
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

1-1-2018 

A generalized deep learning-based diagnostic system for early A generalized deep learning-based diagnostic system for early 

diagnosis of various types of pulmonary nodules diagnosis of various types of pulmonary nodules 

Ahmed Shaffie 
University of Louisville 

Ahmed Soliman 
University of Louisville 

Luay Fraiwan 
Abu Dhabi University 

Mohammed Ghazal 
University of Louisville 

Fatma Taher 
Zayed University 

See next page for additional authors 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Shaffie, Ahmed; Soliman, Ahmed; Fraiwan, Luay; Ghazal, Mohammed; Taher, Fatma; Dunlap, Neal; Wang, 
Brian; van Berkel, Victor; Keynton, Robert; Elmaghraby, Adel; and El-Baz, Ayman, "A generalized deep 
learning-based diagnostic system for early diagnosis of various types of pulmonary nodules" (2018). All 
Works. 128. 
https://zuscholars.zu.ac.ae/works/128 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact 
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/128?utm_source=zuscholars.zu.ac.ae%2Fworks%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae


Author First name, Last name, Institution Author First name, Last name, Institution 
Ahmed Shaffie, Ahmed Soliman, Luay Fraiwan, Mohammed Ghazal, Fatma Taher, Neal Dunlap, Brian 
Wang, Victor van Berkel, Robert Keynton, Adel Elmaghraby, and Ayman El-Baz 

This article is available at ZU Scholars: https://zuscholars.zu.ac.ae/works/128 

https://zuscholars.zu.ac.ae/works/128


Deep Learning in Molecular Imaging-Original Article

A Generalized Deep Learning-Based
Diagnostic System for Early Diagnosis
of Various Types of Pulmonary Nodules

Ahmed Shaffie, PhD1,2, Ahmed Soliman, PhD1, Luay Fraiwan, PhD3,
Mohammed Ghazal, PhD1,3, Fatma Taher, PhD4, Neal Dunlap, MD5,
Brian Wang, PhD5, Victor van Berkel, MD, PhD6, Robert Keynton, PhD1,
Adel Elmaghraby, PhD2, and Ayman El-Baz, PhD1

Abstract
A novel framework for the classification of lung nodules using computed tomography scans is proposed in this article. To get an
accurate diagnosis of the detected lung nodules, the proposed framework integrates the following 2 groups of features:
(1) appearance features modeled using the higher order Markov Gibbs random field model that has the ability to describe the
spatial inhomogeneities inside the lung nodule and (2) geometric features that describe the shape geometry of the lung nodules.
The novelty of this article is to accurately model the appearance of the detected lung nodules using a new developed seventh-
order Markov Gibbs random field model that has the ability to model the existing spatial inhomogeneities for both small and large
detected lung nodules, in addition to the integration with the extracted geometric features. Finally, a deep autoencoder classifier is
fed by the above 2 feature groups to distinguish between the malignant and benign nodules. To evaluate the proposed framework,
we used the publicly available data from the Lung Image Database Consortium. We used a total of 727 nodules that were collected
from 467 patients. The proposed system demonstrates the promise to be a valuable tool for the detection of lung cancer evi-
denced by achieving a nodule classification accuracy of 91.20%.
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tional neural network; CAD, computer-aided diagnostic; DBNs, Deep Belief Networks; EKNN, enhanced k nearest neighbor;
GPD, Gibbs probability distribution; HU, Hounsfield unit; LBP, local binary pattern; LIDC, Lung Image Database Consortium; MLE,
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Introduction

Lung cancer is the second most common cancer in men and

women all over the world. It comes after prostate cancer in men

and after breast cancer in women. Moreover, it is considered the

leading cause of cancer-related death among both genders in the

United States, as the number of people who die each year of lung

cancer is more than the number of people who die of breast and

prostate cancers combined.1 The number of patients suffering

from lung cancer has recently increased significantly all over the

world, which increases the motivation in developing accurate and

fast diagnostic tools to detect lung cancer earlier in order to

increase the patients’ survival rate. Lung nodules are the first

indication to start diagnosing lung cancer. It can be benign (nor-

mal subjects) or malignant (cancerous subjects). Figure 1 shows

some samples of benign and malignant lung nodules. Histological

examination using biopsies is considered the gold standard for the

final diagnosis of pulmonary nodules. Even though resection of

pulmonary nodules is the ideal and reliable way for diagnosis,

there is a crucial need for developing a noninvasive diagnostic

tool to eliminate the risks associated with the surgical procedure.

In general, there are several imaging modalities used to diag-

nose the pulmonary nodules, such as chest radiography (X-ray),

magnetic resonance imaging (MRI), positron emission tomogra-

phy (PET) scan, and computed tomography (CT) scans. Some

researchers prefer the use of MRI to avoid ionizing radiation

exposure.2 Diffusion-weighted MRI has been reported to be used

for lung cancer diagnosis, as it could be used to qualitatively

check the high b-value images and apparent diffusion coefficient

(ADC) maps in addition to quantitatively generating the mean

and median tumor ADCs.3 However, CT and PET scans are the

most widely used modalities for diagnosis and staging of lung

cancer. A CT scan is more likely to clearly show lung tumors

than other modalities because of its high resolution and clear

contrast compared with other modalities. We will focus and

utilize the CT scans in our study as it is considered a routine

procedure for patients who have lung cancer in addition to its

ability to provide high-resolution pulmonary anatomical details.

Recently, a lot of researchers tried to develop computer-

aided diagnostic (CAD) systems to classify pulmonary nodules

to earlier detect lung cancer. In particular, Thamilselvan and

Sathiaseelan4 implemented an enhanced k nearest neighbor

(EKNN) technique to identify the lung cancer through the

automatic classification of benign and malignant tissues. In

their system, they improved the quality of images using mor-

phological methods. Then, an EKNN classifier has been used

for the identification of the cancer and classification of the

images. They implemented 4 steps of k nearest neighbor that

were calculated based on Euclidean distance to permit them to

do the classification, define the k value, assign majority class,

and find the minimum distance. Lee et al5 proposed a lung

nodule classification system using a random forest (RF) clas-

sifier aided by clustering. After they merged all the data, they

divided it into 2 clusters, then divided each cluster into 2

groups, nodule and nonnodule. Finally, a RF classifier was

trained for each cluster to distinguish between benign and

malignant nodules. They used chest CT scans for 332 patients

including 5721 images. They got a sensitivity of 98.33% and a

specificity of 97.11% for their proposed system. Sun et al6 used

deep learning algorithms for benign/malignant classification on

the Lung Image Database Consortium (LIDC) data set. After

rotating and downsampling, they collected 174 412 samples

with 52 � 52 pixel each and the corresponding ground truth.

They designed and implemented 3 deep learning algorithms

named Deep Belief Networks (DBNs), Convolutional Neural

Network (CNN), and Stacked Denoising Autoencoder (SDAE).

The performance of deep learning algorithms was compared

with traditional CAD systems by designing a scheme with 28

image features and support vector machine (SVM) classifier.

The accuracies of CNN, SDAE, and DBNs were 0.79, 0.79, and

0.81, respectively; the accuracy of their designed CAD was

0.79. Likhitka et al7 proposed a 4-step framework: image

enhancement, segmentation, feature extraction, and classifica-

tion. For lung nodule diagnosis, they used the nodule size, spine

values, structure, and volume as input features for the SVM

classifier to distinguish between nodules. An unsupervised

spectral clustering algorithm has been studied by Wei et al.8

A new Laplacian matrix was constructed using local kernel

regression models and incorporating a regularization term to

deal with the out-of-sample problem. Their algorithm was

tested using 375 malignant and 371 benign lung nodules from

the LIDC data set. Another study by Nishio and Nagashima9

analyzed 73 lung nodules from 60 sets of CT images from the

LUNGx Challenge. Their method was based on patch-based

feature extraction using principal component analysis, pooling

operations, and image convolution. They compared their

method to 3 other systems for the extraction of nodule features:

histogram of CT density, 3-dimensional (3D) random local

binary pattern, and local binary pattern on 3 orthogonal planes.

They analyzed the probabilistic outputs of the systems using

receiver operating characteristic (ROC) curve and area under

the curve (AUC) that were as follows: histogram of CT density,

0.64; 3D random local binary pattern, 0.73; local binary pattern

on 3 orthogonal planes, 0.69; and their method, 0.84. A SVM-

based CAD system has been proposed by Dhara et al.10 They

computed shape-based, margin-based, and texture-based fea-

tures to represent the nodules. A set of relevant features was

determined as a second step for an efficient representation of

nodules in the feature space. They validated their classification

method on 891 nodules from the LIDC data set. They evaluated

the performance of the classification using AUC. They got an

AUC of 0.9505, 0.8822, and 0.8488, respectively for 3 different

configurations of data sets. Firmino et al11 used texture, shape,

and appearance features that were extracted from the histogram

of oriented gradient from the region of interest to classify dif-

ferent nodules. They used 420 cases obtained randomly from

LIDC data set to train and test their system. Their system

presented ROC curves with areas of 0.91, 0.80, 0.72, 0.67, and

0.83 for nodules highly unlikely of being malignant, nodules

moderately unlikely of being malignant, nodules with indeter-

minate malignancy, nodules moderately suspicious of being

malignant, and nodules highly suspicious of being malignant,
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respectively. Kumar et al12 used deep features extracted from

multilayer autoencoders for the classification of lung nodules.

Although they have proved the effectiveness of extracting

high-level features from the input data in their experiments,

they disregarded the morphological information, for example,

perimeter, skewness, and circularity of the nodule, which could

not be extracted by the conventional deep models. They used

4303 instances containing 4323 nodules from LIDC data set

and obtained an overall accuracy of 75.01% with a sensitivity

of 83.35% over a 10-fold cross validation.

Song et al13 developed 3 types of deep neural networks (eg,

CNN, DNN, and SAE) for lung cancer classification. They

used those networks on the CT image classification task with

some modification for the benign and malignant lung nodules.

They evaluated those networks on the LIDC data set. The

experimental results showed that the CNN network reached the

best performance with an accuracy of 84.15%, specificity of

84.32%, and sensitivity of 83.96%.

Xie et al14 introduced a combination of deep learning

approaches that were utilized for nodules’ assessment from

texture and shape analysis. For the texture analysis, a gray-

level co-occurrence matrix was used to capture the appearance

features, while for the shape analysis, a Fourier shape descrip-

tor was used to capture the geometric features. They obtained

an overall accuracy of 89.53%, with sensitivity and specificity

84.19% and 92.02%, respectively.

A fusion framework between PET and CT features has been

proposed by Guo et al.15 They applied a SVM to train a vector

of CT texture features and PET heterogeneity feature to

improve the diagnosis and staging for lung cancer. They

included in their study 32 patients with lung nodules (19 males,

13 females, age 70 + 9 years) who underwent PET/CT scans.

A relative examination on an extensive variety of compara-

tive methodologies was introduced by ur Rehman et al.16 The

existing methods for the classification of lung nodules have the

following limitations: (1) some methods depend on the Houns-

field unit (HU) values as the appearance descriptor without

taking any spatial interaction into consideration; (2) most of

the reported accuracy is low compared to the clinically

accepted threshold; and (3) some of the methods just depend

on raw data and disregard the morphological information.

The proposed framework provides a generalized classifica-

tion of different types of lung nodules (eg, well-circumscribed,

vascularized, juxtapleural, and pleural tail)17 as malignant or

benign using CT. This framework overcomes the previously

mentioned limitations through the integration of a novel

appearance feature using seventh-order Markov Gibbs random

field (MGRF) that take into account 3D spatial interaction

between nodule’s voxels and geometrical features extracted

from the segmented lung nodule with the deep autoencoder

to achieve a high classification accuracy.

Methods

The proposed framework presents a new automated noninva-

sive clinical diagnostic system for the early detection of lung

cancer by classification of the detected lung nodule as benign

or malignant. It integrates appearance and geometrical infor-

mation that are derived from a single CT scan to significantly

improve the accuracy, sensitivity, and specificity of early lung

cancer diagnosis (see Figure 2). In the CT markers method,

2 types of features are integrated together (appearance and

geometric features). The appearance feature is modeled using

a MGRF that is used to relate the joint probability of the nodule

appearance and the energy of repeated patterns in the 3D scans

in order to describe the spatial inhomogeneities in the lung

nodule. The new higher seventh-order MGRF model is devel-

oped in order to have the ability to model the existing spatial

inhomogeneities for both small and large detected pulmonary

nodules. Geometric features are extracted from the binary seg-

mented nodules to describe the pulmonary nodule geometry.

Details of the framework’s main components are given below.

Appearance Features Using MGRF Energy

The Hounsfield value’s spatial distribution differs from benign

nodules to malignant ones: the smoother homogeneity the

nodule has, the more likely it is benign.18 Describing the visual

appearance features using the MGRF model will distinguish

between benign and malignant nodules showing high distinc-

tive features (see Figure 3). To describe pulmonary nodules’

texture appearance, Gibbs energy values are calculated using

Figure 1. Sample 2D axial projection for benign (first row) and malignant (second row) lung nodules.
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Figure 2. Lung nodule classification framework.

Figure 3. A 2-dimensional axial projection for 2 benign (A, B) and 2 malignant (C, D) lung nodules (first row), along their 3D visualization of

Hounsfield values(second-row), and their calculated Gibbs energy (third-row).

4 Technology in Cancer Research & Treatment



the seventh-order MGRF model, to distinguish between benign

and malignant nodules, because the Gibbs energy values show

the interaction between the voxels and their neighbors19 (see

Figure 4). The seventh order is used because it is the minimum

order we could use, as we work on 3D volume, so at least we

have to check the 6 neighbors of the voxel and the voxel itself.

Using higher order than the seventh order will add more calcu-

lations with no noticeable enhancement in the framework accu-

racy. Let Q¼ {0, . . . , Q� 1} denote a finite set of signals (HU

values) in the lung CT scan, s: R3! Q, with signals s ¼ [s(r):

r ¼ (x, y, z) 2 R3]. The interaction graph, G ¼ (R3, E), quan-

tifies the signal probabilistic dependencies in the images with

nodes at voxels, r 2 R3, that are connected with edges (r, r0) 2
E � R3 � R3. An MGRF of images is defined by a Gibbs

probability distribution (GPD):

Y ¼ ½YðsÞ : s 2 QjRj;
X
s2QjRj

YðsÞ ¼ 1� ð1Þ

factored over a set C of cliques in G supporting nonconstant

factors, logarithms of which are Gibbs potentials.20 To make

modeling more efficient at describing the visual appearance of

different nodules in the lung CT scans, the seventh-order

MGRF models the voxel’s partial ordinal interaction within a

radius r rather than modeling the pairwise interaction as in the

second-order MGRF.

Let a translation-invariant seventh-order interaction struc-

ture on R be represented by A, A � 1, families, Ca; a ¼ 1, . . . ,

A, of seventh-order cliques, ca:r 2 Ca, of the same shape and

size. Every clique is associated with a certain voxel (origin), r

¼ (x, y, z) 2R3, supporting the same (7)-variate scalar potential

function, Va: Q7 ! (�1, 1).

The GPD for this contrast/offset-, and translation-invariant

MGRF is

Y7ðsÞ ¼
1

Z
fðsÞexp

�
� E7ðsÞ

�
; ð2Þ

where E7:aðsÞ ¼
P

Ca:r2Ca
V7:a

�
gðr0Þ : r0 2 ca:r

�
and E7ðsÞ ¼PA

a¼1 E7:aðsÞ denote the Gibbs energy for each individual and all

the clique families, respectively; Z is a normalization factor, while

f(s) is a core distribution. The calculated Gibbs energy, E7(s),

will be used to discriminate between benign and malignant tissues

and gives an indication of malignancy. While a high potential of

malignancy is indicated by lower energy, high potential to be

benign is indicated by higher energy. To calculate E7(s), the Gibbs

potentials for the seventh-order model are calculated using the

maximum likelihood estimates (MLE) by generalizing the analy-

tical approximation in21,22:

V7:aðxÞ ¼
F7:a:coreðxÞ � F7:aðxjs�Þ

F7:a:coreðxÞ
�
1� F7:a:coreðxÞ

� ; ð3Þ

where a ¼ 1, . . . , A; x 2 W7, s� denoted the training malignant

nodule images; x denotes a numerical code of a particular

seventh-order relation between the 7 signals on the clique; W7

is a set of these codes for all seventh-order signal co-

occurrences; F7:a(s�) is an empirical marginal probability

of the relation x; x 2 W7, over the seventh-order clique family

C7:a for s�, and F7:a:core(x) is the core probability distribution.

The proposed seventh-order MGRF appearance model is

summarized in Algorithm 1.

Geometric Features

As the lung nodules have different geometric characteristics

based on whether it is malignant or benign, accounting for these

differences as a discriminating feature helps in the differentia-

tion between different nodule types in the classification process.

A set of 7 geometric features will be extracted from the nodule’s

binary mask (provided by radiologist). The following geometric

features are calculated: volume, surface area, convex volume,

solidity, equivalent diameter, extent, and the principal axis

length. In order to calculate the solidity, a convex hull C is

defined around the segmented nodule and the ratio between the

volume of the voxels in C and the total volume of the segmented

Figure 4. The seventh-order clique. Signals q0, q1, . . . , q6 are at the

central pixel and its 6 central-symmetric neighbors at the radial dis-

tance r. Note that the selection of the neighborhood geometry takes

into account the nodules sphericity.

Algorithm 1. Learning the seventh-order MGRF appearance model.

1. Given a training malignant nodules g�, find the empirical nodule (l¼
1) and background (l¼ 0) probability distributions, Fl:7: r(g

�)¼ [Fl:7:

r(b|g�): b 2 B] of the local binary pattern-based descriptors for dif-

ferent clique sizes r 2 f1, . . . , rmaxg where the top size rmax ¼ 10 in

our experiments below.

2. Compute the empirical distributions F7:r:core ¼ [F7:r:core(b): b 2 B]

of the same descriptors for the core independent random field c(g),

for example, for an image, sampled from the core.

3. Compute the approximate MLE of the potentials:

Vl:7:rðbÞ ¼
F7:r:coreðbÞ � Fl:7:rðbjg�Þ

F7:r:coreðbÞ �
�
1� F7:r:coreðbÞ

� :

4. Compute partial Gibbs energies of the descriptors for equal and all

other clique-wise signals over the training image for the clique sizes

r ¼ 1, 2, . . . , 10 to choose the size rl, making both the energies the

closest one to another.
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nodule is calculated. Then, in order to calculate extent, the

bounding box around the segmented nodule is used and the

dimensions are named dimx, dimy, and dimz. To calculate extent,

the proportion of the volume of the voxels in the bounding cube

to the volume of the voxels of the segmented nodule is calcu-

lated. Principal axis length is defined as the largest dimension of

the bounding cube (max(dimx, dimy, dimz)).

These features complement each other to come up with a

final score for malignancy classification. To extract these fea-

tures accurately without being dependent on scan accusation

parameters such as pixel spacing and slice thickness, a volume

of interest (VOI) of size 40 � 40 � 40 mm3 that is centered

around the center of each nodule is extracted and resampled to

be an isotropic in the x�, y�, and z� directions.

Nodule Classification Using Autoencoders

Our CADx system utilizes a feed-forward deep neural network

to classify the pulmonary nodules whether malignant or benign,

and the implemented deep neural network comprises 2-stage

structure of stacked autoenocder (AE).

The first stage consists of 2 autoencoder-based classifiers, 1

classifier for the appearance and 1 for the geometry, which are

used to give an initial estimation for the probabilities of the clas-

sification, that are augmented together to be considered as the

input for the second-stage autoencoder to give the final estimation

of the classification probabilities (see Figure 1 for more details).

Autoencoder is employed in order to diminish the dimen-

sionality of the input data (1000 histogram bins for the Gibbs

energy image in the network of the appearance) with

multilayered neural networks to get the most discriminating

features by greedy unsupervised pretraining.

After the AE layers, a softmax output layer is stacked in order to

refine the classification by reducing the total loss for the training-

labeled input. For each AE, let W ¼ {Wj
e, Wi

d: j ¼ 1, . . . , s; i ¼
1, . . . , n} refer to a set of column vectors of weights for encoding,

E, and decoding, D, layers, and let T denote vector transposition.

The AE change the n-dimensional column vector u ¼ [u1, . . . ,

un]T into an s-dimensional column vector h ¼ [h1, . . . , hs]
T of

hidden features such that s < n by nonlinear uniform transforma-

tion of s weighted linear combinations of input as where s(.) is a

sigmoid function with values from [0,1], sðtÞ ¼ 1
1þe�t,

Our classifier is constructed by stacking AE (see Figure 5)

which consist of 3 hidden layers with softmax layer for the

appearance network: the first hidden layer reduces the input

vector to 500 level activators, while the second hidden layer

continues the reduction to 300 level activators which are reduced

to 100 after the third layer. The geometry network consists of the

softmax layer only, as the input scale is not large enough to use

AE with multiple hidden layers like the appearance network

(only 9 geometric features) which compute the probability of

being malignant or benign through the following equation:

pðc;Wo:cÞ ¼
eðW

T
o:ch

3Þ

e

Xc

1
WT

o:ch
3

� � ; ð4Þ

where C ¼ 1 2; denote the class number Wo:c: is the weighting

vector for the softmax for class c; h3: are the output features

from the last hidden layer (the third layer) of the AE. In the

Figure 5. The proposed stacked autoencoder structure.
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second stage, the output probability obtained from the softmax

of the appearance and geometry analysis networks are fused

together and fed to another softmax layer to give the final

classification probability.

Experimental Results

To train and test our proposed CADx system, the well-known

LIDC data set is used. This data set consists of 1018 thoracic

CT scans that have been collected from 1010 different patients

from 7 different academic centers. After removing the scans

with slice thickness greater than 3 mm and the scans with

inconsistent slice spacing, a total of 888 CT scans became

available for testing and evaluating our CADx system.23 The

LIDC CT scans are associated with an XML file to provide a

well descriptive annotation and radiological diagnosis for the

lung lesions, such as segmentation, shape, texture, and malig-

nancy. All this information is provided by 4 thoracic radiolo-

gists in a 2-phase image annotation process. In the first phase,

each radiologist from the 4 radiologists independently

reviewed all cases and this phase is called blind read phase

as each one gives their opinion regardless of the other radiol-

ogists. The second phase is the final phase as each radiologist

gives his final decision after checking the other 3 radiologists’

decision, and this phase is called the unblinded phase as all the

annotations were made available to all the radiologists before

giving their final annotation decision. The radiologists divided

the lesions into 2 groups, nodules and nonnodules. We focused

on the nodules �3 mm as they have a malignancy score that

vary from 1 as benign to 5 as malignant and a well-defined

contour annotated by the radiologists.

We trained our CAD system on a randomly selected sample of

nodules. In order to be sure that the data are almost balanced, we

used 413 benign and 314 malignant nodules. For each nodule, the

union of the 4 radiologists’ mask is combined to obtain the final

nodule mask that we will use in ours (see Figure 6).

A VOI of size 40� 40� 40 mm measured around the center

of the nodule’s combined mask is extracted for each nodule.

The final diagnosis score of each nodule that we decided to

work on is evaluated by calculating the average of the diagnosis

scores for the 4 radiologists.

The system is evaluated using 10-fold cross-validation in

order to be sure that every sample in the data set is eventually

used for both training and testing. The classification accuracy is

described in terms of different measurement metrics, namely,

the specificity (true negative rate) that measures the percentage

of negatives that are correctly identified (eg, the percentage of

benign nodules that are correctly identified as benign), sensi-

tivity (true positive rate) that measures the percentage of posi-

tives that are correctly identified (eg, the percentage of

malignant nodules that are correctly identified as malignant),

precision (positive predictive value) that measures the fraction

of correctly identified as positives among the whole instances

that identified as positives, accuracy that measures the fraction

of correctly identified among the whole instances, and AUC.

These measurements are calculated as follows:

Figure 6. Two-dimensional axial projection for 3 nodules and their masks. A, The mask as annotated by first radiologist. B, The mask as

annotated by second radiologist. C, The mask as annotated by third radiologist. D, The mask as annotated by fourth radiologist. E, The combined

mask for the 4 radiologists mask.

Shaffie et al 7



Specificity ¼ TN

TNþ FP
;

Sensitivity ¼ TP

TPþ FN
;

Precision ¼ TP

TPþ FP
;

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
;

where TP (true positive): correctly identified instances, FP

(false positive): incorrectly identified instances, TN (true neg-

ative): correctly rejected instances, and FN (false negative):

incorrectly rejected instances.

We reported the accuracy of the appearance model and the

geometric model separately and for the complete fused system

to highlight the effect of each model to the overall system (as

shown in Table 1).

Table 2 compares our system performance measures

against other systems,12,24,25 showing that our system has

the lead in accuracy.

Figure 7 shows the ROC curve for each module and for the

fused system as it is considered a powerful tool to evaluate

the discrimination of binary outcomes (benign or malignant).

The curve is created by plotting the sensitivity against 1 � the

specificity at different threshold settings. The area under the

ROC curve was 0.93, 0.92, and 0.96 for the appearance model,

geometric model, and the fused system, respectively.

Obviously the displayed features give a decent separation

between benign and malignant nodules. In addition, the

separation accuracy increased when these features combined

using autoencoder. To validate the effectiveness of the auto-

encoder classifier, different classifiers are utilized for the com-

bined features and compared with the framework accuracy that

uses the autoencoder classifier. Random forest, SVM, and

Naive Bayes classifiers are selected to be compared with the

autoencoder and Table 3 shows the comparison between them.

Discussion and Conclusion

The limitation of our framework is that although it is able to

distinguish benign nodules from malignant ones, it could not

differentiate between the different categories in each type. For

example, the benign nodules have different categories like

fibroma, hamartoma, neurofibroma, and blastoma, and the

malignant nodules have different categories like lung cancer,

lymphoma, carcinoid, sarcoma, and metastatic tumors. In par-

ticular, future work should seek an additional technique to

distinguish also between the subclasses in each type of nodules.

In conclusion, this article introduced a novel framework for

the classification of lung nodules by modeling the nodules’

appearance feature using a novel higher order MGRF in addi-

tion to geometric features. The classification results obtained

from a set of 727 nodules collected from 467 patients confirm

Table 1. Classification of Results in Terms of Sensitivity, Specificity,

Accuracy, Precession, and AUC for Different Feature Groups.

Evaluation Metrics

Sensitivity Specificity Accuracy Precision AUC

Geometric 82.80 88.14 85.83 84.14 92.02

Appearance 82.17 96.85 90.51 95.20 93.44

Comb. features 85.03 95.88 91.20 94.01 95.73

Abbreviations: AUC, area under the curve; comb., combined.

Boldface signifies the values with maximum accuracy.

Table 2. Comparison Between our Proposed System and Other 4

Recent Nodule Classification Techniques, in Terms of Sensitivity,

Specificity, and Accuracy.

Metric

Sensitivity Specificity Accuracy

Method Kumar et al12 83.35 – 75.01

Krewer et al24 85.71 94.74 90.91

Jiang et al25 86.00 88.50 –

Our system 85.03 95.88 91.20

Boldface signifies the values with maximum accuracy.
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Figure 7. Receiver operating characteristic curve for different feature

classification and the combined ones.

Table 3. Classification Results for the Deep Autoencoder Classifier

Compared With RF, SVM, and NB Classifiers.

Classifier Type

AE RF SVM NB

Metrics Sens. 85.03 89.17 85.67 71.02

Spec. 95.88 90.07 93.95 96.61

Acc. 91.20 89.68 90.37 85.56

Abbreviations: Acc., accuracy; AE, autoencoder; NB, Naive Bayes; RF, ran-

dom forest; SVM, support vector machine; Sens., sensitivity; Spec., specificity.

Boldface values signify the values which has maximum accuracy.
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that the proposed framework holds the promise for the early

detection of lung cancer. A quantitative comparison with

recently developed diagnostic techniques highlights the advan-

tages of the proposed framework over state-of-the-art ones.

These promising results encourage us to model new shape

features using spherical harmonic analysis and include it in the

proposed framework to reach the clinically accepted accuracy

threshold, which is �95.00%. Moreover, we plan to file an

institutional review board protocol in the future and locally

collect data at our site to test on subjects that have malig-

nant/benign nodules with biopsy confirmations.
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