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Abstract. A statistical approach to cryptanalysis of a memoryless function of 
clock-controlled shift registers is introduced. In the case of zero-order correlation 
immunity, an algorithm for a shift register initial state reconstruction based on the 
sequence comparison concept is proposed. A constrained Levenshtein distance 
relevant for the cryptanalysis is defined and a novel recursive procedure for its 
efficient computation is derived. Preliminary experimental results are given and 
open theoretic problems are discussed. 
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1. Introduction 

Clock-controlled shift registers have become popular building blocks for key- 
stream generators. Schemes with clock-controlled shift registers are proposed that 
ensure large lower bounds on period and linear complexity, and possess no obvious 
flaws in statistical behavior. On the other hand, irregular clocking reduces the 
danger from correlation attacks. A review of the clock-controlled shift registers is 
presented in [3]. 

In this paper the security of a key-stream generator structure consisting of clock- 
controlled shift registers combined by a memoryless function is considered, see [2]. 
In the binary case, when the registers are clocked regularly, and the function is 
zero-order correlation immune 2 (its output is correlated to at least one input), 
Siegenthaler [12] introduced a ciphertext-only correlation attack based on the 
Hamming distance measure. He showed that it is possible to reconstruct the initial 
state of any register whose output is correlated to the generator output. However, 

t Date received: March 25, 1990. Date revised: December 6, 1990. 
2 Following [11], a Boolean function f ( x l  . . . . .  x , )  is said to be ruth-order correlation immune if m is 

the maximum integer such that the random variable f ( X ~ ,  . . . ,  X , )  is statistically independent of every 
set of m random variables chosen from the balanced and independent binary random variables X1 . . . . .  
x,. 
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when the registers are clocked irregularly the Hamming distance is useless and, 
hence, the correlation atack is no longer applicable. The main contribution of this 
paper is that we show that a statistical correlation attack is still feasible, but with 
an appropriately defined constrained Levenshtein distance instead of the Hamming 
one. The concept of the Levenshtein and related distances is known in the area of 
string editing (see, for example, [4] and [7] - [10])  with main applications in text 
correcting, decoding, and molecular biology. 

A statistical model and the statement of the problem are given in Section 2. A 
basic idea for the generalized correlation attack is presented in Section 3, whereas 
the constrained Levenshtein distance and relevant probability distributions are, in 
general, defined in Section 4. In Section 5 we first provide a mathematically precise 
definition of the constrained Levenshtein distance and then establish a theorem 
which enables efficient recursive computation of it. The proof of the theorem is 
given in the Appendix. A complete algorithm for the initial state determination is 
proposed in Section 6 together with some illustrative numerical results. In Section 
7 a summary of the results and a list of still open theoretic problems are given. 

2. Statistical Model 

In principle, the shift registers may be clocked arbitrarily. For simplicity we assume 
that a shift register whose output is correlated to the generator output is one- two 
clocked by another shift register. Without loss of generality we also assume that the 
shift registers have linear feedback. The corresponding statistical model is shown 
in Fig. 1. 

Let {x,} be a binary sequence produced by a linear feedback shift register (LFSR) 
defined by 

L 
X, = Z C,X,_, n = 0, 1 . . . . .  (1) 

/=1 

where f ( X ) =  ~ = o  CL-* X~, Co = 1, is the LFSR characteristic polynomial and 
X0 = [x-t]~=l is a nonnull LFSR initial state. Let {a.} be the output of another 
linear feedback shift register. A decimation box output is for simplicity defined by 

y. = xf~.~, f(n) = n + ~ aj, n -- O, 1, 2 . . . . .  (2) 
j=l  

In the statistical model, {a.} is regarded as a realization of the sequence 

{a n } {b n } 

1 1 
{x n } {Yn } 

Fig. 1. A noisy clock-controlled shift register structure. 
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of independent identically distributed (i.i.d.) binary variables {A.} such that 
Pr(A. = 1) = 0.5 for every n. A binary noise sequence {b.} is a realization of a 
sequence of i.i.d, binary variables {B.} such that Pr(B. = 1) = p # 0.5 for every n, 
where p is the cross-correlation parameter, which may involve plaintext statistics 
as well [12]. Finally, a binary sequence {z,} is defined as the sum modulo 2 of the 
decimated and noise sequences 

z .  = x:~.) ~ b., f ( n )  = n + ~ aj, n = 0, 1, 2 . . . . .  (3) 
j = l  

In this statistical model we consider the problem of the initial state (Xo = [x-~]~=l) 
z N reconstruction assuming that f ( X ) ,  p, and a segment { .}.=1 are known. 

3. Generalized Correlation Attack 

A correlation attack [12] is based on the Hamming distance between two binary 
sequences of the same length. Obviously, the same statistical approach cannot be 
applied here. However, suppose we defined a suitable distance measure d between 
two binary sequences of different length, which reflects the transformation of the 
LFSR sequence {x,} to the output sequence {z.} according to the model displayed 
in Fig. 1. Then we could proceed along essentially the same lines as in [12], thus 
establishing a statistical procedure which we call a generalized correlation attack. 

By the assumed statistical model, each X o gives rise to a conditional probability 
z N distribution on the set of all binary sequences { .}.=1. We thus have a pattern 

recognition system with 2 L - 1 classes corresponding to all the nonnull initial states 
z N of the LFSR. Given an observed segment { ,}.=1, the optimal decision strategy 

(yielding the minimum probability of decision error) is to decide on the initial state 
with the maximum posterior probability. When the LFSR is regularly clocked, as 
in [12], it is optimal to decide on the initial state ~o such that the Hamming distance 

z N :~ N between { .}.=1 and { .}.=1 is minimum (a sufficient statistic). However, when the 
LFSR is clocked irregularly it is not clear how to find an optimum decision rule. 
Anyway, given an appropriate distance measure, we can define a decision procedure 
that is close to being optimal. 

Let {~. }~=1 be the LSFR sequence corresponding to an initial state ~0- The choice 
of the length M, N < M < 2N + 1, is discussed later. Let d be the distance between 

N {~,}~=1 and { .}.=1. The following two hypotheses are possible: 

z N Ho: The observed sequence { .}.=1 is produced by ~o. 
g N Hi: The observed sequence { .}.=1 is not produced by ~o. 

Consequently, d can be considered as an outcome of a random variable D with two 
possible probability distributions (statistically averaged over the ensemble of all the 
initial states): {Pr(DIHo) } and {Pr(DIH1) }. How to determine or estimate these 
distributions is discussed in the next section. Suppose that they are known. Note 
that they depend on N, assuming that M = M ( N )  is given as a function of N. First 
determine the threshold t and length N so as to achieve the given probabilities of 
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"the missing event" Pm and "the false alarm" Pf. As in [12], Pm is chosen close to 
zero (e.g., 10 -3) and Pf is picked very close to zero, Pf - 2 -L, so that the expected 
number of false alarms is very small ( ~ 1). Then the decision procedure goes through 
the following steps, for every possible initial state ~o: 

�9 generate {2,}ff=1; 
N . �9 calculate the distance d between {2,}M=1 and {z.}.=l, 

�9 according to the threshold t accept H o or H 1. 

The output of the procedure is the set of the most probable candidates for the true 
initial state. 

4. Distance Measures and Relevant Probability Distributions 

The distance measure should be defined so that it enables statistical distinction 
M g N between the two cases: first, when { .}.=i and { .}n=1 are picked at random, 

uniformly and independently (which is a reasonable model for H1), and, second, 
Z N when { ,},=i is obtained from {~,}M= I according to the model shown in Fig. l, that 

is, by the deletion of some bits subject to the decimation constraints and by 
complementation of the remaining ones with probability p. This problem is a special 
case of the comparison problem between two sequences when one sequence is 
obtained from the other by symbol substitution, deletion, and insertion, which is 
extensively studied in the literature. For example, the sequence-matching problem 
is considered in coding theory (see, for example, [4]) and text processing (see, for 
example, [8]). A review of the sequence-matching techniques and applications is 
presented in [i0]. 

According to [10], one of the widely used distances is the Levenshtein distance 
[4]. Let the edit operations that transform one sequence into another be substitu- 
tion, deletion, and insertion. Then the Levenshtein distance between two sequences 
is defined as the minimum number of edit operations required to transform one 
sequence into the other. The various extensions of the basic Levenshtein distance 
are proposed in the literature. For our problem, the constrained Levenshtein 
distance concept [7] is relevant because of the constraints inherent to the decima- 
tion function. In [7]-[9]  an efficient algorithm for the constrained Levenshtein 
distance computation is proposed when the constraints relate to the total number 
of deletions, insertions, and substitutions, respectively. 

We basically define the distance measure between {~.}M= 1 and N {Z.}.= 1 as the 
minimum number of deletions, subject to the constraint on the maximum number 
of consecutive deletions, and complementations required to obtain u {z.},=l from 
{~.}M=~. Whether this distance is a sufficient statistic remains an open question, but 
it is reasonable to believe that this is approximately the case. With the Levenshtein 
distance defined thus, the problem is to determine the probability distributions 
{Pr(DIHo) } and {Pr(Dlnl) }. Can it be done theoretically? 

In many applications of sequence comparison it is important to decide whether 
two sequences are mutually dependent or independent, on the basis of a given 
distance measure. One approach is a nonparametric estimation of the relevant 
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probability distributions. The other is analytical consideration of some characteris- 
tics of the underlying probability distributions. The expected degree of similarity is 
the first element needed in statistical testing. Following I-1], the tradition in this 
area is to evaluate sequence similarities in terms of the length of the longest common 
subsequence of the sequences processed (which is related to the Levenshtein distance). 
Regarding the analytical treatment of the probability distributions for random 
sequence matching, it is noted on p. 352 of [10] that the derivation of exact mathe- 
matical results seems difficult and many interesting questions remain unanswered: 
for example, one is a question concerning the variance which seems to grow 
surprisingly slowly with the length of sequences, though no mathematical results 
are known yet. 

Consequently, we anticipate that the problem to determine {Pr(DIHo) } and 
(Pr(DIH~)} for the constrained Levenshtein distance defined is very difficult. More 
promising is the question of how these two distributions (especially {Pr(DIH~)}) 
behave asymptotically when N and M tend to infinity. In this paper we therefore 
adopt a nonparametric method for estimating the relevant probability distributions. 

5. Constrained Levenshtein Distance 

In this section we introduce a general definition of the constrained Levenshtein 
distance relevant for the cryptanalysis and derive a recursive algorithm for its 
efficient computation. 

u M Suppose we have two finite length discrete sequences U = { i}i=~ and V = {v~}/N=l 
over a finite alphabet A, and a nonnegative real function d(u, v), u ~ A,  v ~ A,  
.A = A w 0, where 0 stands for the null symbol associated with the deletion opera- 
tion. Accordingly, d(u, 0), u ~ A,  denotes the elementary edit distance associated 
with deleting a symbol u and d(u, v), u, v e A, denotes the elementary edit distance 
associated with substituting a symbol v for a symbol u. We consider a problem of 
transforming U to V using the edit operations of deletion and substitution. 

Definition. The constrained Levenshtein distance (CLD) between {ui}~l and 
{vi}~=l is the minimum sum of elementary edit distances associated with the edit 
operations of deletion and substitution required to obtain {vi}~=l from {ui}~l under 
the constraint that the maximum number of consecutive deletions is E. 

Note that the constraints on the total number of consecutive deletions (M - N) 
and substitutions (N) are inherent to the definition. Also, a necessary condition to 
be satisfied is 

N _ < M _ < ( E +  1 ) N + E .  (4) 

Let V' = {v~}~'=l denote an arbitrary sequence over Z, such that by deleting all the 
null symbols from V' we get V. Accordingly, every edit transformation of U to 
V can be uniquely represented by the two-dimensional edit sequence (U, V') = 
{(ul, v~)}~l: if v~ = 0, then u i is deleted and if v~ :~ 0, then v~ is substituted for ul, for 
any i = 1, 2 . . . . .  M. Let Gvv be the set of all possible edit sequences that transform 
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U to V, subject to the condition that there are no more than E consecutive null 
symbols in V'. The CLD can then be expressed by 

D(U, V) = min d(u~, v~): (U, V') �9 Gvv . (5) ~i=l 
In order to derive an efficient CLD computation procedure, we introduce the 

partial CLD W(e, s) as the CLD between a prefix Ue+~ = tu;~=ls ~e§ of U and a 
prefix V~ = {vi}7=l of V, under the same constraints. Using an abbreviated notation 
G~ = Gve+sv~ we have 

~.~[. i'~'le+s t W(e, s) = min ___ d(u,, v;): (Ue+ s, V~') �9 Ge~ (6) 

and 
D(U, V) = W(M - N, N). (7) 

The set of all the permitted values for (e, s) is clearly given by 

0 < s _< N, (8) 

0 < e < min{M - N, (s + 1)E}. (9) 

For  simplicity, suppose that the elementary edit distance d(u, O) is equal for all the 
symbols u from A, and denote it by d o. 

Now we state a theorem yielding a recursive property of W(e, s), which in view 
of (7) enables efficient computation of the CLD. 

Theorem. The partial CLD W(e, s) satisfies the recursion 

W(e, s) = min{W(e - el,  s - 1) + eldo + d(ue+s-e 1, Vs): 

max{0, e - min{M - N, sE}} < e 1 < min{e, E}} (10) 

for l < _ s < N ,  O < e < m i n { M - N , ( s +  l)E}, and, for s = 0  and O < e <  
min{M - N, E}, 

W(e, O) = edo. (11) 

The proof of the theorem is given in the Appendix. It basically relies on the 
principles used in [7], but has an important difference which reflects the specific 
constraints. As a consequence, unlike the dynamic programming expression from 
[7], the order of the recursion with regard to deletions is greater than one. 

In this paper we consider a specific application where the alphabet is binary, the 
maximum number of consecutive deletions E is equal to one, and the decimation 
sequence is a realization of a sequence of balanced i.i.d, binary random variables. 
We also assume that the elementary edit distances associated with deletion and 
effective substitution are both equal to one. In that case, the constrained Levenshtein 
distance is reduced to the number of deletions and substitutions needed for the 
required transformation. Apart from that, given a string V of length N, the length 
M of the string U that actually produced V is not known, since the decimation 
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sequence is unknown. So, the question arises as to how to choose M given N. One 
possibility is to take M to be close to its expected value (in our case - 3N/2), which 
minimizes the mean square error between the actual and assumed M. Another, more 
appropriate way is to modify the definition of the CLD so as to eliminate the 
constraint on the maximum number of consecutive deletions either at the beginning 
or the end of U, and, then, to specify M so that the probability of U being 
longer than M is close to zero (for example, we can assume the maximum value 
(E + 1)N + E, which in our case is 2N + 1). We thus define the constrained edit 
distances CLD'  (CLD") in the same way as the CLD with a difference that an 
arbitrary number of consecutive deletions is permitted at the beginning (end) of U. 
Fortunately, it appears that only a slight modification of the recursion (10) in the 
theorem suffices to obtain the CLD'  (CLD"). Namely, proceeding along essentially 
the same lines as in the proof of the theorem, we can verify that the CLD'  (CLD") 
are both determined by (7), where W(e, s) is given by the same theorem with the 
following modifications: for the CLD', (11) holds for 0 _< e _< M - N and instead 
of (10) we have 

W(e, s) = min{W(e -- e 1, s - 1) + eld o + d(ue+s_e, , vs): 0 <_ el < min{e, E}}, 
(12) 

which holds for 1 _< s ~ N and 0 _< e ~ M - N; and, for the CLD", (10) holds for 
1 < s < N - l w h e r e a s ,  f o r s = N ,  

W(e, s) = min{W(e - 1, s) + do, W(e, s - 1) + d(ue+s, vA}, (13) 
) 

which is Oommen's expression [7] without insertions. 
In order to make a clearer distinction between the initial states that give rise to 

the close cyclic shifts (<  E) of the shift register sequence, we can impose an additional 
constraint that the first (for CLD, CLD") or the last (for CLD, CLD') edit operation 
is substitution. It is clear that the CLD in this case is reduced to the ordinary 
CLD between the original sequences without the symbols affected by the assumed 
substitution. 

Having computed the partial CLD W(e, s) for all the permitted values of (e, s), 
we obtain not only the CLD W(M - N, N) but can also reconstruct an optimum 
edit sequence by backtracking through the matrix W(e, s) starting from the element 
W( M - N, N), see I-7]. In general, an optimum edit sequence, which contains a 
reconstructed decimation sequence, is not unique. 

For  the cryptanalysis application we have adopted the constrained Levenshtein 
distance CLD'. In our case it reduces to the distance measure CLD* which can be 
computed recursively by the following procedure. 

The Constrained Levenshtein Distance (CLD*) Computation Procedure. 

z N 1. Input: binary sequences {2n}~=1 and { n}.=l. 
2. Initialization: 

d(k, 0) = k, k = 0, 1 . . . . .  M - N, 

d(0, l) -- d(0, l - l) + (~, ~) z~), l -- 1, 2 . . . . .  N. 
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3. Recursive calculation for M > N: 

d(k, l) = min{d(k - 1, l - 1) + (:~+~-1 ff~ z~) + 1, d(k, l - 1) + (:~k+~ �9 z~)}, 

1 = 1 , 2  . . . .  , N ,  k = m a x { 1 ,  M - 2 N + l }  . . . . .  M - N .  

4. Output: the CLD* between {:t~}~=l and {z~}~=~: d* = d ( M  - N ,  N). 

The time and space complexities of the procedure are both quadratic O ( N ( M  - N)). 
Note that the recursion is calculated only for k = max { 1, M - 2N + l} . . . . .  M - N, 
instead of k = 1, 2 . . . .  , M - N, because in order to obtain d ( M  - N ,  N)  we need 
not calculate d(k, l) for all the permitted values of(k, l). On the other hand, the space 
complexity can be reduced to a linear one O ( M  - N),  since we need not memorize 
the whole matrix for d(k, l), but only the vectors (d(0, l), d(1, l), . . . .  d ( M  - N,  l)) and 
(d(0, l + I), d(1, l + I) . . . .  , d ( M  - N ,  l + 1)) which are computed recursively for 
l = 1 , 2  . . . .  , N - 1 .  

6. Algorithm and Experimental Results 

In this section we propose a cryptanalytic algorithm for the clock-controlled shift 
register initial state reconstruction which is based on the CLD* computation 
procedure. We also give some illustrative experimental results. 

The cryptanalytic algorithm is essentially a combination of the decision procedure 
given in Section 3 and the CLD* computation procedure from Section 5. Since the 
underlying probability distributions {Pr(DIHo)} and {Pr(DIH1)} are not known 
analytically, the threshold t and the sufficient length N are determined iteratively 
in a nonparametric manner. The length M is chosen as a function of N in 
a way described in Section 5 (for example, M = 3N/2,  M = 3 N / 2  + cvZ-N, or 
M = 2N + 1). The parameters assumed to be known are the shift register charac- 
teristic polynomial f ( X ) ,  the probability of"the missing event" Pm (e.g., Pm= 10-3), 
the expected number of the solution candidates n o (n o = 1 + (2 L - 2)P r ~ 2~Pe, Pf 
being the probability of "the false alarm"), and the initial and increment values for 
N, No and AN, respectively. The cross-correlation parameter p need not be known; 
without loss of generality it is only assumed that p < 0.5. The input to the procedure 
is the observed output segment {z~} of sufficient length. A basic form of the 
algorithm is as follows. 

Algorithm. 
Initialization: N = No and f~ is the set of all the possible initial states. 

Step 1. Generate the set of ,-, I/P,,, samples of {Pr(DIHo)} repeating the following: 
Pick ~o at random, generate {~,}~=l and {~,}~=1 according to the 
assumed model, and calculate the distance applying the CLD* procedure. 
Choose the threshold t to be greater than the maximum distance value 
in the sample set. Set n r = 0. 

Step 2. Generate a new initial state from f~, ~o, different from the previously 
generated ones after the last pass through Step 1. If f~ is empty, go to 
Step 6. 
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Step 3. 
Step 4. 

Step 5. 

Step 6. 

For the assumed initial state, generate the LFSR sequence {~,}~=1. 
Applying the CLD* procedure calculate the distance d* between {~,}~=1 
and N {Zn}n=l. 
If d* > t exclude the initial state from ~ and go to Step 2. 
If d* < t set ne = nf + 1 and then go  to Step 2. 
If n e > no increase N ~ N + A N  and go to Step 1. Otherwise,  stop the 
procedure.  

Table 1. Estimations of {Pr(DIH~)}, 
i = 0, 1, for A = 10, when N = 4000, 

p = 0.25. 

Table 2. Estimations of {Pr(DIHi)}, 
i = 0, 1, for A = 10, when N = 5000, 

p = 0.25. 

2210 0.000 0.000 2810 0.000 0.000 
2220 0.000 0.000 2820 0.000 0.000 
2230 0.000 0.000 2830 0.000 0.000 
2240 0.000 0.000 2840 0.000 0.000 
2250 0.000 0.000 2850 0.000 0.000 
2260 0.000 0.000 2860 0.000 0.000 
2270 0.000 0.000 2870 0.000 0.000 
2280 0.000 0.000 2880 0.000 0.000 
2290 0.000 0.000 2890 0.006 0.000 
2300 0.001 0.000 2900 0.012 0.000 
2310 0.004 0.000 2910 0.036 0.000 
2320 0.033 0.000 2920 0.134 0.000 
2330 0.103 0.000 2930 0.231 0.000 
2340 0.211 0.000 2940 0.220 0.000 
2350 0.276 0.000 2950 0.210 0.000 
2360 0.219 0.000 2960 0.099 0.000 
2370 0.109 0.000 2970 0.034 0.000 
2380 0.036 0.000 2980 0.013 0.000 
2390 0.006 0.005 2990 0.003 0.001 
2400 0.002 0.056 3000 0.001 0.017 
2410 0.000 0.213 3010 0.000 0.131 
2420 0.000 0.380 3020 0.000 0.285 
2430 0.000 0.277 3030 0.000 0.296 
2440 0.000 0.062 3040 0.000 0.212 
2450 0.000 0.007 3050 0.000 0.057 
2460 0.000 0.001 3060 0.000 0.001 
2470 0.000 0.000 3070 0.000 0.000 
2480 0.000 0.000 3080 0.000 0.000 
2490 0.000 0.000 3090 0.000 0.000 
2500 0.000 0.000 3100 0.000 0.000 
2510 0.000 0.000 3110 0.000 0.000 
2520 0.000 0.000 3120 0.000 0.000 
2530 0.000 0.000 3130 0.000 0.000 
2540 0.000 0.000 3140 0.000 0.000 
2550 0.000 0.000 3150 0.000 0.000 

D D 
starting starting 
interval interval 

point Pr(DIHo) Pr (DIH0 point Pr(DIHo) Pr(DIH1) 
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Table 3. Estimations of {Pr(DIHi)}, 
i = 0, 1, for A = 10, when N = 10,000, 

p = 0.25. 

D 
starting 
interval 

point Pr(DIHo) Pr(DIHI) 

Table 4. Estimations of {Pr(DIHI)}, 
i = 0, 1, for A = 10, when N = 20,000, 

p = 0.25. 

D 
starting 
interval 

point Pr(DIHo) Pr(DIH,) 

5780 0.000 0.000 I 1670 0.000 0.000 
5790 0.000 0.000 11680 0.003 0.000 
5800 0.000 0.000 11690 0.011 0.000 
5810 0.000 0.000 11700 0.014 0.000 
5820 0.000 0.000 11710 0.037 0.000 
5830 0.000 0.000 11720 0.051 0.000 
5840 0.020 0.000 11730 0.077 0.000 
5850 0.080 0.000 11740 0.088 0.000 
5860 0.086 0.000 11750 0.125 0.000 
5870 0.133 0.000 11760 0.153 0.000 
5880 0.146 0.000 11770 0.128 0.000 
5890 0.260 0.000 11780 0.085 0.000 
5900 0.113 0.000 1 1790 0.072 0.000 
5910 0.093 0.000 11800 0.061 0.000 
5920 0.046 0.000 11810 0.043 0.000 
5930 0.020 0.000 11820 0.023 0.000 
5940 0.002 0.000 11830 0.019 0.000 
5950 0.000 0.000 11840 0.006 0.000 
5960 0.000 0.000 11850 0.002 0.000 
5970 0.000 0.000 11860 0.000 0.000 
5980 0.000 0.000 11870 0000  0.000 
5990 0.000 0.000 : : : 
6000 0.000 0.000 12020 0.000 0.000 
6010 0.000 0.003 12030 0.000 0.000 
6020 0.000 0.013 12040 0.000 0.000 
6030 0.000 0.064 12050 0.000 0.000 
6040 0.000 0.182 12060 0.000 0.005 
6050 0.000 0.231 12070 0.000 0.064 
6060 0.000 0.262 12080 0.000 0.070 
6070 0.000 0.187 12090 0.000 0.123 
6080 0.000 0.046 12100 0.000 0.188 
6090 0.000 0.013 12110 0.000 0.241 
6100 0.000 0.000 12120 0.000 0.135 
6110 0.000 0.000 12130 0.000 0.082 
6120 0.000 0.000 12140 0.000 0.053 
6130 0.000 0.000 12150 0.000 0.029 
6140 0.000 0.000 12160 0.000 0.006 
6150 0.000 0.000 12170 0.000 0.000 
6160 0.000 0.000 12180 0.000 0.000 
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Note that the algorithm yields at most no candidates for the solution. They can 
be arranged in order of the increasing value of the distance d*, the smallest one 
corresponding to the most likely solution. It is important to observe that there will 
always be a certain number of possible candidates for the initial state being the close 
cyclic shifts of each other, meaning that the solution is inherently not quite unique. 

The success of the algorithm is essentially based on the assumption, so far 
experimentally verified, that the increase of N gives rise to the increase of the 
separation between {Pr(DIHo) } and {Pr(DIH1)}. 

The proposed algorithm has run successfully on a number of examples. Tables 
1-4, which show the histogram estimators, with the length of elementary interval 
equal to A, illustrate the separation between {Pr(DIHo)} and {Pr(DIH~)}. 

7. Conclusion 

In this paper we propose a generalized correlation attack on a zero-order corre- 
lation immune memoryless function of irregularly clocked shift registers, which 
is based on the sequence comparison approach. An appropriate constrained 
Levenshtein distance (CLD) relevant for the cryptanalysis is introduced and a 
novel recursive procedure for its efficient computation is derived. Some numerical 
examples are given to illustrate the chances of success of the algorithm. 

Regarding the still open theoretic problems we emphasize the following: 

�9 How close is the minimum CLD decision rule to the maximum posterior 
probability one? 

�9 Determination or approximation of the relevant probability distributions and 
their asymptotic behavior when the length of the observed segment goes to 
infinity. 

�9 For which decimation procedures and values of the cross-correlation parameter 
p and shift register length L is the statistical discrimination between H o and 
H1, on the basis of the CLD, possible (at least asymptotically)? 

�9 Construction of a feast generalized correlation attack on a noise clock- 
controlled linear feedback shift register, bearing in mind the fast correlation 
attacks [5], [6] corresponding to the ordinary correlation attack [12]. 

Appendix 

Proof of the Theorem. For s = 0 the proof is immediate. Assume now that s _ 1. 
Applying the dynamic programming principle [7] to (6), we also partition the set 
of all the permitted edit sequences Ge.s, but in an essentially different way, Namely, 
in order to deal with the specific constraints we divide Ge.~ according to the sequence 
of deletions after the last substitution. Thus, let G~, el = 0, 1 . . . . .  E, be a subset of 
Ges that consists of all the edit sequences that end with exactly e 1 deletions. However, 
some of these subsets may be empty. It is easy to see that Ge~ ' is empty if and 
only if the pair (e - el, s - 1) is not permitted. Using (8) and (9) we then obtain that 
Gee 1 is not empty if and only if max{0, e - min{M - N,  sE}} _< el -< rain{e, E}. 
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Consequent ly ,  (6) can be put  in to  the form 

�9 ! ~ ~ 
W(e,  s) = min  rain d(ui, vi). (Ue§ V/) e Ge~ �9 

max{O, e - m i n { M  - N ,  sE}}  < el <_ min{e, E}}.  (A.1) 

Cons ider ing  tha t  for s > 1 every edit  sequence from G~' ends in exact ly et 
de le t ions  after a subst i tu t ion,  and  tha t  the cons t ra in t  relates to the m a x i m u m  
n u m b e r  of  consecut ive delet ions,  it  follows tha t  (Ue+~, V/) belongs  to G~I if and  only 
if its prefix (Ue_~l+s_ 1, V / l )  be longs  to G~-~,,s-1, assuming  tha t  (e - e 1, s - 1) is 
permit ted .  Hence  

e+$ t m m  d(ui, vi). (U~+~, ~ ' )  ~ Ge~ 

1 = min  d(ui, v;): (U~-~,§ V / I )  e Q _  . . . .  -1 + e ldo + d(u~_e,+~, v~) 
k i=1 

= W(e  -- e l ,  s -- 1) + e t d  o + d(Ue+s_e~, Vs) (A.2) 

under  the cond i t ion  tha t  ( e -  e 1, s -  1) is permitted�9 Final ly ,  (10) is a direct  

consequence  of  (A.1) and  (A.2). [ ]  
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