at

both levels.

DEFINITION 4: In a CDFG graph G = (VG,EG), a
DFG-feature is a subgraph S = {u, l ,r | u, l ,r∈ Vop}, such
that (l, u) and (r, u)∈Ed; a CFG-feature is a subgraph S =
{u, l1, ..., lm | u, li∈ Vbb}, such that (u, li) ∈Ec (m equals the
number of outputs for supernode u). For a given universe of
distinct features U = {F1, F2,…, F|τ|}, the feature vector is a
vector (f1, f2,…f|τ|) with each element fi representing the
number of occurrences of the ith feature in U. Fi could either
appear in the DFG or CFG graph, and the corresponding
feature vector is called DFV and CFV respectively.

Figure 2 shows the features for a DFG graph and a CFG
graph, along with their feature vectors. The symbol ε
denotes an empty node if the input or output of a node is not
in this graph. As discussed in [4], DFG nodes with multiple
outputs will also be counted as ε node. Notice that we
assume supernode 1 and 2 are similar, therefore the number
of the second feature in (c) is two instead of one.

(d)

ε

+ +
-

-

ε ε

ε

(a) (b)

ε

- +

+ +

-

ε ε ε

DFV = (1,2,1)

CFV = (1,2,1)

bb0

bb1 bb2

bb1

bb3

bb3

ε εε

(c)

bb0

bb1 bb2

bb3ε ε

ε ε

ε

ε
(d)

ε

+ +
-

-

ε ε

ε

(a) (b)

ε

- +

+ +

-

ε ε ε

DFV = (1,2,1)

CFV = (1,2,1)

bb0

bb1 bb2

bb1

bb3

bb3

ε εε

(c)

bb0

bb1 bb2

bb3ε ε

ε ε

ε

ε

Figure 2: (a) A DFG. (b) Data flow features and the DFV of the
given DFG. (c) A CFG. (d) Control flow features and the CFV of
the given CFG, assuming bb1 and bb2 are similar supernodes.

The combination of DFV and CFV is used in our
approach to capture structural properties of the original
CDFG graph. The L1 distance of two feature vectors, which
is easy to compute, serves as an indicator of the similarity
degree between the corresponding two graphs.

Theorem 1 [4]. Let d(G1; G2) be the edit distance between
two data flow graphs G1 and G2, and DFV(Gi) be the data
flow feature vector of Gi, ||DFV(G1)-DFV(G2) ||1 ≤ 4 * d(G1;
G2).

Theorem 1 from [4] tells us that given an edit distance
limit ldist, the maximal number of possible DFG feature
misses between two CDFG subgraphs is 4 *ldist. However,
this reveals no information for the similarity degree in their
control flow graphs.

F1 F2(1) F2(2) F3

f1 1 0 0 1

f2 0 1 1 0

f3 1 1 1 …

… … … … …

fm 0 0 … 1

+ +
+

+ -
+

+ +

+ -

bb1 bb2

bb0

+ +
+

F1

f1

(b)

(a) (c)

- -
-

f2 +
-

f3 ε

F1 F2(1) F2(2) F3

f1 1 0 0 1

f2 0 1 1 0

f3 1 1 1 …

… … … … …

fm 0 0 … 1

+ +
+

+ -
+

+ +

+ -

bb1 bb2

bb0

+ +
+

F1

f1

(b)

(a) (c)

- -
-

f2 +
-

f3 ε

Figure 3: (a) a sample feature map matrix (b) a sample CFG feature
F1 (c) three sample DFG features

In order to develop an upper bound for the number of
possible CFG feature misses, we propose a data structure
called feature map matrix. Each row of the feature map
matrix corresponds to a DFG feature, while each column
corresponds to a CFG feature. Each entry records whether a
DFG feature appears in a target CFG feature. Figure 3
shows the feature map matrix built for the CDFG in Figure
2(c), with its CFG/DFG features. Fi in Figure 3(a)
corresponds to the ith CFG feature in Figure 2(d) and all the
occurrences of a CFG feature will be recorded in the matrix.
For instance, columns 3 and 4 are two occurrences of F2 in
the original CDFG. In Figure 3(b) and 3(c), we can observe
that DFG features f1 and f3 appear once in CFG feature F1,
therefore the corresponding entries are set to one.

Now, with the newly built feature map matrix M and the
maximal number of allowed DFG feature misses 4*ldist, we
can find out the upper bound for possible CFG feature
misses lmissUb. If a DFG feature fi is missing, all the CFG
features containing fi in their inside data flow structures
will be destroyed correspondingly, namely any column j
satisfying M(i,j) = 1 needs to be removed from the matrix.
Since the total number of missing DFG features is no more
than 4*ldist, any set of missing CFG features can not cover
more than 4*ldist rows. Therefore lmissUb equals the maximal
number of columns hit by 4*ldist rows in M — here
“column j is hit by row i” means M(i,j) equals one.

Theorem 2. Let ldist be the given edit distance limit, and
CFV(Gi) be the CFG feature vector of Gi. If the generalized
edit distance between G1 and G2 does not exceed ldist, we
have: ||CFV(G1)-CFV(G2) ||1 ≤ lmissUb
Proof: Assume the generalized edit distance between G1
and G2 is less than ldist, Theorem 1 tells us that the DFV
distance between G1 and G2 is no more than 4*ldist,
therefore their CFV distance ||CFV(G1)-CFV(G2) ||1 can not
exceed lmissUb, which is the maximal CFG feature misses
brought by 4*ldist DFG feature misses.

To find the maximal number of columns hit by k rows is
a classic max-cover problem, which has been proved to be
NP-complete[18]. For the runtime trade-off, we can
approximate the optimal solution by using a greedy
algorithm. The greedy algorithm first selects a row that hits
the largest number of columns, then removes this row and
the columns covering it. This operation will continue until
4*ldist rows have been selected. lmissGreed equals the number
of columns removed by this algorithm.

Theorem 3. [14] Let lmissGreed and lmissUB be the greedy and
optimal solution for the max-cover problem, we have:

 11(1 (1)) 1.59
1

k
missUB missGreed missGreed missGreed

el l l l
k e

−≤ − − ⋅ ≤ ⋅ ≈
−

 Theorem 3 from [14] shows the optimal solution is
approximated by the greedy solution within a ratio of
e/(e-1), therefore 1.59* lmissGreed can be used as an
estimation of lmissUb. If the actual CFG feature misses
between two graph candidates are greater than lmissUb, we
can safely assert that the difference in their control flow
structure will result in a generalized edit distance larger
than ldist, which means that further GED computation is not
necessary. Experimental results show that on average only
about 3 to 7 GED calculations are needed with hundreds of
pattern candidates, which brings dramatic runtime speedup.
C. Similarity Evaluation

Given two CDFG subgraphs G1 and G2 which have
passed the two-level feature-based filter, similarity
evaluation will first be performed between their control flow
structures, in which each basic block is treated as a
supernode. After that, we will look into the data flow graphs
inside to do further comparison.

*

*

*

*
*

*

*

*

*
*
+

+
++

+

+

+
+

++

+
+

+ -

-

-

-

-

- *

*
**

*

*
*

*

*
+

*

*

bb0

bb1…………

bb2………… bb3…………

br

*

*

*

*
*

*

*

*

*
*
+

+
++

+

+

+
+

++

+
+

+ -

-

-

-

-

- *

*
**

*

*
*

*

*
+

*

*

bb0

bb1…………

bb2………… bb3…………

br

Figure 4: Four subgraph fragments in CDFG of BH
Figure 4 shows the data flow structure inside a

supernode in one of our test cases – BH. We can observe
that the data flow structure inside each supernode is not
connected and consists of several separate subgraphs which
we call subgraph fragments, marked with dashed rectangle
in Figure 4. This situation is very common. Here we do not
allow edge insertion between two separate subgraph
fragments, since it will introduce data dependency between
two originally parallel data flow graphs, and make it hard to
measure the latency of a pattern. Under this constraint we
can approximate generalized edit distance as below:

Given two sets of subgraph fragments SF1 and SF2, in
which SF1 = { fg11, fg12, … fg1N} and SF2 = { fg21, fg22, …,
fg2N }, and fgij is the jth subgraph fragment in set i. If the
edit distance between fg1a and fg2b is dist(fg1a , fg2b), the
generalized edit distance (GED) between SF1 and SF2,
denoted by DIST(SF1 , SF2), is approximated as:

1 21

min { (,) }
i

N
i pi

dist fg fg
=∑

where (p1,p2,..,pN) is a permutation of (1,2, .., N).

If the numbers of subgraph fragments of the two sets are
different, we can introduce dummy graphs with 0 nodes
and 0 edges to make it equal. To calculate GED between
two sets of subgraph fragments, we construct a fragment-
edit-distance matrix as follow:

DIST fg21 fg22 … fg2n

fg11 9 7 … ∞

fg12 2 10 … 5

… … … … …

fg1n 7 ∞ 1

Figure 5: Fragment-Edit-Distance Matrix M

Entry M(i,j) in Figure 5 records the edit distance between
the ith subgraph fragment in set 1 and the jth fragment in set
2. When we build M, the feature vector distance constraint
||DFV(fg1i) - DFV(fg2j) ||1 ≤ 4*ldist must be satisfied,
otherwise, an infinite value will be assigned to the

corresponding entry. In our experiments, we find that for
most cases, the number of fragments with more than ten
nodes is less than five; therefore, even though we need to
compute edit distance between every two fragments, the
cost is still acceptable.

With the fragment edit-distance matrix, our problem is to
find an optimal index permutation (p1,p2,…,pN) of
(1,2,…,N), so that the sum of edit distance between the ith
fragment in the first set and pi

th fragment in the second set
is minimal, for i = 1 to N. This problem is similar to the
assignment problem, and can be formulated as below:

N N

ij
i=1 j=1

N

ij
j=1

N

ij
i=1

ij

 dist(i,j) X

. . X 1 for i=1...N

 X 1 for j=1...N

 X 0 for i,j=1...N

minimize

s t

⋅

=

=

≥

∑∑

∑

∑

In the optimal solution, if the mth subgraph fragment in
the first set is matched to the nth fragment in the second set,
Xmn will be set to 1, otherwise 0. Hopfield network has been
developed to solve this problem efficiently in polynomial
time [2].
D. Pattern Recognition Algorithm

With all the important techniques discussed, our pattern
recognition algorithm is presented in this section. The
algorithm does pattern extraction in both data flow graphs
and control flow graphs, and the two-level recognition
process is performed in an interweaving way.

Our CDFG pattern recognition process discovers
patterns in a breadth-first order. All the subgraphs of size k
in a given CDFG are enumerated, among which the
non-similar subgraphs will be directly removed by our
proposed two-level feature-based filter. Then the remaining
subgraph pairs will perform GED calculation to measure
their similarity accurately. The pseudo code of the
algorithm is shown in Algorithm 1.

Our algorithm iteratively finds patterns of size k starting
from k = 1. At step k + 1, all the size k CDFG pattern
instances are extended by one supernode using the
subgraph enumeration techniques discussed in Section
III(A). If a subgraph sk is not a pattern instance of a certain
pattern P at step k, it is impossible to be a subgraph of
another pattern instance larger than k, which means we
don’t need to further extend it.

Lines 15 to 25 show the pruning process in Algorithm 1.
After a new subgraph sk+1 is generated, it will be compared
to the existing patterns by calculating the CFG level edit
distance between itself and existing patterns. First, the CFV
of a subgraph is calculated and used as a signature to find
the patterns which have similar control flow structures.
After getting the list of possible pattern candidates, the
generalized edit distances are calculated by the techniques
discussed in Section III(C). If sk+1 matches a pattern P, it
will be added to the pattern instance list of P, otherwise a
new pattern will be generated based on sk+1. When all size k
+ 1 subgraphs are processed, each newly generated pattern
will be examined to see whether it satisfies the significance
limit, which is measured by the pattern size times the
number of its instances. If not, the pattern itself and its
instances will be removed together.

Algorithm 1 CDFG Pattern Recognition
1: P → set of discovered patterns
2: Sk → set of size k CDFG subgraphs
3: INST(P) → instances of a pattern P
4: ldist → generalized edit distance limit
5:lmissUb → estimated upper bound for CFG feature misses
6: lsig → significance limit
7: lmin → minimal DFG edit distance increase by one

CFG edit operation.
8:
9: Travel all supernodes, add size 1 CFG patterns and

instances to P and S1
10: Compute all DFG and CFG features, create feature map

matrix, and compute lmissUb
11: for k = 1 to N-1 do
12: for all sk∈SK do
13: Add a neighbor expand sk to sk+1;
14: Calculate CFV(sk+1);
15: Get a list of patterns {Pi} which satisfies

||CFV(Pi)-CFV(sk+1)|| ≤ lmissUb;
16: Calculate CFG-level edit distance led of sk+1

with each Pi;
17: if lmin * led ≤ ldist then
18: Build fragment ed. matrix Mfg;
19: Compute the generalized edit distance

dist(Pi,sk+1) from Mfg;
20: if dist(Pi,sk+1) < ldist then
21: Add sk+1 to INST(Pi);
22: if sk+1 matches no current patterns
23: Create a new pattern based on sk+1, add to

P;
24: Add sk+1 to Sk+1;
25: for all new pattern Pi∈P do
26: if |INST(Pi)|*|Pi| < lsig then
27: Remove Pi from P;
28: Remove INST(Pi) from Sk+1;

IV. PATTERN SELECTION

Given a set of patterns discovered by the pattern
recognition process, pattern selection algorithms attempt to
find an appropriate set of patterns with the largest gain.

| |() ()*(# () 1)
()overhead

Pgain P area P inst P area
latency P

α= − − + ⋅

#inst(P) is the number of instances of P and areaoverhead is
the area overhead brought by newly introduced multiplexors
when resources are shared among similar patterns. The
second term measures the “flatness” of P — “flat” means
the critical path of P is small compared to the number of
nodes in P. The variable α is a user-given parameter to
trade off between resource reduction and latency overhead.
Now, with a given set of pattern candidates, the problem is
how to find a subset of non-conflicting patterns to maximize
total gain. Here “non-conflicting” means non-overlapping,
and no loop will be in control flow graph formed after
selecting a certain set of patterns.

For example, given a CDFG graph G which consists of
seven supernodes, indexed from 0 to 6, assume our pattern
recognition algorithm finds three patterns P0, P1 and P2 in G.
The corresponding pattern groups are denoted by { P0 | 1 ;
2 }, { P1 | 0 1 ; 1 3 ; 4 5 } and { P2 | 3 4 ; 5 6 }. That is,
pattern P0 has two 1-node instances, and the node index for

each instance is 1 and 2; P1 has three 2-node instances, and
the node indices for each instance is 0 and 1, 1 and 3, 4 and
5; P2 has two 2-node instances with node indices 3,4 and
5,6.

Assume no data flow loops exist among the three patterns.
To exclude the overlapping case, each pattern group first
will be partitioned to eliminate intrinsic instance
overlapping. In the example above, the first and second
instance of pattern P1 have a common node 1, thus the
corresponding pattern group needs to be partitioned. After
that we get four new pattern groups: { P0 | 1 ; 2 }, { P1 | 0 1 ;
4 5 }, { P2 | 1 3 ; 4 5 }, { P3 | 3 4 ; 5 6 }. .

A CNF representation F(p0 , … , p3) is used in our
approach to describe the non-overlapping constraint among
pattern group candidates. If p0 is set to 1, the corresponding
pattern P0 will be selected; therefore those pattern groups
having instances overlapping with the instances of P0 will be
invalidated. For example, pattern group 0 has two one-node
instances; these nodes also appear in pattern group 1 and 2,
then its non-overlapping constraint can be represented by
setting f0 = (¬p0 + ¬ p1) • (¬ p0 + ¬ p2) to 1. Similarly, for
pattern group 1, f1 = (¬p1 + ¬ p2) • (¬p1 + ¬ p3) = 1, etc.

Based on the discussion above, the final CNF constraint
is F(p0, p1, p2, p3) = f0 • f1• f2 • f3 = 1, and our objective is to
maximize total area reduction. With this formulation, our
problem can be reduced to a Binate Covering problem, and
the bounding technique in [16] can be used to compute the
optimal solution.

V. EXPERIMENTAL RESULTS

SSDM
(System Synthesis

Data Model)

Pattern Recognition

Pattern Selection

Pattern-based Scheduling

Pattern-based Binding

SystemC/C
specification

FPGA platform
information

Constraints(latency,
resource …)

VHDL Design Constraints

Xilinx ISE tool

CDFGs

Patterns

SSDM
(System Synthesis

Data Model)

Pattern Recognition

Pattern Selection

Pattern-based Scheduling

Pattern-based Binding

SystemC/C
specification

FPGA platform
information

Constraints(latency,
resource …)

VHDL Design Constraints

Xilinx ISE tool

CDFGs

Patterns

F

igure 6: Pattern-based behavioral synthesis flow

The pattern recognition framework can be applied to
many practical problems, including ASIP custom
instruction set selection, and resource sharing in high-level
synthesis, etc. Here, we evaluate the performance of our
approach in one of its applications – FPGA area reduction
in high level synthesis.
A. Experimental Setup

The pattern-based synthesis flow is implemented in our
behavioral synthesis system [5]. The whole design flow is
shown in Figure 6. Our synthesis tool takes high-level
languages and parses them into control data flow graphs.
The GMT toolkit [3] is used for graph edit distance
calculation. The synthesis engine will perform the

pattern-based synthesis flow to reduce resource usage with
certain design constraints. Xilinx Virtex-4 FPGA and ISE
9.1 tool [15] are used in our experiments.

Our test cases include a set of real-life programs: IDCT,
SYNFLIT, BH, BLKSORT, HEAP, and LEXTREE. All test
cases contain common control flows, and the last three
cases are from the SPEC2006 benchmark.
B. Pattern Recognition Results

In this section we discuss the pattern recognition results.
Figure 7 shows the two selected pattern instances in one of
our test cases IDCT. There are two similar for loops in
IDCT, and the corresponding pattern instances include
basic blocks 1,2 and basic blocks 3,4 respectively.

x x x x x x x x

x

br

+

-
*

+ +

+

+

+

+

+

+

-

-

-

-

-
-
-

-

* ** *

*

x x

-
* *

+ -
- +

-
+

*
+

+ +

+
-
-

* *
br

bb1

bb2

x x x x x x x x

x

br

+

-
*

+ +

+

+

-

+

-

-

-

-

-

-
-

-

* *+ +

*

x x

+
* *

- +

- +
-
+

*
+

+

+
-
-

+ *
br

bb3

bb4

x x xx

*
+

*
+

*
+

x

x

(a) (b)

x x x x x x x x

x

br

+

-
*

+ +

+

+

+

+

+

+

-

-

-

-

-
-
-

-

* ** *

*

x x

-
* *

+ -
- +

-
+

*
+

+ +

+
-
-

* *
br

bb1

bb2

x x x x x x x x

x

br

+

-
*

+ +

+

+

-

+

-

-

-

-

-

-
-

-

* *+ +

*

x x

+
* *

- +

- +
-
+

*
+

+

+
-
-

+ *
br

bb3

bb4

x x xx

*
+

*
+

*
+

x

x

(a) (b)
Figure 7: Two selected pattern instances of IDCT

The effectiveness of our proposed pruning techniques using
FV is shown in Table I and we can observe a substantial
decrease in the number of average GED computations. In
Table I, #Line is the size of each test case, #Pattern and
#Inst is the number of patterns and total instances
respectively, #Avg. Calc is the average number of GED
calculations needed before a subgraph matches with a
certain pattern, and #MAX is the maximal size of patterns
in terms of DFG nodes.

TABLE I. PATTERN RECOGNITION RESULTS

 #Line #Pattern #Inst #Avg.Calc #MAX

IDCT 215 5 10 1.02 64

SYNFILT 1051 3 7 0.94 24

BH 301 6 14 1.33 37

BLKSORT 289 3 6 0.82 15

HEAP 217 11 23 1.49 10

LEXTREE 696 6 12 1.31 24

C. Resource Reduction Results
This section shows the pattern-based FPGA resource

reduction results on the test cases mentioned before. Our
work is compared to a traditional behavioral synthesis flow
[6, 7], and the DFG pattern-based synthesis result in [4].

Table II shows the QoR of our proposed pattern-based
synthesis algorithm compared to the other two approaches.
In Table II, the second, third and fifth columns are the
synthesis results for the number of registers used without
pattern-based technique [6, 7], with a DFG pattern-based

technique [4], and with CDFG pattern-based technique,
respectively. Similarly, columns 7 to 11 list the amount and
comparison of logic elements usage.

Overall, our pattern-based synthesis flow can achieve a
24% resource reduction on average over the traditional
behavioral synthesis flow. For most test cases, CDFG
pattern extraction outperforms work in [4], which can not
efficiently deal with sharing at the basic block level. The
performance improvement is especially substantial in test
cases BLKSORT, where similar patterns are distributed in
separate basic blocks instead of the same one. The average
runtime overhead is less than one minute.

We also use a heuristic method to balance latency
trade-off. If the latency increases beyond a user-given limit
with the current pattern selection result, we will recursively
“relax” the area reduction by partially recovering shared
resources until the latency falls into the acceptable region.
However, in our experiments, latency doesn’t show drastic
changes after our pattern algorithm is applied. There is
about 9% latency overhead and 3.5% clock period increase
on average.

VI. CONCLUSIONS
In this paper we present a generalized control-flow

aware pattern recognition algorithm which can efficiently
extract patterns from behavioral specifications. To our
knowledge, this is the first published work that can identify
approximate patterns in control data flow graphs.
Furthermore, the pattern recognition framework is evaluated
in resource reduction problem and shows a 24%
improvement on average in our experiments.

VII. ACKNOWLEDGEMENT

 This research is partially supported by MARCO
Gigascale Systems Research Center (GSRC), and the Center
for Domain-Specific Computing (CDSC) funded by the NSF
Expedition in Computing Award CCF-0926127.

VIII. REFERENCES

[1] B. T. Messmer and H. Bunke. A new algorithm for error-tolerant

subgraph isomorphism detection. IEEE Trans. Pattern Anal. Mach.
Intell., 20(5): pages 493–504, 1998.

[2] C. Douligeris, G. Feng: Using hopfield networks to solve assignment
problem and n-Queen problem: an application of guided trial and
error technique. In SETN ’02: Proceedings of the Second Hellenic
Conference on AI, pages 325-336, 2002

[3] GMT toolkit. http://www.cs.sunysb.edu/algorithm/implement/gmt
/implement.shtml.

[4] J. Cong, W. Jiang: Pattern-based behavior synthesis for FPGA
resource reduction. In FPGA’08: pages 107-116, 2008.

[5] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. Platform-based
behavior-level and system-level synthesis. In Proceedings of IEEE
SOCC, 2006.

[6] J. Cong, Y. Fan, and W. Jiang. Platform-based resource binding using
a distributed register-file micro-architecture. In ICCAD ’06:
Proceedings of the 2006 IEEE/ACM International Conference on
Computer-aided Design, pages 709–715, 2006.

[7] J. Cong and Z. Zhang. An efficient and versatile scheduling algorithm
based on SDC formulation. In Proceedings of Design Automation
Conference, July 2006.

[8] M. R. Corazao, M. A. Khalaf, L. M. Guerra, M. Potkonjak, and J. M.
Rabaey. Performance optimization using template mapping for
datapath-intensive high-level synthesis. IEEE Trans. on CAD of
Integrated Circuits and Systems, 15(8), pages 877–888, 1996.

[9] P. Bonzini and L. Pozzi. Polynomial-time subgraph enumeration for
automated instruction set extension. In DATE ’07: Proceedings of the
conference on Design, automation and test in Europe, pages
1331–1336, 2007.

[10] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruction
generation and regularity extraction for reconfigurable processors. In
Proceedings of CASES, 2002.

[11] P. Yu and T. Mitra. Scalable custom instructions identification for
instruction-set extensible processors. In CASES ’04: Proceedings of
the 2004 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pages 69–78, 2004.

[12] R. Yang, P. Kalnis, and A. K. H. Tung. Similarity evaluation on
tree-structured data. In SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, pages
754–765, 2005.

[13] T. Ly, D. Knapp, R. Miller, and D. MacMillen. Scheduling using
behavioral templates. In DAC ’95: Proceedings of the 32nd
ACM/IEEE conference on Design automation, pages 101–106, 1995.

[14] U. Feige. A threshold of ln n for approximating set cover. Journal of
the ACM, 45: pages 634–652, 1998

[15] Xilinx website. http://www.xilinx.com
[16] X. Li, M. F. M. Stallmann, F. Brglez. Effective bounding techniques

for solving unate and binate covering problems. In DAC ’05:
Proceedings of the 42nd ACM/IEEE conference on Design
automation, pages 385–390, 2005.

[17] W. Chen, B. Li, R. Gupta. Code Compaction of Matching
Single-Entry Multiple-Exit Regions. In SAS’03: Proceedings of the
10th Annual International Static Analysis Symposium, pages 401–417,
2003.

[18] R. M. Karp. Reducibility Among Combinatorial Problems. In
Complexity of Computer Computations, Plenum Press, 1972.

TABLE II. RESOURCE REDUCTION ON ALL TEST CASES

 FFnP FFDFG CMP FFCDFG CMP LEnP LEDFG CMP LECDFG CMP

ICDT 1514 1601 5.75% 1193 -21.20% 5071 3998 -21.15% 2870 -43.40%

SYNFILT 476 394 -17.22% 325 -31.72% 1578 1193 -24.40% 1070 -32.19%

BLKSORT 295 237 -6.10% 235 -20.34% 1565 1455 -7.03% 1147 -26.71%

BH 850 701 -17.52% 640 -24.71% 3288 2692 -18.13% 2659 -19.13%

HEAP 1023 945 -7.62% 934 -8.61% 6743 6291 -6.70% 5995 -11.09%

LEXTREE 824 714 -13.35% 695 -15.66% 4211 3740 -11.18% 3543 -15.86%

average -9.34% -20.37% -14.76% -24.73%

