
AGeneralized Density-Based Algorithm for the Spatiotemporal Tracking of

Drought Events

C. CAMMALLERI a AND A. TORETIa

a Joint Research Centre, European Commission, Ispra, Italy

(Manuscript received 6 June 2022, in final form 10 November 2022)

ABSTRACT: Drought events evolve simultaneously in space and time; hence, a proper characterization of an event re-
quires the tracking of its full spatiotemporal evolution. Here we present a generalized algorithm for the tracking of drought
events based on a three-dimensional application of the DBSCAN (density-based spatial clustering of applications with
noise) clustering approach. The need for a generalized and flexible algorithm is dictated by the absence of a unanimous
consensus on the definition of a drought event, which often depends on the target of the study. The proposed methodology
introduces a set of six parameters that control both the spatial and the temporal connectivity between cells under drought
conditions, also accounting for the local intensity of the drought itself. The capability of the algorithm to adapt to different
drought definitions is tested successfully over a study case in Australia in the period 2017–20 using a set of standardized
precipitation index (SPI) data derived from the ERA5 precipitation reanalysis. Insights on the possible range of variability
of the model parameters, as well as on their effects on the delineation of drought events, are provided for the case of mete-
orological droughts in order to incentivize further applications of the methodology.
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1. Introduction

Drought is a climate extreme that can occur in all climate
zones of the world and that has serious impacts on society and
the environment (Mishra and Singh 2010). In recent years, im-
pacts of droughts have been exacerbated by human activities
and water exploitation, resulting in renovated interest in drought
risk management, reduction, andmitigation (UNDRR 2021). Our
capability to analyze and characterize the spatiotemporal dynam-
ics of drought events from indicators, derived from either observa-
tions or model predictions, is instrumental in better understanding
the dynamics and the consequent cascading repercussions of
droughts on socioeconomic and environmental sectors.

Even if drought is widely recognized as a spatiotemporal
phenomenon (Tallaksen and Van Lanen 2004), it is rarely
properly treated as such, with most previous studies reducing
the analysis to investigating the temporal variability (time
series) for given predefined areas or to studying the spatial pat-
terns for a fixed period (time window) (i.e., González-Hidalgo
et al. 2018; Spinoni et al. 2015; Zhao et al. 2017).

One of the earliest attempts at developing an algorithm for
the spatiotemporal tracking of drought events can be found in
Andreadis et al. (2005). This pioneering work introduced the
definition of contiguous drought area (CDA) to aggregate

spatial cells into drought clusters, as well as the possibility for
clusters to merge and split at subsequent time steps. Sheffield
et al. (2009), Herrera-Estrada et al. (2017), and Diaz et al.
(2020) employed similar tracking procedures, keeping at the
core the same CDA analysis but also exploring different
strategies for the temporal tracking component, including
evaluations on the effects of minimum cluster size and of the
distance between clusters.

By extending the CDA analysis to the full space–time domain,
Lloyd-Hughes (2012) suggested to directly derive coherent
spatiotemporal structures, merging de facto the previous two
steps of clustering and tracking into a single three-dimensional
clustering. Vernieuwe et al. (2020) and Diaz et al. (2023) further
elaborated on this direction by investigating mathematical mor-
phology and parameter optimization approaches. In spite of the
understandable advantages of a single three-dimensional pro-
cedure, Lloyd-Hughes (2012) highlighted how this approach
implicitly equates the dimensions along the space (i.e., longitude
and latitude) and the time scales, and that scaling factors may
be required to account for inequality. In addition, since 3D clus-
tering requires a fixed 3D dataset (longitude, latitude, and time)
to provide a stable outcome, some of the advantages of 3D clus-
tering over a 2D clustering combined with a temporal tracking
can be lost in a near-real-time application. Indeed, the outcome
of the 3D cluster may change in time when new data are added
in a continuously evolving dataset, e.g., used for monitoring and
early warning purposes.

A major limitation for the application of these procedures
is the well-known lack of consensus on a unanimous definition
of drought event. It is not uncommon that different experts
may characterize the same event differently based on their
knowledge, or even that the same expert may use different
definitions depending on the goal of the study. Multiple
drought indices exist to accommodate for the large variety of
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potential applications and spatial scales (WMO and GWP 2016),
and a similar flexibility may be needed in drought tracking algo-
rithms. As an example, while short-term standardized pre-
cipitation indices (SPIs; i.e., SPI-1 and SPI-3) are more
suitable for detecting drought events that are relevant for
meteorological and agricultural applications, long-term accu-
mulation periods (i.e., SPI-12 or longer) address the needs of
climatological and hydrological studies. Analogously, climato-
logical studies may be more inclined to track long-lasting
droughts related to multiyear abnormally dry conditions, whereas
a splitting of these major droughts into subevents may be of
interest for monitoring applications.

Starting from the approaches already available in the litera-
ture, the goal of this study is to introduce a generalized density-
based method that allows for an increased flexibility in the
characterization of spatiotemporal drought events. The proposed
algorithm is detailed by highlighting itsmain assumptions with re-
spect to the existing methodologies, and then by describing the
expected behavior in cluster duration and extension based on dif-
ferent settings of its parameters. As a first case study, a drought
period in Australia during the late 2010s is investigated, with the
goal to confirm the capability of the approach to flexibly adapt to
different characterizations of the same drought period.

2. Methodology

Starting from the work of Andreadis et al. (2005), most
drought tracking algorithms rely on the detection of contigu-
ous drought areas (CDA) for a series of time steps, which are
then converted into drought events in a second tracking
phase. Here we introduce a generalization of the CDA proce-
dure for the 2D clustering, and then we highlight how to ex-
tend this generalized approach to the 3D case.

a. Generalized 2D clustering

The procedure adopted to identify the CDAs starting from
a drought indicator map is schematized in Fig. 1 as a two-step

process. First, the drought indicator is converted into a Bool-
ean map of drought/no-drought cells based on a given thresh-
old. In Fig. 1, the commonly used threshold value of 21 is
adopted to discriminate drought conditions in a hypothetical
SPI map. Then, contiguous cells (using an 8-neighborhood
rule) are grouped into CDAs, also known as clusters. It is
worth noting how some of these clusters may be considered
too small to be tracked as drought events, hence they are suc-
cessively filtered through a minimum area value, as detailed
in section 2b.

The above-described algorithm is based on a rather simpli-
stic aggregation approach that does not account for much
flexibility in the cluster mapping (given that the only tunable
parameter is the threshold value). In the framework of ma-
chine learning, several types of clustering techniques have
been introduced (see, e.g., Madhulatha 2012); among them,
there is the density-based class, such as the well-known
density-based spatial clustering of applications with noise
(DBSCAN; Ester et al. 1996) method. DBSCAN has been
deployed in a large variety of applications, including studies
on meteorological extremes (Tilloy et al. 2022; Wang and Yan
2021).

The DBSCAN method exploits the distance between
points to turn dense areas of data points into clusters. It
groups together points according to their proximity and
data density. Data that are packed in high-density regions
are defined as clusters, whereas points in low-density areas
are marked as outliers. The algorithm distinguishes between
three categories:

• core points, having at least a minimum number of points in
their surroundings;

• reachable points, lying within a minimum distance from a
core point; and

• outliers, being not reachable from any other point.

In its general formulation, DBSCAN requires only two
main parameters to generate the clusters: 1) a searching

FIG. 1. Schematic representation of the contiguous drought area (CDA) procedure.

J OURNAL OF HYDROMETEOROLOGY VOLUME 24538

Unauthenticated | Downloaded 10/01/23 02:34 PM UTC



radius for the detection of neighborhood points (eps), and 2)
a minimum number of points (minPts) in the neighbor to clas-
sify a point as a part of the cluster core. Among the advan-
tages of DBSCAN there is the fact that a preset number
of clusters is not needed, and that arbitrarily sized and shaped
clusters can be detected. Known limitations of the algorithm in-
clude the complexity to define the searching radius if the data
scale is not well understood, and the difficulty to cluster data
with large differences in densities (Kriegel et al. 2011).

In this study, a weighted DBSCAN implementation is
adopted (Hahsler et al. 2019); the weighting factor (between
0 and 1) is attributed to each cell to either increase or decrease
the weight of a point in forming a cluster. Weighting was orig-
inally introduced to account for the presence of multiple sam-
ples at the same location, in order to remove duplicates and
speed up the computational time (by including a single point
in the analysis but giving it a higher weight based on the num-
ber of replicates). However, it can clearly be also used to give
different weights to different values of the drought indicator
rather than adopting a simple Boolean classification (i.e., all
the points weight the same).

In the special case of data distributed on a regular grid, it is
conceptually easier to replace the search radius parameter eps
with the length of a searching window L. Similarly, on a regu-
lar grid, the values assumed by minPts will be always bounded
between a minimum of 2 (one additional point in the search-
ing area beyond the one under analysis) and the total number
of points in the searching window (e.g., 9 in the case of a
3 3 3 window). Hence, the parameter minPts can be replaced
by a parameter p (between 0 and 1) representing the fraction
between the minimum and maximum values for a given
window.

Regarding the weighting factor w, following the approach
adopted by Cammalleri et al. (2016) for the quantification of
the dryness of a standardized drought index, a simple logistic
function is here adopted, such as

w 5
1

1 1
D
k

( )e , (1)

whereD is the drought index, k is theD value at which the logis-
tic functions is centered, and e is the steepness of the growth
curve. In the case of a standardized quantity (i.e., SPI), this func-
tion is applied to only one side of the range of D, while w 5 0
is used for the other half of the range.

In this generalized formulation, the clustering procedure
becomes a function of four parameters: L and p related to the
classical DBSCAN, and k and e linked to the weighting func-
tion. This formulation represents a clear step up in flexibility
compared to the single parameter (threshold) of the classical
CDA formulation, as detailed in section 4a. The classical
CDA approach proposed by Andreadis et al. (2005) and de-
scribed in Fig. 1 can be reproduced as a special case of this
general framework by setting L 5 3, p 5 0 (corresponding to
eps5

��
2

√
and minPts 5 2), k 5 21, and e 5 1000 (the latter

being a large enough value to approximate the Boolean func-
tion with an S-shaped curve).

b. Extension to 3D clustering

As briefly detailed in the introduction, several different ap-
proaches have been adopted in drought studies to track the
temporal evolution of 2D spatial clusters retrieved at different
time steps, e.g., linking clusters via simple overlaps (Herrera-
Estrada et al. 2017), evaluating the distance between cent-
roids (Diaz et al. 2020), or applying proper 3D clustering
(Lloyd-Hughes 2012).

As introduced in section 2a, one common step in most of
the clustering procedures is the use of a minimum cluster area
(A) to filter out the small aggregations of grid cells that could
represent tenuous spatial connections between otherwise un-
related events (Sheffield et al. 2009). This filtering can be ap-
plied to the proposed DBSCAN 2D clustering as a simple
postprocessing step, after the clusters of all sizes are produced
and stored for each time step (e.g., the cluster 3 in Fig. 1
would be filtered out if A5 5 is used).

The 2D clustering framework introduced in section 2a
(applied to the latitude–longitude data for a given time step) can
be immediately extended in 3D by simply stacking the data
acquired for all the available time steps, thus obtaining a so-
called data cube (a full dataset comprising all the available
data in a latitude–longitude–time 3D spatial domain). This ex-
tension assumes that the searching area for neighborhood
cells is not a circle anymore but rather a sphere. However, as
pointed out by Lloyd-Hughes (2012), such an approach im-
plicitly assumes that the length scales of space (i.e., latitude
and longitude) and time (i.e., time steps) are comparable,
hence the same search window used in space (L) would be
adopted also in time. As a practical example, this symmetric
search window approach assumes that two points that are
separated by a single unit in space (e.g., 18) are considered
“equidistant” to two points that are separated by a single unit
in time (e.g., 1 month). To overcome this limitation, and en-
able an asymmetric spatiotemporal search window, a scaling
factor for the time dimension can be introduced, thus defining
(in analogy to the space scale) the length of the search win-
dow in time, R. The distinction between the size of the search
window for space (L) and time (R) allows modulating the
algorithm behavior for different combinations of spatial and
temporal resolutions.

The full 3D formulation is then applied as synthetically
schematized in Fig. 2. First, a preliminary application of the
2D weighted DBSCAN is performed independently for
each time step in the period under analysis (dotted box in
Fig. 2). This preliminary step is used to filter the clusters
with size smaller than A at each given time step, and it pro-
duces a full data cube comprising only the unfiltered grid
cells characterized by the four quantities: weight, latitude,
longitude, and (scaled) time step. In the second phase, the
proper 3D clustering is performed on the previously gener-
ated data cube by using the same parameters adopted in
the 2D DBSCAN.

The proposed generalized algorithm has six parameters
(the four outlined in section 2a plus A and R), adding further
flexibility to the methodology in treating the connectivity be-
tween drought cells in the 3D space.
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3. Data

To test the proposed clustering approach, a global dataset
of SPI-3 (i.e., 3 months accumulation) is here mainly used. This
dataset is derived from the ERA5 precipitation reanalysis
(Hersbach et al. 2020), as fully described in Cammalleri et al.
(2022), and it covers the period 1981–2020 on a regular latitude–
longitude grid having a spatial resolution of 0.258 with temporal
updates of roughly 10 days (i.e., dekad, three updates per month
on the 10th, 20th, and the last day of each month).

The SPI is estimated by fitting a gamma distribution on a
set of multiyear precipitation data by using a reference period
of 30 years (1981–2010), as suggested by the WMO guide-
lines (WMO 2017). The two parameters of the gamma dis-
tribution are derived separately for each dekadal time series
using the generalized additive model for location, scale,
and shape (GAMLSS) modeling framework (Stasinopoulos
and Rigby 2007). A total of 36 gamma fittings (12 months 3
3 monthly updates) are produced, and the complete SPI
dataset derived from these fittings consists of 1440 global
maps.

A time series of SPI-6 (6 months accumulation) maps is
also computed, using the same ERA5 precipitation dataset

but with monthly temporal updates, for a total of 480 global
maps. This dataset is used in addition to SPI-3 to test how the
clustering algorithm performs with the same parameterization
but different input data.

4. Results and discussion

a. Parameterization of the clustering algorithm

Having introduced a set of six parameters, it is important to
understand how each of them influences the outcome of the
clustering analysis.

Regarding the classical DBSCAN parameters (viz., L and p),
it is easy to understand how they are closely interlinked, so the
effects of these two are jointly analyzed. While the window
search size can assume a wide range of values, large L values
quickly start to connect areas too far away. For moderate-
resolution datasets, like ERA5, Vernieuwe et al. (2020) con-
sidered three window sizes, (3 3 3, 5 3 5, and 7 3 7) which
already cover a rather substantial range of variability for the
L parameter. In general (for a given p value), larger values
of L correspond to bigger clusters and an increase in aggre-
gation of drought cells into fewer clusters. The CDA repre-
sents the lower degree of aggregation, since L 5 3 is the
minimum admissible value.

On the contrary, an increase in p results in more frag-
mented clusters (for a fixed value of L), since less core cells
will be identified due to the higher constraint on the number
of pixels in the surrounding required to identify a core cell.
Even if p can go up to 1 (i.e., all the cells in the surrounding
need to be under drought conditions to flag a core cell), an al-
ready quite extreme constraint is to assume p equal to 0.5,
i.e., a point is flagged as core when at least half of the sur-
rounding cells are under drought conditions. For this parame-
ter, the CDA represents the maximum possible aggregation
(for L 5 3), given that a single cell in the surrounding is
enough to guarantee the clustering.

These suggested ranges for L (between 3 and 7) and p (be-
tween 0 and 0.5) already provide a wide array of options, with
few examples shown in Fig. 3 for SPI-3 in a case over the United
States. It is worth highlighting that these examples are obtained
with the simple Boolean weighting method, just to provide a
general overview of the expected qualitative behavior.

Figure 3 shows the clustering with four different parameter-
izations on a sample dataset. The map in Fig. 3a depicts the
results for the CDA, as detailed at the end of section 2a, while
an increase in the searching window (L 5 7, Fig. 3b) returns
larger clusters also comprising nonadjacent cells. The lower
panels show results for an intermediate L value (L 5 5) by
setting either a low (0.15, Fig. 3c) or a high (0.4, Fig. 4d)
p value. These results highlight how multiple outcomes can be
obtained by tuning L and p; although, with the simple Bool-
ean weighting it is unusual to get the major clusters split into
subclusters (which can be instead achieved by introducing
alternative weighting functions).

The logistic function introduced in Eq. (1) hence aims at
giving further flexibility also in the clustering strategy for
large areas, allowing for reducing the effects of weak

FIG. 2. Schema of the proposed 3D clustering procedure. The
preprocessing step performs a 2D clustering for each time step (en-
closed in the dotted box) to filter the data, followed by the proper
3D clustering on the full data cube.
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connectivity due to small areas close to the threshold value.
Following Cammalleri et al. (2016) and accounting for the fre-
quency associated to different SPI values, k can be set reason-
ably between 21.2 and 21.8, while e between 4 and 10. The
maps in Fig. 4 clearly reveal the effect of the logistic weighting
factor for a case study over Europe. A single large cluster
(Fig. 4c) detected by the classic CDA (i.e., Boolean weight) is
split into two subclusters (Fig. 4d). The split occurs in corre-
spondence of a weak link (having SPI values close to 21 over

Russia) between two major drought areas with SPI values well
below22.

It is worth mentioning that the proposed weighting function
(and the suggested range of variability) is suitable for stan-
dardized drought indices, i.e., centered on 0 and with a unitary
standard deviation. Indicators with a different range (e.g., the
Palmer drought severity index; Alley 1984) may need an ad
hoc weighting function, based on the same principle to keep
the 0–1 range.

FIG. 3. Examples of 2D clustering based on different pairs of L and p parameters for a case study over the United
States. A Boolean weighting is used in all four panels. The value of “#n” represents the number of clusters produced
by the algorithm (only events larger than 10 cells are counted here).

FIG. 4. Effect of the weighting function on the clustering for a case study over Europe. (a) The Boolean (black
line) and logistic (gray line) weighting functions; (b) the SPI-3 input data to be clustered. (c),(d) The outcome of
the clustering algorithm for the Boolean and logistic weighting, respectively. Both maps were obtained with L 5 3
and p5 0.05.
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Independently from the selected parameterization, DBSCAN
produces clusters of various size (greater than minPts), so the A
parameter plays the role of noise filter. Keeping all the small
clusters in the analysis will result in larger and longer drought
events, since these small areas act as connections between larger
clusters. Thus, the filter aims at reducing the size of the final
modeled drought events, as highlighted by Sheffield et al. (2009).

Various values have been adopted in the literature for such a
parameter, e.g., Herrera-Estrada et al. (2017) used 200000 km2

to filter smaller clusters, Andreadis et al. (2005) used 25000 km2

over the United States, and Sheffield et al. (2009) used
500 000 km2 for global applications (after unsuccessful initial
experiments with both 25 000 km2 and 100 000 km2). Re-
cently, Rakovec et al. (2022) used a threshold of 25 000 km2

to filter small clusters, but in combination with a minimum
temporal overlap between consecutive clusters of 150000 km2.
Diaz et al. (2023) developed a strategy to detect a minimum
value for A, based on the plateau of the cluster size curve. Over
South America, their analysis returned a value of 49 pixels (cor-
responding to about 40000 km2) as a minimum cluster area.

This overview shows how lower A values seem to have
been adopted in continental scale studies (from 25 000 to
40 000 km2), where the limited extent of the study domain re-
duces the risk of getting events that persist (incorrectly) for
multiple years spreading over multiple continents (see Sheffield
et al. 2009). Large values of A can reduce these effects, but
too large values may exclude from the cluster output a large
fraction of the cells that are considered under drought
conditions.

Another role of the A parameter is to control the onset and
end of an event, given that an event starts when its size ex-
ceeds the selected A values, and it terminates when the cluster
size reduces below this threshold. As a general rule of thumb,
high values of A correspond to shorter events (late start and/or
early end).

To identify an optimal range of variability for this parame-
ter, an analysis of the frequency of clusters of different size
was performed for our global SPI-3 dataset with six different
L and p combinations (for both the Boolean weighting and a
specific logistic weighting with k 5 21.5 and e 5 6), as

summarized by the results shown in Fig. 5a. A flexing point
occurs between 50 and 80 pixels, a result roughly in line with the
outcome of Diaz et al. (2023). On the other hand, Fig. 5b shows
that for anA value in the order of 250 pixels (about 200000 km2)
more than 20% of the cells considered under drought
(SPI-3 , 21) would be excluded by the clustering analysis.
Following these two results, we consider 50 000–200000 km2 a
reliable range of variability for global analyses (roughly be-
tween 65 and 250 pixels in our ERA5-based 0.258 dataset).

Finally, the R parameter plays exactly the same role for
time as the L parameter does for space, hence it increases the
distance where connections are detected along the temporal
line. When R and L are set to be equal, the algorithm assumes

FIG. 5. Analysis of the optimal range of variability of the A parameter. (a) The frequency distribution of the num-
ber of clusters for different sizes based on a range of DBSCAN parameterizations. (b) The average ratio between the
number of cells within clusters greater thanA and the total number of cells considered under drought (SPI-3,21).

FIG. 6. Effects of missing data (empty map at time t) on temporal
clustering: (a),(b) associated with a symmetric searching window
(R5 L5 3) and (c),(d) showing larger temporal searching window
(L 5 3 and R 5 5). Each color represents a different event accord-
ing to the specific clustering parameterization. The number next to
each group of cells represents the ID of the event.
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a symmetry in the searching window in the space–time do-
main. Consequently, this parameter can also be used to ac-
count for the inequality between the spatial and the temporal
scales.

This asymmetry can be used, as an example, to account for
gaps in the time series even without altering the continuity as-
sumption in space. Figure 6 shows how an empty map at time t
can disconnect the clusters at t2 1 (Fig. 6a) and at t1 1 (Fig. 6b)
when R 5 L 5 3 (i.e., only the closest time step is used to link
clusters). In contrast, a connection is established when a larger
temporal searching window is used (R 5 5) even if the spatial
searching window is kept the same (Figs. 6c,d).

Generally, in analogy to L, an increase in R results in bigger
clusters (i.e., larger spatial extent and longer duration) for a
given set of static parameters. The classical CDA application
followed by an overlap represents in this case the minimum
degree of aggregation, since only the closest time steps are
considered. The use of two independent parameters in space
in time allows for extending the search in one dimension with-
out altering the assumption adopted in the other. This prop-
erty can be used to either extend the duration of an event by
connecting multiple consecutive clusters separated by small

temporal gaps (by increasing R) or by splitting long events
into multiple subevents (by decreasing R). Although R acts
on the time scale, it can also affect the spatial outcome, as ex-
emplified by the decrease in the number of independent clusters
obtained for a given time step in Fig. 6 (3 clusters in Fig. 6a for
R5 3 and only 1 cluster in Fig. 6c forR5 5).

These findings on the algorithm behavior allow us to derive
plausible ranges of variability, as summarized in Table 1. Those
values were derived for global SPI-3 moderate-resolution

TABLE 1. Summary of the suggested range of variability for the
parameters of the algorithm. The values in parentheses correspond
to the special case of the CDA with Boolean weighting. Parameters:
L is the size of the searching window in space; p is the fraction of
cells in the surrounding to detect a core cell; k is the midpoint of
the logistic curve; e is the steepness of the logistic curve; A is the
minimum size of the 2D clusters; and R is the size of the searching
window in time.

Parameter L p k e A R

Min 3 (3) 0.05 (0) 21.2 (21) 4 65 3
Max 7 0.5 21.8 (22) 8 (1000) 250 7

FIG. 7. Time series of the areas under drought conditions (in three severity categories, according to McKee et al.
1993) for mainland Australia according to SPI-3. (a) The full time series 1981–2020, with the dotted line demarking
the start of the (b) study period in 2017, which is depicted in detail.

C AMMAL LER I AND TORE T I 543MARCH 2023

Unauthenticated | Downloaded 10/01/23 02:34 PM UTC



gridded data with dekad updates, and can be considered
valid for global scale applications based on datasets with
similar characteristics. Gridded data with higher/lower spatial
resolution or temporal updates (i.e., monthly rather than
dekadal) would require other optimized parameterizations
that may lie outside the identified ranges (Table 1). The
specific model parameterization depends, as already stressed in
the model description, on the aim of the application, as further
discussed in section 4b.

b. Case study

To evaluate the flexibility of the proposed methodology in
adapting to potentially different characterizations of the same
drought event, a case study is here investigated: the Australia
drought period 2017–19. According to the Bureau of Meteo-
rology of the Australian Government (http://www.bom.gov.
au/climate/drought/knowledge-centre/previous-droughts.shtml)
the years 2017–19 were unprecedented in terms of dry condi-
tions during the cold season, with very little recovery during
the months October–December between these consecutive dry
periods.

The analysis of the full 1981–2020 time series of the areas
under drought [in three severity categories, according to
McKee et al. (1993)] according to SPI-3 clearly shows how
this period was indeed exceptional (Fig. 7a), especially in
terms of the extent of the drought at the peak (more than
80% of mainland Australia simultaneously under drought
conditions). While the Australian Bureau of Meteorology
considers this period a single drought event, with a combined
rainfall deficit in the 3-yr period (January 2017–December
2019) being the lowest on record in many regions, differences
in both severity and extent of the drought can be observed.
Although all three April–September periods were among the
driest on record for southeastern Australia, the 2019 cool sea-
son was drier than those of 2017 and 2018. These differences

are clearly shown in Fig. 7b, where 4–5 different drought peri-
ods can be detected.

In terms of the spatial distribution, the most extreme condi-
tions were recorded in southeastern Australia, mainly the
northern half of New South Wales and the eastern Victoria,
while western Australia was mostly interested by drought
conditions only earlier in the period. In 2017 there was a clear
split between two droughts in the northeast and the southwest
of the country, with dry conditions occurring mainly during
the corresponding rainy seasons (October–April for the north
and April–November for the south) with only a partial over-
lapping period (Fig. 8a). The droughts in 2018 and 2019 were
more spread out and difficult to separate (e.g., Fig. 8b).

This overview of the 2017–19 Australian drought points to
the need of adapting the event classification approach to the aim
of the specific analysis an expert/use may run. In longer time-
scale climate analysis, for instance, this event can be classified as a
single drought event. However, shorter time-scale studies aiming
at investigating differences within this drought period may split
the full event into multiple shorter ones. To highlight the flexibil-
ity of the proposed algorithm to adapt to these different classifica-
tions of the same drought period, three different settings were
used to analyze the 2017–19Australian drought (Table 2).

The first parameterization of the model (ID 5 1) addresses
longer time-scale climate analyses; thus, it uses a small value
for the minimum cluster size (A), the classic contiguous area
with Boolean drought conditions in space [corresponding to

FIG. 8. SPI-3 maps at different phases of the study period. (a) The drought conditions in the middle of May 2017
(14th dekad of the year), at the transition between the rainy season in the north and in the south of the country. (b) The
drought conditions at the end of 2019 (35th dekad of the year) spreading across the full country.

TABLE 2. Different parameterizations of the generalized
model used to characterize the 2017–19 Australian drought
period.

ID L p k E A R

1 3 0.05 21 1000 65 5
2 3 0.05 21 1000 200 3
3 3 0.30 21.5 8 200 3
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the classical CDA proposed by Andreadis et al. (2005)] and a
larger search window in time than in space (R . L). The sec-
ond set of parameters (ID5 2) increases the minimum cluster
size (hence reducing the potential connections between large
clusters), and adopts a symmetric space–time search window
(R 5 L). Finally, the third parameterization (ID 5 3) further
increases the spatial separation by increasing the number of
points needed to define a core point (i.e., increasing p) and by
also replacing the simple Boolean weighting with the logistic
function.

The outcome of the three clustering algorithms can be syn-
thetized with heat maps, depicting how long each cell was un-
der drought conditions during a given event (Fig. 9). The bars

at the top of Fig. 9 highlight how the full period is modeled as
a single event, according to ID 5 1, starting in December
2016 and ending in November 2020. The second set of param-
eters (ID 5 2, orange shades) returns three main events:
2017, 2018, and 2019/20. These three events mostly corre-
spond to the three main periods observable in Fig. 7, with the
exception of the minor drought in 2020 that is modeled as
part of the 2019 event. Finally, the third setting (ID5 3, green
shades) identifies five main events: 2018, 2019, 2020, and two
partially overlapping events in 2017. As complementary infor-
mation, the plots in Fig. 10 track the spatiotemporal evolution
of the centroids of the events according to the different
parameterization.

FIG. 9. Heat maps representing the number of time steps when each cell is included in a specific drought event according to the three
different parameterizations (see Table 2). The bars at the top of the figure highlight the temporal extent of each event, with each duration
also detailed by the start and end dekad and year (DD/YY) in the upper-left corner of each panel. (a)–(c) The results for the parameteriza-
tion ID5 2 (boxed in orange shades), (d)–(h) the results for ID5 3 (boxed in green shades), and (i) the results for ID5 1 (boxed in blue).
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These two sets of information provide a rather different
narrative for the full drought period, depending on the se-
lected parameterization. In the ID 5 2 case, the 2017 and
2018 events (Figs. 9a and 9b, respectively) have similar dura-
tion, even if the second one has a much larger spatial spread,
while the former has a more marked east to west movement
(Fig. 10b). The event in 2019/20 (Fig. 9c) is much longer than
the other two, and with a less marked difference between
eastern and western Australia. Due to its extent, the centroid
of the event stays around central Australia most of the time.

Differently, the ID 5 3 case clearly shows the absence of
spatial overlap between the two events in northeastern
(Fig. 9d) and southwestern (Fig. 9e) Australia in 2017, which
is clearly noticeable also in the spatial separation of the paths
of the centroids in Fig. 10c. It also highlights the strongest
drought conditions in 2019 (Fig. 9g) over New South Wales
but also the Northern Territory (which were masked by the
inclusion of 2020 in the previous case). According to the ID5 3
parameterization, this event starts and ends in the Northern
Territory (Fig. 10c), while moving to southeast during the
peak phase.

The ID 5 1 case provides a synthetic summary of the full
drought period, showing how the New South Wales was the
region most affected by the drought, mainly due to the 2018
and 2019 drought periods (Fig. 9i), but it does not allow to
make further detailed considerations. However, the ID 5 1
parameterization is very useful to contextualize the full period
in the historical framework of other long drought events in
the area, such as the Millennium drought, as well as to high-
light the overall movement of the drought along the full pe-
riod (Fig. 10a). In this regard, it is possible to observe a
general tendency of this event to move from east to west,
even if north-to-south migration can be observed in two occa-
sions at the end of 2017 and 2018, corresponding to the period
of minimum extent of the area under drought (see Fig. 7).

Finally, Fig. 11 shows the temporal evolution of the area
under drought conditions according to SPI-3 (Figs. 11a,c,e)
and SPI-6 (Figs. 11b,d,f), obtained by applying the same three
sets of parameters reported in Table 2. For both indices, the
outcome of the three settings is in line with the expected be-
havior described in the previous sections, with a stronger con-
nectivity between clusters (i.e., fewer and larger events) when
low A and large R values are used (Figs. 11a,b). On the oppo-
site, more (and smaller) clusters are obtained when the logis-
tic weighting function is used together with higher p and A
values (Figs. 11e,f).

Even if the overall behavior of the algorithm seems to be
coherent for the two SPI datasets, some discrepancies in the
results can be observed, especially for the parameterization
ID 5 2 where only two events are modeled for SPI-6 com-
pared to the three events reported for SPI-3. These differ-
ences can be ascribed to the smoother dynamics of SPI-6
compared to SPI-3 due to the longer accumulation period.
They also suggest that finetuning of the proposed optimal pa-
rameterization ranges may be needed for specific indicators,
even if the rules introduced in the previous sections remain of
general validity.

5. Summary and conclusions

In this study, we introduced a generalized algorithm for
the spatiotemporal tracking of drought events at a global
scale. Starting from the contiguous drought area methodology
(Andreadis et al. 2005), we contextualized the proposed ap-
proach within the data-mining framework of a three-dimensional
implementation of the density-based DBSCAN clustering
method. This implementation represents a generalization of
the CDA approach which is a special case of the proposed

FIG. 10. Spatiotemporal tracking of the centroids of the events
according to the three different parameterizations of the general-
ized clustering algorithm (see Table 2). The colors of the tracks
match the ones used in Fig. 9. Start and end dates, as well as some
key dates, are reported to better identify the temporal evolution.
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method. It is based on a set of six parameters that allows for
an increased flexibility of the algorithm in both spatial and
temporal connectivity of cells under drought, which expands
the possibility of adapting to different definitions of drought
events.

The optimal range of variability of each parameter was in-
vestigated on a medium-resolution SPI-3 dataset (derived
from the ECMWF reanalysis ERA5 precipitation), by show-
ing the effects on the clustering in some exemplary cases. Al-
though this represents a rule-of-thumb approach, to guide
potential users in selecting the optimal parameterization ac-
cording to the specific needs of their applications, it provides
key information on how the parameters affect the onset,
propagation, and end of a drought event.

The proposed approach is designed as a 3D clustering,
hence it requires a full data cube (covering both the spatial
and temporal domains) for its application. This is not a con-
straint for historical analyses, but it may provide an additional
challenge in the case of near-real-time applications. In this
case, newly acquired data may alter the outcome of the clus-
tering output, propagating even far in the past. The applica-
tion of the proposed methodology with a suitable temporal
lag (e.g., 1–2 temporal steps, depending on the R parameter)
should limit these negative effects and provide stable out-
comes, but these assumptions need to be properly tested.

The actual capability of the generalized algorithm to adapt
to different characterizations of the same drought event was

tested for a case study in Australia using SPI-3 data updated ev-
ery 10 days. Three different parameterizations of the algorithm
returned rather different descriptions of the spatiotemporal evo-
lution of the event, ranging from a single multiannual event to
multiple seasonal ones. This general behavior remains consistent
even if an index with a different accumulation period and fre-
quency is used (monthly SPI-6), even if different clusters are re-
turned. This result reveals how the algorithm can be tuned to
fulfill the needs and goals of various users. Even if rather differ-
ent multiple outcomes can be obtained for the same event, once
an indicator and a parameterization are selected (based on the
specific objectives a study targets) the algorithm can provide
consistent estimations of different drought events at global scale,
allowing for objective comparisons among events without any
additional a priori knowledge.

Data availability statement. All the data used in this study
can be accessed at the Copernicus Global Drought Observa-
tory (GDO) web portal (https://edo.jrc.ec.europa.eu/gdo/php/
index.php?id=2112). The source code of the clustering algo-
rithm, developed in the open-source language R, can be also
requested via GDO.
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