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A Generalized Convergence Theorem for 
Neural Networks 

JEHOSHUA BRUCK AND JOSEPH W. GOODMAN, FELLOW, IEEE 

Abstruct-A neural network model is presented in which each neuron 
performs a threshold logic function. An important property of the model is 
that it always converges to a stable state when operating in a serial mode 
and to a cycle of length at most 2 when operating in a fully parallel mode. 
This property is the basis for the potential applications of the model, such 
as associative memory devices and combinatorial optimization. The two 
known convergence theorems (for serial and fully parallel modes of opera- 
tion) are reviewed, and a general convergence theorem is presented which 
unifies the two known cases. Some new applications of the model for 
combinatorial optimization are also presented, in particular, new relations 
between the neural network model and the problem of finding a minimum 
cut in a graph. 

I. INTRODUCTION 
The neural network model is a discrete-time system that can be 

represented by a weighted and undirected graph. A weight is 
attached to each edge of the graph and a threshold value attached 
to each node (neuron) of the graph. The order of the network is 
the number of nodes in the corresponding graph. Let N be a 
neural network of order n;  then N is uniquely defined by ( W, T )  
where 

W is an n X n symmetric matrix, where w, is equal to the 
weight attached to edge ( i ,  j ) ;  
T is a vector of dimension n, where r denotes the thres- 
hold attached to node i. 

Every node (neuron) can be in one of two possible states, either 1 
or -1. The state of node i at time t is denoted by y ( t ) .  The 
state of the neural network at time t is the vector V ( t ) .  

The next state of a node is computed by 

(1) 
1, i fH , ( t )  2 0 ;  y ( t + l )  =sgn(&( t ) )  = ( -1, otherwise 

where 

The next state of the network, Le., V( t + l), is computed from 
the current state by performing the evaluation (1) at a set S of 
the nodes of the network. The modes of operation are determined 
by the method by which the set S is selected in each time 
interval. If the computation is performed at a single node in any 
time interval, i.e., IS1 = 1, then we say that the network is operat- 
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ing in a serial mode; if IS1 = n, then we say that the network is 
operating in a fully parallel mode. All the other cases, i.e., 
1 < (SI < n, will be called parallel modes of operation. The set S 
can be chosen at random or according to some deterministic rule. 

A state V( t )  is called stable if and only if V( t )  = sgn( WV( t )  - 
T ) ,  i.e., no change occurs in the state of the network regardless of 
the mode of operation. 

An important property of the model is that it always converges 
to a stable state when operating in a serial mode and to a cycle of 
length at most 2 when operating in a fully parallel mode [3], [ 5 ] .  
Section I1 contains a description of these convergence properties 
and a general convergence theorem which unifies the two known 
cases. New relations between the energy functions which corre- 
spond to the serial and fully parallel modes are presented as well. 

The convergence properties are the basis for the application of 
the model in combinatorial optimization. In section 111 we de- 
scribe the potential applications of a neural network model as a 
local search device for the two modes of operation, that is, serial 
mode and fully parallel mode. In particular, we show that an 
equivalence exists between finding a maximal value of the energy 
function and finding a minimum cut in an undirected graph, and 
also that a neural network model can be designed to perform a 
local search for a minimum cut in a directed graph. 

11. CONVERGENCE THEOREMS 
An important property of the model is that it always con- 

verges, as summarized by the following theorem. 

Theorem 1:  Let N =  ( W , T )  be a neural network, with W 
being a symmetric matrix; then the following hold. 

I )  Hopfield (51: If N is operating in a serial mode and the 
elements of the diagonal of W are nonnegative, the network will 
always converge to a stable state (i.e., there are no cycles in the 
state space). 

2) Goles (31: If N is operating in a fully parallel mode, the 
network will always converge to a stable state or to a cycle of 
length 2 (i.e., the cycles in the state space are of length I 2) .  

The main idea in the proof of the two parts of the theorem is 
to define a so-called energy function and to show that this energy 
function is nondecreasing when the state of the network changes. 
Since the energy function is bounded from above, the energy will 
converge to some value. Note that, originally, the energy function 
was defined so that it is nonincreasing [3], [ 5 ] ;  we changed it to 
be nondecreasing in accordance with some known graph prob- 
lems (see, e.g., min cut in the next section). 

The second step in the proof is to show that constant energy 
implies in the first case a stable state and in the second a cycle of 
length I 2. The energy functions defined for each part of the 
proof are different: 

El(  t )  = V‘( t )  WV( t )  -( V( t )  + V( t))‘T 

where El( t )  and E2( t )  denote the energy functions related to the 
first and second part of the proof. 

An interesting question is whether two different energy func- 
tions are needed to prove the two parts of Theorem 1. A new 
result is that convergence in the fully parallel mode can be 
proven using the result on convergence for the serial mode of 
operation. For the sake of completeness, the proof for the case of 
a serial mode of operation follows. 

Proof of the First Part of Theorem I :  Using the definitions in 
(1) and (2), let A E  = E l ( t  +l)- E , ( t )  be the difference in the 
energy associated with two consecutive states, and let AV, denote 
the difference between the next state and the current state of 
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node k at some arbitrary time t .  Clearly, 

( O, if v&( t>=sgn(H&( t ) )  

serial mode i,n N .  We will show that starting from the initial state 
(V,, &) in N (the state of both Pl and P2 is V,) and using the 
order (i, ,( i, + n), i7 ,( i, + n), . . . ) for the evaluation of states - -  

- 2 ,  

2 ,  

if V,( t )  = 1  and sgn( Hk( 1)) = -1. (3) implies the following. 
1) The state of Pl will be equal to the state of P2 in 6 after an 

arbitrarv even number of evaluations. if & ( t )  = -1 and sgn( Hk( t ) )  =1 

By assumption (serial mode of operation) the computation (1) 
is performed only at a single node at any given time. Suppose this 
computation is performed at an arbitrary node k ;  then the energy 
difference resulting from this computation is 

n 1 (,:1 1 =1 
A E = A v A  w k , j y +  w , k K  

+ w,, , AV: - 2 AV, Tk . (4) 
From the symmetry of W and the definition of H, it follows 

that 

A E  = 2AVk H, + Wk,k  AV:. (5) 

Hence since AV, H, 2 0 and wk, 2 0, it follows that A E 2 0 for 
every k .  Thus since El is bounded from above, the value of the 
energy will converge. 

The second step in the proof is to show that convergence of the 
energy implies convergence to a stable state. The following two 
simple facts are helpful in this step: 

1) if AVk = 0, then it follows that A E = 0; 
2)  if AVk # 0, then A E  = 0 only if the change in V, is from 

- 1 to 1, with H, = 0. 

Hence once the energy in the network has converged it is clear 
from the foregoing facts that the network will reach a stable state 
after at most n2 time intervals. 

The following lemma describes a general result which enables 
transformation of a neural network with nonnegative self-loops 
operating in a serial mode to an equivalent network without 
self-loops (part a); it also enables transformation of a neural 
network operating in a fully parallel mode to an equivalent 
network operating in a serial mode (part b). The equivalence is in 
the sense that it is possible to derive the state of one network 
given the state of the other network, provided the two networks 
started from the same initial state. 

Lemma 1: Let N = (W,  T )  be a neura;l network. Let 6 = (e, T )  be obtained from N as follows: N is a bipartite graph, 
with 

6'=( w o  ") and '?=(;). 

We make the following claims: 

2) The state of N at time k is equal to the state of Pl at time 
2 k ,  for an arbitrary k .  

The proof of 1) is by induction. Given that at some arbitrary 
time k the state of Pl is equal to the state of P2, it will be shown 
that after performing the evaluation at node i and then at node 
(n + i )  the states of Pl and P2 remain equal. There are two cases: 

if the state of node i does not chanse as a result of 
evaluation, then by the symmetry of N there will be no 
change in the state of node (n + i); 
if, there is a change in the state of node i ,  then because w,,,+, is nonnegative it follows that there will be a change 
in the state of node (n + i) (the proof is straightforward 
and is not presented). 

The proof of 2) follows from 1): by 1) the state of Pl is equal to 
the state of P2 right before the evaluation at a node of Pl. The 
proof is by induction: assupe that the current state of N is the 
same as the state of Pl in N .  Then an evaluation performed at a 
node i E Pl will have the same result as an evaluation performed 
at node i E N .  

Proof ofb): Let us assume as in part a) that $ has the initial 
state (V,, 5). Clearly, performing the evaluation at all nodes 
belonging to PI (in parallel) and then at all nodes belonging to P2 
and continuing with this alternating order is equivalent to a fully 
parallel mode of operation in N .  The equivalence is in the sense 
that the state of N i s  equal to the state of the subset of nodes 
(either PI or P2)  of N at which the last evaluation was performed. 
A key observation is that Pl and P2 are independent sets of 
nodes, and a parallel evaluation at an independent set of nodes is 
equivalent to a serial evaluation of all the nodes in the set [l]. 
Thus the fully parallel mode pf operation in N is equivalent to a 
serial mode of operation in N .  

Using the transformations suggested by the foregoing lemma it 
is possible to explore some of the relations between convergence 
properties as summarized by the following theorem. 

Theorem 2: Let N = ( W ,  T )  be a neural network. Given l), 
then 2) and 3) hold: 

1) if N is operating in a serial mode and W is a symmetric 
matrix with zero diagonal, then the network will always 
converge to a stable state; 

2)  if N is operating in a serial mode and W is a symmetric 
matrix with nonnegative elements on the diagonal, then the 
network will always converge to a stable state; 

a) for any serial mode of operation in ,N, there exists an 3) if N is operating in a f u h  parallel mode, then for an 
equivalent serial mode of operation in N provided W has a 
nonnegative diagonal; 

b) there exists a serial mode of operation in I? which is 

arbitrary symmetric matrix W the network will always 
converge to a stable state or a cycle of length 2;  that is, the 
cycles in the state space are of length I 2. 

equivalent to a fully parallel mode of operation in N .  Proof: The proof is based on Lemma 1. 
Proof: The new netwo;k fi is a bipartite graph with 2n  

nodes; the set of nodes of can be subdivided into two sets: let 
pl  and p2 denote the set of the first and the last nodes, 
respectively. Clearly, no two nodes of Pl (or P2) are connected 
by a;" edge; that is, both PI and p2 are independent sets of nodes 
in N (an independent set of nodes in a graph is a set of nodes in 

tion is that PI and p2 are symmetric in the that a node 
i E Pl has an edge set similar to that of a node ( i  + n )  E P2. 

Proof of.): Let V, be an initial state of N ,  and let (il, i2, . . . ) 
be the order by which the states of the nodes are evaluated in a 

Part 2)  is implied Part 1): By Lemma 1 part a every neural 
network with nonnegative diagonal matrix W which is operating 
in a serial mode $an be transformed to an equivalent network to 
be denoted by 
being a zero diagonal matrix. N will converge to a stable state 
(by (1)); hence N will also converge to a stable state which will 

Part 3) is implied by Part 1): By Lemma 1 part b every neural 
network operating in a fully parallel mode can be tran2formed to 
an equivalent neural network to be (enoted by N which is 
operatingAin a serial mode and with W being a zero-diagon$ 
matrix. N will converge to a stable state (by (1)). When N 

which is ope:ating in a serial mode with 

which no two nodes are connected by an edge). Another observa- be equal to the state of P I .  Note that 1) trivially by 2). 
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reaches a stable state there are two cases: 

1) the state of Pl is equal to the state of P,; in this case N will 
converge to a stable state which is equal to the state of Pl;  

2) The states of Pl and P, are distinct; in this case N will 
oscillate between the two states defined by Pl and P,, Le., 
N will converge to a cycle of length 2. 

It is also interesting to investigate the relations between the 
two energy functions in a neural network operating in a fully 
parallel mode or in a serial mode. New results,concerning this 
question are summarized in the following theorem. 

Theorem 3: Let N = (W, T )  be a neural network. Then the 
following hold. 

1)  For N operating in a serial mode, and for all t :  

E l ( t - l )  < E , ( t )  I E , ( t ) .  

2) For N operating in fully parallel mode, and for all t :  
E 2 ( t )  ~ E ~ ( t - 1 )  

E2 ( t )  2 El( t )  , 

E,( t )  I El( t )  , 
Proof: By the symmetry of W, 

when the network is in a cycle of 
length two 

when the network is in a stable state. 

E*( t )  - E,( t - 1 )  = V'( t )  WV( t - 1 )  -[ V( t )  + V( t - 1 ) I T T  

- v y  t - 1 )  WV( t - 1 )  

+[ V( t - 1 )  + V( t - 1 ) p  

= [ V'(t - 1 )  W -  T T ]  [ V ( t )  - V ( t  - l ) ] .  ( 6 )  
Also, 

E2( t )  - El( t )  =V'( t )  WV( t -1) -1 V( t )  + V( t - l ) I T T  

- V ' ( t ) W V ( t ) + [ V ( t ) +  V ( t ) l T T  

= [ WV( t )  - 7-17 V( t - 1 )  - V( t ) ] .  (7) 
1 )  Assume without loss of generality that the evaluation at 

time t is performed at node 1; hence 

y ( t ) - y ( t - l ) = O ,  f o r i + I  

Vl( t )  - V,( t - 1 )  is either 0 or 2&( t )  . 
By definition, 

i V l ( t )  =sgn ~ , l ~ ( t - l ) - ~  = s g n [ H l ( t - l ) ] .  (8) 

By the previous fact the value of (6) will be either 0 or 12Hl(t)l; 
thus it follows that 

i ,I l  
EZ(t)  > E l ( t - l )  

Using the same arguments on (7), we have 

Y ( t - l ) - y ( t )  =0 ,  for i f 1  

Vl( t - 1 )  - V,( t )  is either 0 or -2v1( t ) .  

In this case we also have to assume that W has a nonnegative 
diagonal so that the following is true: 

V,( t )  = V 1 ( t + l )  = s g n [ H , ( t ) ] .  ( 9) 
By the foregoing facts it follows that (7) is either 0 or - 12H1(t)l, 
i.e., El(t) > E,( t ) .  

2)  By ( 1 )  for a fully parallel mode, 

V( t )  = sgn ( V'( t - 1)  W - T )  . ( 10) 
Since the sign of ( y ( t ) - y ( t - l ) )  can be either 0 or y ( t ) ,  it 
follows that the difference in the two energies (6) is nonnegative, 

Le., E 2 ( t )  2 E l ( t  - 1).  To prove the last two inequalities we will 
use (7). By definition, 

V( t + I )  = sgn[ wV( t )  - T I .  

Onacycleoflength2, V ( t - l ) = V ( t + l ) ;  thus E 2 ( t ) 2 E l ( t ) .  In 
a stable state, V(t  +1) = V(t ) ;  thus E , ( t )  2 E2(t ) .  

Some remarks regarding the foregoing analysis follow. 
1 )  In a network operating in a serial mode both El and E, are 

nondecreasing. Furthermore, a very interesting result (Theorem 3 
part 1) is that the values of E, and E, are interleaving. 

2) The assumption of W being a nonnegative diagonal matrix 
is used to derive results for a network operating in a serial mode 

3) In a network operating in a fully parallel mode, E2 is 
nondecreasing [3]. However, El is not necessarily nondecreasing; 
it can be shown that a sufficient condition for El to be nonde- 
creasing is that W is nonnegative definite over the range (- l , O ,  1 ) .  

4) The proof of Theorem 3 is based on a straightforward 
algebraic operations. It turns out that Theorem 3 can also be 
proven by using Lemma 1 and the fact that the energy El is 
nondecreasing in a network operating in a serial mode (Theorem 
1 part 1). We include a sketch of the alternative proof to 
emphasize the power of Lemma 1 in understanding the relations 
between the two energy functions and the two modes of opera- 
tion. In the following proofs we will use the notation established 
in Lemma 1.  

Proof of Theorem 3part I :  Perform the transformation of N to 
fi; there is a yay to simulate a serial operation in N by a serial 
operation in N (as suggested by Lemma 1 part a) provided 'ha: 
W is a nonnegativ: diagonal matrix. Look at the energy El of N 
to be denoted by El .  By Lemma 1 part a: 

only. 

El( f )  = k1(2t). 

E , ( t + l )  = 4 ( 2 t + l ) .  

Also, 

Since & is operating in a serial mode, it follows that I?, is 
nondecreasing . 

Proof of Theorem 3 part 2: The key i? the proof is the simple 
observation that if a state w$h energy El( t  + k )  can be reached 
from a stateAwith e5ergy E , ( t )  in k serial iteLations, then it 
follows that E l ( t )  I El ( t  +Ak). If Pl and P2 in N have the same 
state as N at time t ,  then E l ( t )  = El(;). Clearly, performing one 
prallel  iteration in N and on Pl in N will result in E2(t  + 1) = 
El( t + 1) .  Hence E,( 1 + 1) 2 El( t )  for every value of t when N is 
operating in a parallel mode. If N is in a cycle of length 2, then 
El(t) = E2(t); by using the same arguments as before it follows 
+at E , ( t )  2 E l ( t ) .  If N enLers a stable state at time t ,  then 
E l ( t  - 1 )  = E,(t) and also E , ( t )  = E l ( t ) ;  thus it follows that 

111. APPLICATION TO COMBINATORIAL OPTIMIZATION 
Theorem 1 part 1 implies that a neural network, when operat- 

ing in a serial mode, will always get to a stable state which 
corresponds to a local maximum in the energy function E,. This 
property suggests the use of the network as a device for perform- 
ing a local search algorithm for finding a local maximal value of 
the energy function El [6]. The value of El which corresponds to 
the initial state is improved by performing a sequence of random 
serial iterations until the network reaches a local maximum. 
From Theorem 1 part 2 it follows that when the network is 
operating in a fully parallel mode it will always reach a stable 
state or a cycle of length 2. The value of the energy E, at these 
final points is clearly maximal with respect to the path in the 
state space which ends in these points. In a fully parallel opera- 
tion there is no randomness in the search because there is no 
choice in the direction of improvement as in a serial operation. 

E2(t )  I El(t). 
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The construction suggested by Lemma 1 enables transformation 
of a prof?lem of maximization of E, to a problem of maximiza- 
tion of E , ;  hence randomness can be introduced. To summarize, 
given a quadratic function of the form E, or E,, it is possible to 
construct a neural network which will perform a random local 
search for the maximum. 

A rich class of optimization problems can be represented by 
quadratic functions [4]. A problem which not only is repre- 
sentable by a quadratic function but actually is equivalent to it is 
that of finding a minimum cut (MC) in a graph [4], 171. In what 
follows, we present the equivalence between the MC problem and 
neural networks (Theorem 4 and 5) and also show how neural 
networks relate to the directed min cut (DMC) problem (Theo- 
rem 6). To make the foregoing statements clear, let us start by 
defining the term cut in a graph. 

Definition: Let G = ( V ,  E )  be a weighted and undirected graph, 
with W being an n x n symmetric matrix of weights of the edges 
of G. Let Vi be a subset of V,  and let V - ,  = V -  Vl. The set of 
edges each of which is incident at one node in Vl and at one node 
in V _  is called a cut of the graph G. A minimum cut in a graph 
is a cut for which the sum of the corresponding edge weights is 
minimal over all Vl. 

Theorem 4 (41, [7]: Let G = ( V ,  E )  be a weighted and undi- 
rected graph, with W the matrix of its edge weights. Then the 
MC problem in G is equivalent to maxQ<;( X ) ,  where X E 
{ - l,l}”, and 

def I’ 

Q , ( X ) =  C C Y . , K X ,  
I = I  

The foregoing theorem can be generalized to neural networks 

Theorem 5: Let N = ( W ,  T )  be a neural network with W be- 
ing an n X n zero diagonal matrix. Let G be a weighted graph 
with ( n  + 1) nodes with its weight matrix W,; being 

The problem of finding a state V in N for which E,  is a global 
maximum is equivalent to the MC problem in the corresponding 
graph G. 

Proof: Note that the graph G is built out of N by adding 
one node to N and connecting it to the other n nodes with the 
edge connected to node i having a weight 7; (the corresponding 
threshold). Clearly, if the state of the added node is constrained 
to -1, then for all X E  { -l , l}n,  

Q c ( X 7 - 1 )  = E , ( X ) .  
Hence the equivalence follows from Theorem 4. Note that the 
state of node ( n  + 1) need not be constrained to - 1. There is a 
symmetry in the cut; that is, e,( X )  =e,(- X )  for all X E 
{ -l,l}“+’. Thus if a minimum cut is achieved with the state of 
node ( n  + 1) being 1, then a minimum is also achieved by the cut 
obtained by interchanging 6 and V -  I (resulting in X,,+ = - 1). 

What about directed graphs? Is it possible to design a neural 
network which will perform a local search for a minimum cut in a 
directed graph? 

Definition: Let G = ( V ,  E )  be a weighted and directed graph. 
Each edge has a direction and a weight. The weights of the 
directed edges (arcs) can be represented by an n x n matrix W in 
which w,, is the weight of the arc from i to j .  Let VI be a subset 
of V,  and let V -  = V -  VI. The set of arcs each of which has its 
tail at a node in Vl and its head at a node in V - ,  is called a 
directed cut of G. 

Theorem 6 [ I ] :  Let G = ( V ,  E )  be a weighted directed graph 
with W the matrix of its edge weights ( W  is not necessarily 

symmetric). The network N = (I?, T )  performs a local search for 
a DMC of G where , 

1 n  

‘ 1 = 1  

The MC problem as defined in the paper is NP-hard [2]. The 
importance of the relation between the MC problem and neural 
networks lies in the fact that the MC problem can be viewed as a 
generic graph problem which can be mapped to the model. Thus 
theoretically one can transform every NP-hard problem to the 
MC problem and use the corresponding neural network to per- 
form a local search algorithm. The problem with this approach is 
that only the problem is mapped while the algorithm for solving 
the problem is imposed by the way the model is operating. 
Theorem 6 is an example of programming the network to per- 
form a specific local search algorithm for solving the DMC 
problem. It was relatively easy to find such a mapping, probably 
because the algorithm we chose is the one performed by the 
network for the MC problem. 

An open problem is the following: there are many known local 
search algorithms for solving hard problems that have good 
performance; find a known local search algorithm which can be 
mapped to the neural network model. 
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Abstract -New sampling theorems are developed for isotropic random 
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